

Mining and Summarizing Public Opinion
About the United States Southern

Border Wall with Twitter Data

By
Dave Poortvliet

April, 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarworks@GVSU

https://core.ac.uk/display/220125615?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Dave Poortvliet

Mining and Summarizing Public Opinion
About the United States Southern

Border Wall with Twitter Data

By
Dave Poortvliet

A project submitted in partial fulfillment of the requirements for the degree of
Master of Science in

Computer Information Systems

At

Grand Valley State University
April, 2019

Xinli Wang, PhD April 20, 2019

1

Dave Poortvliet

Table of Contents
Abstract 3

Introduction 3

Background and Related Work 4

Program Requirements 4

Implementation 4
Connecting R and Twitter 5
Searching Twitter 6
Cleaning Mined Data 7

Analyzing Sentiment 10
What is Sentiment Analysis? 10
Preparing Sentiment Algorithms 10
Comparing Sentiment Algorithm Calculations 10

Syuzhet Algorithm 10
Bing Algorithm 11
Afinn Algorithm 12
NRC Algorithm 12
Syuzhet Bing, Afinn, and NRC Scoring 13

Results 14
During the U.S. Government Shutdown 14
After the U.S. Government Shutdown 15

Evaluation 16
Pros and Cons of Sentiment Algorithms 16

Syuzhet 16
Bing 17
Afinn 17
NRC 18

Reflection 19

Conclusions and Future Work 19

Bibliography 20

2

Dave Poortvliet

Abstract
With heated debates in the media about the proposed southern border wall in the United States
I wanted to better understand how the people living along the US/Mexico border really felt about
the wall. My approach to answering this question was to mine large sets of twitter data from the
cities along the border and analyze sentiment to understand if opinions on the wall were
favorable, unfavorable or neutral. This paper will analyze the four different algorithms I used to
determine sentiment and identify the benefits and drawbacks of each.

Introduction
The current president of the United States, Donald Trump, has proposed building a 2,000-mile
wall along the southern border of the United States. To accomplish this he requested $5.6 billion
from Congress. This proposal and request was debated in the news for several months and was
the result of a 35-day government shutdown. Congress, the president, and news pundits all
discussed their support or opposition to the wall, but I was curious how the individuals living
along the southern border really felt. Their voices are important to hear since they live in the
communities that will be impacted the most by the construction of a new wall.

My goal was to capture the sentiment from these individuals about the proposed border wall by
mining large sets of Twitter data from cities along the U.S./Mexico border. I used the Twitter API
and R to mine tweets and analyzed the sentiment of each tweet with 4 different algorithms to
see which best told the story of those populations closest to the border.

This paper will summarize my technique for mining and cleaning Twitter data, define sentiment
analysis, compare how each algorithm calculates sentiment, and review the pros and cons of
each algorithm based on the type of data being analyzed.

Background and Related Work
There are many web pages, articles and tutorials describing the steps to conduct sentiment
analysis. Most of these do an excellent job of providing code examples and instructions on
conducting analysis. However, all lacked the details on how the sentiment algorithms work.
None of the related work that I could find described the strengths and weaknesses of different
algorithms based on the context being analyzed.

3

Dave Poortvliet

Program Requirements
The script I wrote in R searches Twitter for tweets based on a defined search term within a
geographical radius for a given time period. The script removes duplicate tweets (retweets),
removes special characters, converts the data into a vector, and stores the data into a data
frame. The data frame is then run through 4 different sentiment analysis algorithms, the totals
for each algorithm are summed and then compared.

Implementation
The technologies I chose to analyze sentiment were: R, the Twitter API, and the Syuzhet R
library. I was not familiar with any of these at the beginning of my project, but after my research
it was clear that the R language was a top choice among statisticians and data miners for data
analysis.

I did consider the Python program Tweepy to mine tweets, but the sentiment analysis with
Tweepy seemed to be limited to a single algorithm called TextBlob.

