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Abstract 
With heated debates in the media about the proposed southern border wall in the United States 
I wanted to better understand how the people living along the US/Mexico border really felt about 
the wall. My approach to answering this question was to mine large sets of twitter data from the 
cities along the border and analyze sentiment to understand if opinions on the wall were 
favorable, unfavorable or neutral. This paper will analyze the four different algorithms I used to 
determine sentiment and identify the benefits and drawbacks of each. 

Introduction 
The current president of the United States, Donald Trump, has proposed building a 2,000-mile 
wall along the southern border of the United States. To accomplish this he requested $5.6 billion 
from Congress. This proposal and request was debated in the news for several months and was 
the result of a 35-day government shutdown. Congress, the president, and news pundits all 
discussed their support or opposition to the wall, but I was curious how the individuals living 
along the southern border really felt. Their voices are important to hear since they live in the 
communities that will be impacted the most by the construction of a new wall.  
 
My goal was to capture the sentiment from these individuals about the proposed border wall by 
mining large sets of Twitter data from cities along the U.S./Mexico border. I used the Twitter API 
and R to mine tweets and analyzed the sentiment of each tweet with 4 different algorithms to 
see which best told the story of those populations closest to the border.  
 
This paper will summarize my technique for mining and cleaning Twitter data, define sentiment 
analysis, compare how each algorithm calculates sentiment, and review the pros and cons of 
each algorithm based on the type of data being analyzed.  

Background and Related Work 
There are many web pages, articles and tutorials describing the steps to conduct sentiment 
analysis. Most of these do an excellent job of providing code examples and instructions on 
conducting analysis. However, all lacked the details on how the sentiment algorithms work. 
None of the related work that I could find described the strengths and weaknesses of different 
algorithms based on the context being analyzed.  
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Program Requirements 
The script I wrote in R searches Twitter for tweets based on a defined search term within a 
geographical radius for a given time period. The script removes duplicate tweets (retweets), 
removes special characters, converts the data into a vector, and stores the data into a data 
frame. The data frame is then run through 4 different sentiment analysis algorithms, the totals 
for each algorithm are summed and then compared.  

Implementation 
The technologies I chose to analyze sentiment were: R, the Twitter API, and the Syuzhet R 
library. I was not familiar with any of these at the beginning of my project, but after my research 
it was clear that the R language was a top choice among statisticians and data miners for data 
analysis.  
 
I did consider the Python program Tweepy to mine tweets, but the sentiment analysis with 
Tweepy seemed to be limited to a single algorithm called TextBlob.  
 
I choose seven U.S. cities along the southern border. The pink line in the map below shows 
where the proposed border wall would be constructed. 

● Campo, California 
● Yuma, Arizona 
● Ajo, Arizona 

 

● Arivaca, Arizona 
● Douglas, Arizona 

● Hachita, New Mexico 
● El Paso, Texas 
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I then determined collecting tweets within a 60-mile radius of each of these cities would 
encompass a geographical area covering the entire length of the proposed wall.  
 

 

Connecting R and Twitter 
I installed the twitteR package for R by running the command below, this allowed me to begin 
my data analysis of tweets. 
 

install.packages("twitteR") 

library(twitteR) 

 

Next I entered my API keys in order to use the Twitter API. I assigned my keys to variable in R 
by using the <-  syntax. The string abcdefgh123456789  used below is a dummy key.  
 

consumer_key <- ' abcdefgh123456789 ' 
consumer_secret <- ' abcdefgh123456789 ' 
access_token <- ' abcdefgh123456789 ' 
access_secret <- ' abcdefgh123456789 ' 

 
Once the consumer keys and access keys were assigned to variables I set up OAuth with 
following command. This validated my keys and authorized my use of the Twitter API.  
 

setup_twitter_oauth(consumer_key, consumer_secret, 

access_token, access_secret) 
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Searching Twitter 
Now I could begin searching tweets using the function searchTwitter . To find tweets about 
GVSU, for example, I used the following command: 
 

searchTwitter('gvsu') 

 
By default the number of results returned for a given search is 25. To view more results I 
passed the n  argument.  
 

searchTwitter('gvsu' , n=50) 

 

To find the most liked and shared tweets around a particular search term I used the argument 
resultType='popular' 

 

searchTwitter('gvsu', resultType='popular') 

 

