
Grand Valley State University
ScholarWorks@GVSU

Masters Theses Graduate Research and Creative Practice

2-2019

A Comparative study of Wireless Star Networks
Implemented with Current Wireless Protocols
Sizen Neupane
Grand Valley State University

Follow this and additional works at: https://scholarworks.gvsu.edu/theses

Part of the Hardware Systems Commons

This Thesis is brought to you for free and open access by the Graduate Research and Creative Practice at ScholarWorks@GVSU. It has been accepted
for inclusion in Masters Theses by an authorized administrator of ScholarWorks@GVSU. For more information, please contact
scholarworks@gvsu.edu.

Recommended Citation
Neupane, Sizen, "A Comparative study of Wireless Star Networks Implemented with Current Wireless Protocols" (2019). Masters
Theses. 920.
https://scholarworks.gvsu.edu/theses/920

https://scholarworks.gvsu.edu?utm_source=scholarworks.gvsu.edu%2Ftheses%2F920&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gvsu.edu/theses?utm_source=scholarworks.gvsu.edu%2Ftheses%2F920&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gvsu.edu/grcp?utm_source=scholarworks.gvsu.edu%2Ftheses%2F920&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gvsu.edu/theses?utm_source=scholarworks.gvsu.edu%2Ftheses%2F920&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/263?utm_source=scholarworks.gvsu.edu%2Ftheses%2F920&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gvsu.edu/theses/920?utm_source=scholarworks.gvsu.edu%2Ftheses%2F920&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gvsu.edu

A Comparative study of Wireless Star Networks Implemented with Current Wireless Protocols

Sizen Neupane

A Thesis Submitted to the Graduate Faculty of

GRAND VALLEY STATE UNIVERSITY

In

Partial Fulfillment of the Requirements

For the Degree of

Masters of Science in Engineering

Padnos College of Engineering and Computing

December 2018

3

Acknowledgments

I would like to express the deepest appreciation to my committee chair, Dr. Robert Bossemeyer

for constantly guiding and supporting me to complete this thesis. I would like to thank my

committee members, Dr. Nabeeh Kandalaft and Dr. Bruce Dunne for providing necessary

feedback and guidance to improve my thesis. I am very thankful to Dr. Bossemeyer and Dr. Jiao

for the Embedded System Interface class, where I learned about MSP432 and nRF24L01+,

including SPI and different design techniques. I would like to thank Mr. Neil Kolban for

providing the library for ESP32 BLE implementation. Lastly, I would like to express my sincere

gratitude to my graduate advisor Dr. Shabbir Choudhuri, for guiding me throughout my master’s

program.

4

Abstract

Wireless communication is one of the most advanced technological developments of this

era. Wireless technology enables both short-range and long-range services. Today, there are

several different wireless communication technologies in existence. Each has its characteristics

different from another one. This thesis will implement three short-range wireless technologies in

star connection and compare the performance in the wireless network.

 For this thesis, the performance of three different RF protocols - a proprietary packet

protocol called Enhanced ShockBurst in nRF24L01+, Bluetooth Low Energy, and a special Wi-

Fi protocol ESP-Now was compared. The general concept was to establish a star network for

these protocols consisting of each module as a central hub while the others as end nodes, where

all modules were configured as transceivers. The wireless star network for the proprietary radio

frequency protocol Enhanced ShockBurst Feature was implemented using a transceiver device

built by a Norwegian company Nordic Systems called the nRF24L01+. Similar wireless

networks were also implemented for ESP-Now and BLE in an ESP32 development board. ESP-

Now is a proprietary radio frequency protocol developed by a Chinese company called Espressif

that allows multiple devices to connect over 2.4 GHz channels using elements of a Wi-Fi

protocol without requiring a router to form a network, while Bluetooth Low Energy is a wireless

personal network designed by the Bluetooth Special Interest Group (Bluetooth SIG).