I choose seven U.S. cities along the southern border. The pink line in the map below shows
where the proposed border wall would be constructed.

● Campo, California
● Yuma, Arizona
● Ajo, Arizona

● Arivaca, Arizona
● Douglas, Arizona

● Hachita, New Mexico
● El Paso, Texas

4

Dave Poortvliet

I then determined collecting tweets within a 60-mile radius of each of these cities would
encompass a geographical area covering the entire length of the proposed wall.

Connecting R and Twitter
I installed the twitteR package for R by running the command below, this allowed me to begin
my data analysis of tweets.

install.packages("twitteR")

library(twitteR)

Next I entered my API keys in order to use the Twitter API. I assigned my keys to variable in R
by using the <- syntax. The string abcdefgh123456789 used below is a dummy key.

consumer_key <- ' abcdefgh123456789 '
consumer_secret <- ' abcdefgh123456789 '
access_token <- ' abcdefgh123456789 '
access_secret <- ' abcdefgh123456789 '

Once the consumer keys and access keys were assigned to variables I set up OAuth with
following command. This validated my keys and authorized my use of the Twitter API.

setup_twitter_oauth(consumer_key, consumer_secret,

access_token, access_secret)

5

Dave Poortvliet

Searching Twitter
Now I could begin searching tweets using the function searchTwitter . To find tweets about
GVSU, for example, I used the following command:

searchTwitter('gvsu')

By default the number of results returned for a given search is 25. To view more results I
passed the n argument.

searchTwitter('gvsu' , n=50)

To find the most liked and shared tweets around a particular search term I used the argument
resultType='popular'

searchTwitter('gvsu', resultType='popular')

To search within a specific date range I added the since and until arguments. Tweets
available via the API only go back 6-9 days.

searchTwitter('gvsu' , since='2019-02-11', until='2019-02-15')

Searching tweets within a radius of a specified latitude and longitude is possible by adding the
geocode argument. The example below searched for tweets within a 60-mile radius of
Allendale, Michigan.

searchTwitter('gvsu' , geocode='42.974571,-85.954086,60mi')

For my research on the border wall, I used the search command below. This collected 3,200
tweets (Twitter’s API limit) within a 60-mile radius of Campo, CA that contained the word ‘border’
and the word ‘wall’ between the dates of 1/4/2019 and 1/5/2019. I stored the results in the
variable campo_california

campo_califonia <- searchTwitter('border wall' ,

since='2019-01-04', until='2019-01-05' ,

geocode='32.607522,-116.469890 , 60mi', n=3200)

6

Dave Poortvliet

Cleaning Mined Data
Now that I had a large data set of tweets I had to clean the tweets by removing retweets, links,
tabs, spaces, and special characters so the sentiment algorithms can focus on the words and
sentences in each tweet.

Applying the strip_retweets function to my original data set campo_califonia removed
all tweets that had been reposted by other individuals, this removed duplicate tweets that would
have skewed the sentiment analysis. I wrote these cleaned tweets to a new variable
campo_no_retweets by using the following command:

campo_no_retweets <- strip_retweets(campo_califonia)

The resulting data returned when using the searchTwitter function contained much more
information than just the text of each tweet. Tweets are accompanied with information about
creation date, if the tweet was a reply to another tweet, how many times the tweet has been
favorited, the originator’s screen name, number of times the tweet has been retweeted, and the
geolocation of the tweet with longitude and latitude. To see all the data returned I used the
head command below. The head command in R will return the first several rows of a data set.

head(campo_no_retweets)

Sentiment algorithms will not be able to process this additional information, so we’ll need to
create a new data set that contains just the text of each tweet, essentially stripping out all the
extra data. Twitter search results were easier to manipulate by putting them into tabular format,
in R this is known as a data frame. The function as.data.frame makes this possible. I put the
data set campo_no_retweets into the data frame campo_df by using the following
command in R

campo_df <- as.data.frame(campo_no_retweets)