To search within a specific date range I added the since  and until  arguments. Tweets 
available via the API only go back 6-9 days.  
 

searchTwitter('gvsu' , since='2019-02-11', until='2019-02-15') 

  
 
Searching tweets within a radius of a specified latitude and longitude is possible by adding the 
geocode  argument. The example below searched for tweets within a 60-mile radius of 
Allendale, Michigan.  
 

searchTwitter('gvsu' , geocode='42.974571,-85.954086,60mi') 

 

For my research on the border wall, I used the search command below. This collected 3,200 
tweets (Twitter’s API limit) within a 60-mile radius of Campo, CA that contained the word ‘border’ 
and the word ‘wall’ between the dates of 1/4/2019 and 1/5/2019. I stored the results in the 
variable campo_california 
 

campo_califonia <- searchTwitter('border wall' , 

since='2019-01-04', until='2019-01-05' , 

geocode='32.607522,-116.469890 , 60mi', n=3200) 
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Cleaning Mined Data 
Now that I had a large data set of tweets I had to clean the tweets by removing retweets, links, 
tabs, spaces, and special characters so the sentiment algorithms can focus on the words and 
sentences in each tweet. 
 
Applying the strip_retweets  function to my original data set campo_califonia  removed 
all tweets that had been reposted by other individuals, this removed duplicate tweets that would 
have skewed the sentiment analysis.  I wrote these cleaned tweets to a new variable 
campo_no_retweets by using the following command: 
 

campo_no_retweets <- strip_retweets(campo_califonia) 

 
The resulting data returned when using the searchTwitter  function contained much more 
information than just the text of each tweet. Tweets are accompanied with information about 
creation date, if the tweet was a reply to another tweet, how many times the tweet has been 
favorited, the originator’s screen name, number of times the tweet has been retweeted, and the 
geolocation of the tweet with longitude and latitude. To see all the data returned I used the 
head  command below. The head  command in R will return the first several rows of a data set. 
 

head(campo_no_retweets) 
 
Sentiment algorithms will not be able to process this additional information, so we’ll need to 
create a new data set that contains just the text of each tweet, essentially stripping out all the 
extra data. Twitter search results were easier to manipulate by putting them into tabular format, 
in R this is known as a data frame. The function as.data.frame  makes this possible. I put the 
data set campo_no_retweets into the data frame campo_df  by using the following 
command in R 
 

campo_df <- as.data.frame(campo_no_retweets) 

 

R stores data in temporary memory while the software is open. When R is closed the session is 
terminated and all data is wiped. While working in R I often saved data to an external file so I 
could use it later during my research. The function below writes a data frame to the 
campo_df.csv  file. This file will be saved in the R working directory. Typing 
getwd() displayed the working directory so I could locate the file on my hard drive.  
 

write.csv(campo_df, "campo_df.csv") 

 

I imported the data back into R later from the .csv file by using the following command. This 
placed my data set into the variable campo_df 
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campo_df <-read.csv("campo_df.csv", header=TRUE) 

 
To view the data frame in table format with rows and columns I used the the View  command. 

 

View(campo_df) 
 

 
 
I noted the text for each tweet was contained within the text column of the data frame. To view 
just the text column and disregard all the other data I used the $  argument. I could see how this 
worked by using the following command: 
 

head(campo_df $text) 

 

RESULT 

[1] "Senator @RandPaul, I had dinner with you just the other 

week and we talked specifically about the border wall, where… 

https://t.co/I5mN1Aq7z2"  

 

[2] "Día 107. Painting the border wall - Mural de la hermandad 

!! MURAL de la Hermandad https://t.co/RVrEP0M78s"  

  

[3] "@AW_passed_thru @SenKamalaHarris The wall is the big 

middle finger of racist hatred, a waste of money, and it won't 

last long https://t.co/YibxpCZxO6"  

 

[4] "And since they can only house 60,000; 840,000 WILL BE 

RELEASED INTO THE COUNTRY!\n\nRefuse to be a victim.  Open 

Carr… https://t.co/s0x2JyTZDA" 

 