Different performance metrics such as throughput (kbps), range (ft), current consumption

(mA) and network routing recovery time (s) were measured in the network. From the

implementations tested, it was found that the nRF24L01+ has maximum throughput when

transmitting large payloads (344% higher than ESP-Now in 32 bytes payload size, BLE

5

throughput was 50.50 bps in 32 bytes payload size), least current consumption (ESP-Now

consumes 714% more current and BLE consumes 409.7% more current), and shortest network

recovery time (nRF24L01+ took 335us, ESP-Now took 31ms and BLE took 1.3s on average),

while the Wi-Fi based ESP-Now has a maximum range (30.53% better than BLE and 120%

better than nRF24L01+).

6

Table of Contents

Acknowledgments... 3

Abstract ... 4

Table of Contents .. 6

List of Tables .. 10

List of Figures ... 13

Abbreviations .. 16

1 Introduction ... 18

1.1 Background .. 18

1.2 Terminology ... 19

1.2.1 Network Metrics ... 19

1.2.2 Network Topology .. 22

1.2.3 Wireless Technology .. 23

1.3 Description of Components .. 24

1.3.1 Hardware Description ... 24

1.3.2 Software Description .. 55

1.4 Purpose ... 57

1.5 Thesis Organization.. 57

2 Review of Literature ... 59

3 Design and Implementation of the System ... 63

3.1 Experimental Setup .. 63

3.2 Software Flow .. 64

7

3.2.1 nRF24L01+ ... 64

3.2.2 ESP32 BLE ... 72

3.2.3 ESP-Now... 82

3.2.4 Measurement of Performance Metrics .. 91

4 Result .. 100

4.1 Throughput ... 100

4.1.1 nRF24L01+ ... 100

4.1.2 BLE and ESP-Now ... 107

4.2 Range .. 112

4.2.1 One to One .. 112

4.2.2 Star Connection ... 114

4.3 Network Recovery Time .. 116

4.3.1 Power Removed .. 116

4.3.2 Out of Range ... 118

4.4 Current Measurement ... 121

4.4.1 nRF24L01+ ... 121

4.4.2 ESP-Now and BLE ... 126

5 Discussion ... 128

5.1 Throughput ... 128

5.1.1 Performance of nRF24L01+ in different configurations 128

5.1.2 Comparison of three protocols .. 129

5.2 Range .. 132

5.3 Network Recovery Time .. 133

8

5.4 Current Measurement ... 134

5.4.1 Performance of nRF24L01+ in different configurations 134

5.4.2 Comparison of three protocols .. 137

5.5 Bandwidth, Spectral Efficiency and Noise Reduction ... 138

5.6 Maximum Payload Size ... 139

5.7 Security... 140

5.8 Design cost ... 140

6 Conclusion .. 142

6.1 Summary .. 142

6.2 Future Work ... 143

Appendix A ... 145

A.1 Transmission Times ... 145

A.1.1 nRF24L01+ ... 145

A.1.2 ESP-Now ... 154

A.1.3 BLE ... 158

Appendix B ... 163

B.1 Network Recovery Time .. 163

B.2 Range .. 164

Appendix C ... 165

C.1 Current Measurement ... 165

Appendix D ... 168

D.1 nRF24L01+ Code (Star) .. 168

D.2 BLE Code (Star)... 178

9

D.3 ESP-Now Code (Star) .. 189

REFERENCES ... 200

10

List of Tables

Table 1: Average transmission time and calculated throughput for 32 bytes 102

Table 2: Average transmission time and calculated throughputs for 1 byte 103

Table 3: Average transmission time and calculated throughputs for 4 bytes 103

Table 4: Average transmission time and calculated throughput for 16 bytes 103

Table 5: Throughput and Time Taken for 32 bytes (Star Network) ... 106

Table 6: Throughput and Transmission Time for 1 byte (Star Network) 106

Table 7: Transmission Time and Throughput for 4 bytes (Star Network) 107

Table 8: Throughput and Transmission Time for 16 bytes (Star Network) 107

Table 9: Throughput and Transmission time for ESP-Now in different Payload sizes 109

Table 10: Throughput and Transmission time for BLE in different Payload sizes 110

Table 11: Throughput and Transmission Time in ESP-Now in Star Connection....................... 111