R stores data in temporary memory while the software is open. When R is closed the session is
terminated and all data is wiped. While working in R I often saved data to an external file so I
could use it later during my research. The function below writes a data frame to the
campo_df.csv file. This file will be saved in the R working directory. Typing
getwd() displayed the working directory so I could locate the file on my hard drive.

write.csv(campo_df, "campo_df.csv")

I imported the data back into R later from the .csv file by using the following command. This
placed my data set into the variable campo_df

7

Dave Poortvliet

campo_df <-read.csv("campo_df.csv", header=TRUE)

To view the data frame in table format with rows and columns I used the the View command.

View(campo_df)

I noted the text for each tweet was contained within the text column of the data frame. To view
just the text column and disregard all the other data I used the $ argument. I could see how this
worked by using the following command:

head(campo_df $text)

RESULT

[1] "Senator @RandPaul, I had dinner with you just the other

week and we talked specifically about the border wall, where…

https://t.co/I5mN1Aq7z2"

[2] "Día 107. Painting the border wall - Mural de la hermandad

!! MURAL de la Hermandad https://t.co/RVrEP0M78s"

[3] "@AW_passed_thru @SenKamalaHarris The wall is the big

middle finger of racist hatred, a waste of money, and it won't

last long https://t.co/YibxpCZxO6"

[4] "And since they can only house 60,000; 840,000 WILL BE

RELEASED INTO THE COUNTRY!\n\nRefuse to be a victim. Open

Carr… https://t.co/s0x2JyTZDA"

[5] "2. Send $8.6 billion to the president's border wall

project to address a nonexistent national emergency, on top of…

https://t.co/iE71OXe49E"

8

Dave Poortvliet

Next I needed to clean the text of each tweet by using the gsub function on only the text column
of the data frame. This replaces all matches of a defined string. The # symbol is used to add a
comment in the R console. Comments are not executed. I put the clean text of each tweet into a
new variable clean_tweet

clean_tweet <- gsub("@\\w+", "", clean_tweet) #remove @

clean_tweet <- gsub("[[:punct:]]", "",clean_tweet) #remove

punctuation

clean_tweet <- gsub("[[:digit:]]", "", clean_tweet) #remove numbers

clean_tweet <- gsub("http\\w+", "", clean_tweet) #remove http

clean_tweet <- gsub("[|\t]{2,}", "", clean_tweet) #remove tabs

clean_tweet <- gsub("^ ", "", clean_tweet) #remove leading spaces

clean_tweet <- gsub(" $", "", clean_tweet) #remove trailing

spaces

I wanted to view the first few lines of the cleaned tweets in the new variable clean_tweet by
using the head command again. I could see the additional information with each tweet had
been discarded and the resulting text had been cleaned and was ready for sentiment analysis.

head(clean_tweet)

RESULT

[1] "Senator I had dinner with you just the other week and we

talked specifically about the border wall where"

[2] "Día Painting the border wall Mural de la hermandad MURAL

de la Hermandad"

[3] "The wall is the big middle finger of racist hatred a waste

of money and it won’t last long"

[4] "And since they can only house WILL BE RELEASED INTO THE

COUNTRY Refuse to be a victim Open Carr"

[5] "Send billion to the president’s border wall project to

address a nonexistent national emergency on top of"

9

Dave Poortvliet

Analyzing Sentiment

What is Sentiment Analysis?
Sentiment analysis is the measurement of positive and negative language. It is used to evaluate
written words and sentences to determine if the overall meaning is favorable, unfavorable, or
neutral for a given subject. There are several algorithms today that can process sentiment on
very large data sets to determine public opinions on products, services, and political campaigns.
Running sentiment analysis on a regular basis can shed light on changes in public opinion.

Preparing Sentiment Algorithms
The Syuzhet R package in R allowed me to compare four sentiment algorithms: syuzhet
(default), bing, afinn, and nrc.