[5] "2. Send $8.6 billion to the president's border wall 

project to address a nonexistent national emergency, on top of… 

https://t.co/iE71OXe49E" 
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Next I needed to clean the text of each tweet by using the gsub  function on only the text column 
of the data frame. This replaces all matches of a defined string. The # symbol is used to add a 
comment in the R console. Comments are not executed. I put the clean text of each tweet into a 
new variable clean_tweet 
 
clean_tweet <- gsub("@\\w+", "", clean_tweet) #remove @ 

clean_tweet <- gsub("[[:punct:]]", "",clean_tweet) #remove 

punctuation 

clean_tweet <- gsub("[[:digit:]]", "", clean_tweet) #remove numbers 

clean_tweet <- gsub("http\\w+", "", clean_tweet) #remove http 

clean_tweet <- gsub("[ |\t]{2,}", "", clean_tweet) #remove tabs 

clean_tweet <- gsub("^ ", "", clean_tweet) #remove leading spaces 

clean_tweet <- gsub(" $", "", clean_tweet) #remove trailing 

spaces 

  
I wanted to view the first few lines of the cleaned tweets in the new variable clean_tweet  by 
using the head  command again. I could see the additional information with each tweet had 
been discarded and the resulting text had been cleaned and was ready for sentiment analysis.  
 

head(clean_tweet)  

 

RESULT 

[1] "Senator I had dinner with you just the other week and we 

talked specifically about the border wall where"  

 

[2] "Día Painting the border wall Mural de la hermandad MURAL 

de la Hermandad"  

  

[3] "The wall is the big middle finger of racist hatred a waste 

of money and it won’t last long"  

  

[4] "And since they can only house WILL BE RELEASED INTO THE 

COUNTRY Refuse to be a victim Open Carr"  

  

[5] "Send billion to the president’s border wall project to 

address a nonexistent national emergency on top of" 
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Analyzing Sentiment 

What is Sentiment Analysis?  
Sentiment analysis is the measurement of positive and negative language. It is used to evaluate 
written words and sentences to determine if the overall meaning is favorable, unfavorable, or 
neutral for a given subject. There are several algorithms today that can process sentiment on 
very large data sets to determine public opinions on products, services, and political campaigns. 
Running sentiment analysis on a regular basis can shed light on changes in public opinion.  

Preparing Sentiment Algorithms 
The Syuzhet R package in R allowed me to compare four sentiment algorithms: syuzhet 
(default), bing, afinn, and nrc. 
 
I installed the Syuzhet library by running the following command in R:  
 

installed.packages("syuzhet") 

library("syuzhet") 

 
To analyze tweets I first needed to convert the clean text of tweets into a vector. A vector is a 
basic data structure in R that contain elements of the same type, in this case, the elements will 
be words and sentences. Once R can recognize a tweet as a vector the sentiment algorithms 
can analyze and score each word and sentence independently. To convert tweets into a vector I 
used the as.vector  function and put the collection of words and sentences into a new data 
frame words_df 
 

words_df <- as.vector(clean_tweet) 

Comparing Sentiment Algorithm Calculations 

Syuzhet Algorithm 
The Syuzhet lexicon was developed in the Nebraska Literary Lab. The name "Syuzhet" comes 
from the Russian Formalists Victor Shklovsky and Vladimir Propp who divided narrative into two 
components, the "fabula" (the text) and the "syuzhet" (the order). The Syuzhet algorithm is used 
for analyzing literary works and focuses on how the elements of the text are organized and 
assigns a sentiment score for each word ranging from -1 to 1 using fractions. 
 
To extract the sentiment values for each tweet I used the get_sentiment  function on the 
words_df  data frame and placed the values into a new variable syuzhet_values 
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syuzhet_values <- get_sentiment(words_df) 

 

Next I combined the original clean tweets with the syuzhet sentiment scores using the cbind 
function and viewed the results. The last column in the data frame summed the scores from 
each word in the tweet. A negative number indicated the tweet contained unfavorable sentiment 
about the terms ‘border wall’ while a positive number indicated a favorable sentiment. Zero 
indicated a neutral sentiment.  
 

syuzhet_campo <- cbind(clean_tweet, syuzhet_values) 

 

View(syuzhet_campo) 

 

 

Bing Algorithm 
The Bing lexicon was developed by Minqing Hu and Bing Liu. Hu and Bing categorized words 
into two main types: facts and opinions. This lexicon focuses on the sentiment of opinion words. 
The original goal for this algorithm was to detect fake product reviews. The algorithm assigns a 
-1 to negative words and +1 to positive words as defined in the Hu and Bing lexicon. Running 
the following command invoked the bing algorithm and gave me a total for each tweet.  
 