Table 12: Throughput and Transmission Time in BLE in Star Connection 111

Table 13: Range of nRF24L01+, ESP-Now and BLE in One to One connection 114

Table 14: Range of nRf24L01+, ESP-Now and BLE in a star connection 116

Table 15: Current Consumption of nRF24L01+ at 0 dBm in different data rates and delays 125

Table 16: Current Consumption of nRF24L01+ in receiver side at 0 dBm in different data rates

and delays.. 125

Table 17: Measured Current values in 0 dBm power (TX) .. 126

Table 18: Measured Current values in 0 dBm power (RX) .. 126

Table 19: Current Measurement of BLE .. 126

Table 20: Current Measurement of ESP-Now .. 127

Table 21: Throughput of three protocols in different Payload Sizes in One to One 129

11

Table 22: Comparison of Throughput of three protocols in Star connection 131

Table 23: Comparison of Network Recovery Time between three protocols 134

Table 24: Comparison of Current Values in Transmitter .. 137

Table 25: Comparison of Current Values in Receiver .. 137

Table 26: Maximum Payload Sizes in Three Protocols .. 139

Table 27: Cost of radio modules ... 141

Table 28: Transmission Time values for static payload length (32 bytes) 145

Table 29: Transmission Time values for 1 byte .. 146

Table 30: Transmission Time values for 4 bytes .. 147

Table 31: Transmission Time values for 16 bytes .. 148

Table 32: Transmission Time values for 32 bytes in star connection ... 149

Table 33: Transmission Time values for 1 byte in star connection .. 150

Table 34: Transmission Time values for 4 bytes in star connection ... 151

Table 35: Transmission Time values for 16 bytes in star connection ... 152

Table 36: Transmission Time of ESP-Now for 1 byte ... 154

Table 37: Transmission Time of ESP-Now for 4 bytes .. 155

Table 38: Transmission Time of ESP-Now for 16 bytes .. 156

Table 39: Transmission Time of ESP-Now for 32 bytes ... 157

Table 40: Transmission Time of BLE for 1 byte ... 158

Table 41: Transmission Time of BLE for 4 bytes .. 159

Table 42: Transmission Time of BLE for 16 bytes .. 160

Table 43: Transmission Time of BLE for 32 bytes .. 161

Table 44: Network Recovery Time for three protocols .. 163

12

Table 45: Measured Range values for three protocols in one to one connection 164

Table 46: Current Consumption in Min 6 dBm power ... 165

Table 47: Current Consumption in Min 12 dBm power ... 165

Table 48: Current Consumption in Min 18 dBm power ... 165

Table 49: Current Consumption in Min 6 dBm power (PRX).. 166

Table 50: Current Consumption in Min 12 dBm power (PRX).. 166

Table 51: Current Consumption in Min 18 dBm power (PRX).. 166

Table 52: Measured Current values in Min 12 dBm power (TX)... 167

Table 53: Measured Current values in Min 18 dBm power (TX)... 167

Table 54: Measured Current values in Min 12 dBm power (RX) .. 167

Table 55: Measured Current values in Min 18 dBm power (RX) .. 167

13

List of Figures

Figure 1: Star Network.. 22

Figure 2: Block Diagram of MSP432 Launchpad [1] ... 25

Figure 3: Functional Block Diagram of MSP432 Launchpad [2]... 26

Figure 4: Functional Block Diagram of nRF24L01+ [3] .. 31

Figure 5: Data Transfer Timing Diagram in ShockBurst [3] .. 34

Figure 6: TX FIFO (PRX) with Pending Payloads [3] ... 35

Figure 7: Data Pipe Addressing in Multiceiver [3] ... 36

Figure 8: Functional Block Diagram of ESP32 [5] .. 38

Figure 9: BLE Frequency Channels [6] .. 39

Figure 10: BLE Broadcast Topology [13] .. 42

Figure 11: BLE Connected Topology [13] ... 43