I installed the Syuzhet library by running the following command in R:

installed.packages("syuzhet")

library("syuzhet")

To analyze tweets I first needed to convert the clean text of tweets into a vector. A vector is a
basic data structure in R that contain elements of the same type, in this case, the elements will
be words and sentences. Once R can recognize a tweet as a vector the sentiment algorithms
can analyze and score each word and sentence independently. To convert tweets into a vector I
used the as.vector function and put the collection of words and sentences into a new data
frame words_df

words_df <- as.vector(clean_tweet)

Comparing Sentiment Algorithm Calculations

Syuzhet Algorithm
The Syuzhet lexicon was developed in the Nebraska Literary Lab. The name "Syuzhet" comes
from the Russian Formalists Victor Shklovsky and Vladimir Propp who divided narrative into two
components, the "fabula" (the text) and the "syuzhet" (the order). The Syuzhet algorithm is used
for analyzing literary works and focuses on how the elements of the text are organized and
assigns a sentiment score for each word ranging from -1 to 1 using fractions.

To extract the sentiment values for each tweet I used the get_sentiment function on the
words_df data frame and placed the values into a new variable syuzhet_values

10

Dave Poortvliet

syuzhet_values <- get_sentiment(words_df)

Next I combined the original clean tweets with the syuzhet sentiment scores using the cbind
function and viewed the results. The last column in the data frame summed the scores from
each word in the tweet. A negative number indicated the tweet contained unfavorable sentiment
about the terms ‘border wall’ while a positive number indicated a favorable sentiment. Zero
indicated a neutral sentiment.

syuzhet_campo <- cbind(clean_tweet, syuzhet_values)

View(syuzhet_campo)

Bing Algorithm
The Bing lexicon was developed by Minqing Hu and Bing Liu. Hu and Bing categorized words
into two main types: facts and opinions. This lexicon focuses on the sentiment of opinion words.
The original goal for this algorithm was to detect fake product reviews. The algorithm assigns a
-1 to negative words and +1 to positive words as defined in the Hu and Bing lexicon. Running
the following command invoked the bing algorithm and gave me a total for each tweet.

bing_values <- get_sentiment(words_df, method="bing")

Once again I combined the original tweet with the bing sum values and viewed the results.

bing_campo <- cbind(clean_tweet, bing_values)

View(bing_campo)

11

Dave Poortvliet

Afinn Algorithm
The AFINN algorithm uses a list of English terms manually scored with values between -5
(negative) and +5 (positive) by Finn Årup Nielsen. This lexicon was originally developed to
detect obscene words.

afinn_values <- get_sentiment(words_df, method="afinn")

I combined the original tweet with the Afinn sum values and viewed the results.

afinn_campo <- cbind(clean_tweet, afinn_values)

View(bing_afinn)

NRC Algorithm
The NRC Emotion Lexicon is a list of English words that have been mapped to eight emotions
via crowdsourcing: anger, fear, anticipation, trust, surprise, sadness, joy, and disgust. The NRC
algorithm then provides an overall sentiment score for the tweet based on a tally of the emotions
present.

To view how this is accomplished I used the get_nrc_sentiment on the words_df data
frame and then used the View command to see the breakdown of emotions for each tweet.

nrc_values <- get_nrc_sentiment(words_df)

View(emotions_df)

12

Dave Poortvliet

The output shows the count of words in the tweet that are associated with each emotion. In the
example above, the third tweet has 2 words associated with anger, 2 with anticipation, 2 with
disgust, 1 with fear, 1 with joy, 1 with sadness, 1 with surprise, and 1 with trust. The
get_nrc_sentiment function then assigns the tweet with an overall positive or negative
score by summing the number of positive emotions or negative emotions present.

Syuzhet Bing, Afinn, and NRC Scoring
Having each algorithm analyze the same tweet shed some light on exactly how each calculates
a sentiment score.