bing_values <- get_sentiment(words_df, method="bing") 

 

Once again I combined the original tweet with the bing sum values and viewed the results.  
 

bing_campo <- cbind(clean_tweet, bing_values) 

 

View(bing_campo) 
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Afinn Algorithm 
The AFINN algorithm uses a list of English terms manually scored with values between -5 
(negative) and +5 (positive) by Finn Årup Nielsen. This lexicon was originally developed to 
detect obscene words. 
 

afinn_values <- get_sentiment(words_df, method="afinn") 

 
I combined the original tweet with the Afinn sum values and viewed the results.  
 

afinn_campo <- cbind(clean_tweet, afinn_values) 

 

View(bing_afinn) 

 

 
  

NRC Algorithm 
The NRC Emotion Lexicon is a list of English words that have been mapped to eight emotions 
via crowdsourcing: anger, fear, anticipation, trust, surprise, sadness, joy, and disgust. The NRC 
algorithm then provides an overall sentiment score for the tweet based on a tally of the emotions 
present. 
 
To view how this is accomplished I used the get_nrc_sentiment  on the words_df  data 
frame and then used the View  command to see the breakdown of emotions for each tweet.  
 
nrc_values <- get_nrc_sentiment(words_df) 

 

View(emotions_df) 
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The output shows the count of words in the tweet that are associated with each emotion. In the 
example above, the third tweet has 2 words associated with anger, 2 with anticipation, 2 with 
disgust, 1 with fear, 1 with joy, 1 with sadness, 1 with surprise, and 1 with trust. The 
get_nrc_sentiment  function then assigns the tweet with an overall positive or negative 
score by summing the number of positive emotions or negative emotions present.  
 

Syuzhet Bing, Afinn, and NRC Scoring  
Having each algorithm analyze the same tweet shed some light on exactly how each calculates 
a sentiment score.  
 
Syuzhet 

The border wall is stupid, racist and a big waste of money 

 0    0     0   0    -1      0     0  0  0    -1  0    1    =   -1 
 
Bing 
The border wall is stupid, racist and a big waste of money 

 0    0     0   0    -1      -1    0  0  0    -1  0    0    =   -3 

 

Afinn 

The border wall is stupid, racist and a big waste of money 

 0    0     0   0    -2      -3    0  0  1    -1  0    0    =   -5 

 

NRC 

The border wall is stupid, racist and a big waste of money 

 0    0     0   0    -1      -1    0  0 .25 -.75  0   .6    =   -1.9 

 

Even though each algorithm used a different scale for analyzing sentiment, they all used a 
negative number as unfavorable sentiment, a positive number as favorable sentiment and zero 
as neutral sentiment.  
 
To determine the overall sentiment score with each algorithm for the original data set 
words_df I summed the values. Why not average the scores? The neutral words scored with 
0 would bring the overall sentiment down. For example: 
 
The border wall is stupid, racist and a big waste of money 

 0    0     0   0    -1      0     0  0  0    -1  0    1  

 

Summing the sentiment score for the sentence above would result in a -1, while averaging the 
scores would result in a -0.08. The result of averaging the sentiment (-0.08) could likely be 
rounded to 0 (neutral) and this tweet is more accurately representing unfavorable sentiment 
about the border wall.  
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I summed the total values for each algorithm by using the sum  function in R: 
 

sum(syuzhet_values) 

-3.9 

sum(bing_values) 

-10 

sum(afinn_values) 

-9 

sum(nrc_values) 

-1 

 

The above indicates that the Syuzhet, Bing, Afinn and NRC algorithms all indicated an 
unfavorable sentiment around the the terms ‘border wall’ for the sample tweets I pulled. 

Results 
Using the Bing algorithm on the 268,800 tweets I collected from 7 border cities over 11 days 
yielded the sentiment results below. Running this large data set through each algorithm, and 
spot checking several dozen tweets I felt the Bing algorithm evaluated tweets the best. I 
evaluate the pros and cons of each algorithm in the next section of this paper.  
 
I was curious if sentiment changed before and after the government shutdown so I split the data 
up accordingly.  