Figure 12: BLE Architecture [14] ... 46

Figure 13: Status Transitions among GAPs [11] .. 47

Figure 14: Common Operations between a Server and a Client [11] ... 49

Figure 15: The Definition Table of service [11] ... 50

Figure 16: Wi-Fi Channels on the 2.4 GHz Frequency band [15] .. 51

Figure 17: MSP432 Connection with nRF24L01+ ... 63

Figure 18: Transmitter Side in nRF24L01+ ... 66

Figure 19: Receiver Side in nRF24L01+ .. 68

Figure 20: Central Hub in Star Connection .. 70

Figure 21: Peripheral node in nRF24L01+ in Star Connection .. 71

14

Figure 22: BLE Server .. 74

Figure 23: BLE Client ... 76

Figure 24: Central Hub in BLE in Star Connection .. 79

Figure 25: Peripheral Node in BLE in Star ... 81

Figure 26: ESP-Now Master ... 84

Figure 27: Slave side in ESP-Now.. 86

Figure 28: Central Hub in Star Connection of ESP-Now ... 88

Figure 29: Peripheral node (ESP-Now) in Star Connection ... 90

Figure 30: Throughput Calculation Methods .. 91

Figure 31: Current Measurement Circuit .. 94

Figure 32: Experiment Procedure of Range Measurement in Star Network 99

Figure 33: Distribution of Transmission Time at 250 Kbps ... 101

Figure 34: Distribution of Transmission Time at 1 Mbps .. 101

Figure 35: Distribution of Transmission Time at 2 Mbps .. 102

Figure 36: Distribution of Transmission time in Star Connection (32 Bytes) 104

Figure 37: Distribution of Transmission time in Star Connection (32 Bytes) 105

Figure 38: Distribution of Transmission time in Star network (32 Bytes) 105

Figure 39: Distribution of Transmission time in ESP-Now.. 108

Figure 40: Distribution of Transmission time in BLE .. 109

Figure 41: Distribution of Transmission time in Star Network (ESP-Now) 110

Figure 42: Distribution of Range in nRF24L01+ (0dBm) .. 112

Figure 43: Distribution of Range in BLE ... 113

Figure 44: Distribution of Range in ESP-Now ... 113

15

Figure 45: Range of nRF24L01+ in a star network .. 114

Figure 46: Range of BLE in a star network .. 115

Figure 47: Range of ESP-Now in a star network .. 115

Figure 48: Distribution of Network Recovery Time in nRF24L01+ (power removed) 116

Figure 49: Distribution of Network Recovery Time in ESP-Now (Power Removed) 117

Figure 50: Distribution of Network Recovery Time in BLE (Power Removed) 118

Figure 51: Distribution of Network Recovery Time in nRF24L01+ (out of range) 119

Figure 52: Distribution of Network Recovery Time in ESP-Now (out of range) 120

Figure 53: Distribution of Network Recovery Time in BLE (out of range) 120

Figure 54: Current Consumption of nRF24L01+ ... 121

Figure 55: EnergyTrace plot when nRF24L01+ starts transmitting ... 122

Figure 56: EnergyTrace Measurement at 2.5 us delay at MAX Power and 1Mbps 123

Figure 57: EnergyTrace Measurement at 2.5 us delay at MAX Power and 2Mbps 124

Figure 58: Throughput of nRF24L01+ in different Data rates ... 128

Figure 59: Comparison of Throughput in Star, One to One and ACK_Payload (Star) 129

Figure 60: Comparison of Throughput in One to One connection ... 130

Figure 61: Comparison of Throughput in Star Connection .. 132

Figure 62: Comparison of range between nRF24L01+, BLE and ESP-Now in Star Connection.

... 133

Figure 63: Current Consumption of PTX at Different Data Rate at MAX Power using

EnergyTrace .. 135

Figure 64: Current Consumption in Transmit Condition at Different Power Ratings 135

Figure 65: Current Consumption at Different Delays at MAX Power (0 dBm) and MAX Data