Syuzhet

The border wall is stupid, racist and a big waste of money

 0 0 0 0 -1 0 0 0 0 -1 0 1 = -1

Bing
The border wall is stupid, racist and a big waste of money

 0 0 0 0 -1 -1 0 0 0 -1 0 0 = -3

Afinn

The border wall is stupid, racist and a big waste of money

 0 0 0 0 -2 -3 0 0 1 -1 0 0 = -5

NRC

The border wall is stupid, racist and a big waste of money

 0 0 0 0 -1 -1 0 0 .25 -.75 0 .6 = -1.9

Even though each algorithm used a different scale for analyzing sentiment, they all used a
negative number as unfavorable sentiment, a positive number as favorable sentiment and zero
as neutral sentiment.

To determine the overall sentiment score with each algorithm for the original data set
words_df I summed the values. Why not average the scores? The neutral words scored with
0 would bring the overall sentiment down. For example:

The border wall is stupid, racist and a big waste of money

 0 0 0 0 -1 0 0 0 0 -1 0 1

Summing the sentiment score for the sentence above would result in a -1, while averaging the
scores would result in a -0.08. The result of averaging the sentiment (-0.08) could likely be
rounded to 0 (neutral) and this tweet is more accurately representing unfavorable sentiment
about the border wall.

13

Dave Poortvliet

I summed the total values for each algorithm by using the sum function in R:

sum(syuzhet_values)

-3.9

sum(bing_values)

-10

sum(afinn_values)

-9

sum(nrc_values)

-1

The above indicates that the Syuzhet, Bing, Afinn and NRC algorithms all indicated an
unfavorable sentiment around the the terms ‘border wall’ for the sample tweets I pulled.

Results
Using the Bing algorithm on the 268,800 tweets I collected from 7 border cities over 11 days
yielded the sentiment results below. Running this large data set through each algorithm, and
spot checking several dozen tweets I felt the Bing algorithm evaluated tweets the best. I
evaluate the pros and cons of each algorithm in the next section of this paper.

I was curious if sentiment changed before and after the government shutdown so I split the data
up accordingly.

During the U.S. Government Shutdown
During the U.S. government shutdown sentiments around the term ‘border wall’ were varied.
The sentiment analysis showed that 4 of the border cities showed unfavorable sentiment around
the terms ‘border wall’ while 3 cities showed favorable sentiment around the same terms.

14

Dave Poortvliet

After the U.S. Government Shutdown
After the U.S. government shutdown attitudes around the term ‘border wall’ shifted toward
unfavorable. The 4 border cities that showed unfavorable sentiment around the terms ‘border
wall’ remained unfavorable while the 3 cities that showed favorable sentiment shifted to
negative or neutral feelings.

15

Dave Poortvliet

Evaluation

Pros and Cons of Sentiment Algorithms
One of the most interesting outcomes of my project was that each algorithm produced different
results. Researching the origin of each algorithm helped me understand their benefits and
drawbacks for analyzing different material.

Syuzhet
The lexicon used for this algorithm is based on the work from Russian formalists who analyzed
the order and meaning of words in literature.

Pro
Works well for finding themes in books and determining the distinct linguistic style of a
given author

Con
Does not work well on short microposts like tweets since the algorithm looks at order of
words. Tweets are too short to determine themes.

Total sentiment score from Syuzhet algorithm for all tweets gathered from 1/21/19 - 2/1/19

Bing
Originally created to detect fake product reviews on web sites. Minqing Hu and Bing Liu focused
their work on “opinion” words.

16

Dave Poortvliet

Pro
Worked well for analyzing tweets. Due to the small lexicon less words were scored,
however more words were scored more accurately.

Con
Ignored the order of words, so words like ‘very’ or ‘extremely’ in front of a positive or
negative word were ignored. The original positive or negative word would have the same
score regardless of the adjective in front of it.

Total sentiment score from Bing algorithm for all tweets gathered from 1/21/19 - 2/1/19

Afinn
Created by Finn Årup Nielsen originany to detect obscenities and then expanded to determine
sentiment.