During the U.S. Government Shutdown 
During the U.S. government shutdown sentiments around the term ‘border wall’ were varied. 
The sentiment analysis showed that 4 of the border cities showed unfavorable sentiment around 
the terms ‘border wall’ while 3 cities showed favorable sentiment around the same terms.  
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After the U.S. Government Shutdown 
After the U.S. government shutdown attitudes around the term ‘border wall’ shifted toward 
unfavorable. The 4 border cities that showed unfavorable sentiment around the terms ‘border 
wall’ remained unfavorable while the 3 cities that showed favorable sentiment shifted to 
negative or neutral feelings.  
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Evaluation 

Pros and Cons of Sentiment Algorithms 
One of the most interesting outcomes of my project was that each algorithm produced different 
results. Researching the origin of each algorithm helped me understand their benefits and 
drawbacks for analyzing different material.  

Syuzhet 
The lexicon used for this algorithm is based on the work from Russian formalists who analyzed 
the order and meaning of words in literature.  

Pro 
Works well for finding themes in books and determining the distinct linguistic style of a 
given author 

Con 
Does not work well on short microposts like tweets since the algorithm looks at order of 
words. Tweets are too short to determine themes.  
 

 
Total sentiment score from Syuzhet algorithm for all tweets gathered from 1/21/19 - 2/1/19 

Bing 
Originally created to detect fake product reviews on web sites. Minqing Hu and Bing Liu focused 
their work on “opinion” words.  
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Pro 
Worked well for analyzing tweets. Due to the small lexicon less words were scored, 
however more words were scored more accurately.  

Con 
Ignored the order of words, so words like ‘very’ or ‘extremely’ in front of a positive or 
negative word were ignored. The original positive or negative word would have the same 
score regardless of the adjective in front of it.  
 

 
Total sentiment score from Bing algorithm for all tweets gathered from 1/21/19 - 2/1/19 

 

Afinn 
Created by Finn Årup Nielsen originany to detect obscenities and then expanded to determine 
sentiment.  

Pro 
Lexicon contains slang which lends itself well for analyzing tweets. 

Con 
Some oddities in scoring, words like ‘big’ were rated positive. Word order was ignored.  
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Total sentiment score from Afinn algorithm for all tweets gathered from 1/21/19 - 2/1/19 

 

NRC 
Crowdsourced lexicon that asks users to associate an emotion to a word. Emotions are grouped 
into positive or negative sentiment.  

Pro 
A very large lexicon that is updated regularly  

Con 
Nearly all tweets analyzed were scored positive. Oddities in words scored positive like 
chairman, big and fireball 
 

 

 
Total sentiment score from NRC algorithm for all tweets gathered from 1/21/19 - 2/1/19 
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Reflection 
I am new to the programming language R, as a novice I am sure there are ways to improve my 
code. I also struggled writing a perfect regular expression that cleaned tweets properly, after 
much trial and error I believe I arrived at a good solution, but again, I am sure I overlooked 
efficiencies.  
 
Sentiment is inherently subjective from person to person. An individual that is typically neutral 
on a specific subject might have a bad day and tweet something negative. This is why it is 
important to gather a large data set. The populations within a 60 mile radius of Ajo, Arizona and 
Hachita, New Mexico were under 60,000. On several days during my research these 
geographic locations produced less than 100 tweets. Further research would need to be 
conducted to see if these small data sets could have been skewed by a small number of 
individuals.  
 
I found no sentiment algorithms that could detect sarcasm. This seems to be a major hurdle for 
sentiment analysis.  
 

Conclusions and Future Work 
I was curious how the individuals living along the southern border of the United States felt about 
the proposed border wall. By mining tweets and analyzing sentiment from cities along the 
U.S./Mexico border I was able to determine that sentiment around the border wall overall was 
unfavorable.  
 
When considering sentiment analysis for your brand, service or political campaign it’s important 
to know how each algorithm works and which is the best tool for the data you are analyzing.  
 
A custom lexicon around the context being analyzed could be produced for further accuracy. 
For example, if customers use the word ‘sick’ in a favorable way to describe a product, a custom 
lexicon could be produced that ranks ‘sick’ as a positive word.  
 
Coupling demographic data with sentiment analysis may lend more insight into the sentiment of 
certain words. Knowing a tweet is from an individual that is 15 years old versus 50 years old 
may help determine if a word like ‘sick’ is favorable or unfavorable.  
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