Pro
Lexicon contains slang which lends itself well for analyzing tweets.

Con
Some oddities in scoring, words like ‘big’ were rated positive. Word order was ignored.

17

Dave Poortvliet

Total sentiment score from Afinn algorithm for all tweets gathered from 1/21/19 - 2/1/19

NRC
Crowdsourced lexicon that asks users to associate an emotion to a word. Emotions are grouped
into positive or negative sentiment.

Pro
A very large lexicon that is updated regularly

Con
Nearly all tweets analyzed were scored positive. Oddities in words scored positive like
chairman, big and fireball

Total sentiment score from NRC algorithm for all tweets gathered from 1/21/19 - 2/1/19

18

Dave Poortvliet

Reflection
I am new to the programming language R, as a novice I am sure there are ways to improve my
code. I also struggled writing a perfect regular expression that cleaned tweets properly, after
much trial and error I believe I arrived at a good solution, but again, I am sure I overlooked
efficiencies.

Sentiment is inherently subjective from person to person. An individual that is typically neutral
on a specific subject might have a bad day and tweet something negative. This is why it is
important to gather a large data set. The populations within a 60 mile radius of Ajo, Arizona and
Hachita, New Mexico were under 60,000. On several days during my research these
geographic locations produced less than 100 tweets. Further research would need to be
conducted to see if these small data sets could have been skewed by a small number of
individuals.

I found no sentiment algorithms that could detect sarcasm. This seems to be a major hurdle for
sentiment analysis.

Conclusions and Future Work
I was curious how the individuals living along the southern border of the United States felt about
the proposed border wall. By mining tweets and analyzing sentiment from cities along the
U.S./Mexico border I was able to determine that sentiment around the border wall overall was
unfavorable.

When considering sentiment analysis for your brand, service or political campaign it’s important
to know how each algorithm works and which is the best tool for the data you are analyzing.

A custom lexicon around the context being analyzed could be produced for further accuracy.
For example, if customers use the word ‘sick’ in a favorable way to describe a product, a custom
lexicon could be produced that ranks ‘sick’ as a positive word.

Coupling demographic data with sentiment analysis may lend more insight into the sentiment of
certain words. Knowing a tweet is from an individual that is 15 years old versus 50 years old
may help determine if a word like ‘sick’ is favorable or unfavorable.

19

Dave Poortvliet

Bibliography

Finn Årup Nielsen, "A new ANEW: evaluation of a word list for sentiment analysis in
microblogs", Proceedings of the ESWC2011 Workshop on 'Making Sense of Microposts': Big
things come in small packages. Volume 718 in CEUR Workshop Proceedings: 93-98. 2011
May. Matthew Rowe, Milan Stankovic, Aba-Sah Dadzie, Mariann Hardey (editors)

Manning, Christopher D., Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J. Bethard, and
David McClosky. 2014. The Stanford CoreNLP Natural Language Processing Toolkit In
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics:
System Demonstrations, pp. 55-60

Nielsen, and Finn Årup. “A New ANEW: Evaluation of a Word List for Sentiment Analysis in
Microblogs.” ArXiv.org, 15 Mar. 2011, arxiv.org/abs/1103.2903

Indurkhya, Nitin, and Frederick J. Damerau. Handbook of Natural Language Processing.
Chapman & Hall/CRC, 2010.

Gentry, Jeff. “TwitteR v1.1.9.” TwitteR Package | R Documentation,
www.rdocumentation.org/packages/twitteR/versions/1.1.9

Jockers, Matthew. Introduction to the Syuzhet Package, 13 Dec. 2017,
cran.r-project.org/web/packages/syuzhet/vignettes/syuzhet-vignette.html

Mohammad, Saif. NRC Word-Emotion Association Lexicon,
www.saifmohammad.com/WebPages/NRC-Emotion-Lexicon.htm

20