Rate (2Mbps) .. 136

16

Abbreviations

ACK : Acknowledgment

ADC : Analog to Digital Converter

AES : Advanced Encryption Standard

AP : Access Point

ATT : Attribute Protocol

BLE : Bluetooth Low Energy

CE : Chip Enable

CRC : Cyclic Redundancy Check

CS : Chip Select

DAC : Digital to Analog Converter

dBm : decibels relative to one milliwatt

FIFO : First-in, First-out

GAP : Generic Access Profile

GATT : Generic Attribute

GFSK : Gaussian Frequency-Shift Keying

HCI : Host Controller Interface

I2C : Inter-IC

I2S : Inter-IC Sound

IDF : IoT Development Framework

IoT : Internet of Things

ISM : Industrial, Scientific and Medical

Kbps : Kilobits per second

17

LAN : Local Area Network

LL : Link Layer

MAC : Media Access Control

MCU : Micro Controller Unit

Mbps : Megabits per Second

PID : Packet Identification

PRX : Primary Receiver

PTX : Primary Transmitter

PWM : Pulse Width Modulator

QoS : Quality of Service

RF : Radio Frequency

ROM : Read only Memory

RSSI : Received Signal Strength

RTC : Real Time Clock

SMP : Security Manager Protocol

SPI : Serial Peripheral Interface

SRAM : Static Random-Access Memory

SSID : Service Set Identifier

STA : Station Mode

UART : Universal Asynchronous Receiver-Transmitter

UUID : Universal Unique Identifier

WPA2 : Wi-Fi Protected Access 2

18

1 Introduction

1.1 Background

In the past decades, wireless technologies have made significant progress allowing transmission

of high –speed data with advanced smart devices. Wireless communication is a type of data

communication where there is no physical wired connection between transmitter and receiver,

but rather the communication path instead is established and connected by radio waves or

microwaves to maintain communication. The communication distance between transmitter and

receiver can range from few meters to thousands of kilometers range.

Wireless technologies are used mostly in those situations where mobility is essential, and wires

are not practical. This thesis will compare the efficiency and performance of a proprietary

communication protocol running on a device built by Nordic Systems called the nRF24L01+, the

standard protocol Bluetooth Low Energy (BLE), and a proprietary protocol designed for point to

point wireless communications called the ESP-Now, designed for devices that normally connect

to router using Wi-Fi protocol. These three technologies have limited range but can be used in

conjunction with other devices such as wireless gateways and routers to extend communications,

especially in the Internet of Things (IoT) applications. The IoT is a network that consists of the

web enabled devices which can collect, send and process the data that they acquire from

surrounding environments. The IoT network consists of usually embedded sensors, processors

and communication hardware. Many IoT devices require the use of low power and low cost

wireless technology when communicating between them or connecting to the Internet; this is

where these three protocols come in handy. They can be used to transmit or receive data

collected from nearby sensors to gateways and routers that connect to the Internet. Since they are

19

low power and have low cost, they can be used as effective communication tools in an IoT

network.

1.2 Terminology

1.2.1 Network Metrics

1.2.1.1 Throughput

Usually, throughput means the maximum rate of production or the maximum rate at which

something can be processed. While in a communication network, throughput is the maximum

number of successful transmissions over the channel. It is controlled by the available bandwidth,

signal-to-noise ratio and also hardware limitations. Network throughput is usually represented as

an average and measured in bits per second or sometimes data packets per second. It is an

important characteristic of a network and indicates the performance and quality of a network

connection. Bandwidth and throughput, at first glance, might seem similar to each other, but

they are quite different. Bandwidth refers to the theoretical size of the pipe while on the other

hand throughput is the actual number of data packets that get transmitted.

In this thesis, to calculate the transmission time in ESP-Now and BLE, two data packets will be

transmitted consecutively and the time difference between the arrivals of the two packets in the

receiver side will be measured. Whereas, in nRF24L01+ to calculate the transmission time, the

time difference between the transmission of the packet and the arrival of acknowledgment signal

from receiver will be measured. The measured transmission times along with the number of bits

sent in a packet are used to obtain the throughput of the system. This process will be repeated

numerous times to calculate the average throughput.

20

1.2.1.2 Transmission Range

It is the maximum distance between two nodes such that the data transmitted from one node

reaches the next node successfully without any error. The range at which data can be transferred

depends upon the manufacturer, also varies with the environment.

1.2.1.3 Network Recovery Time

Network Recovery Time is the time required for processing and resorting normal working

operations in a network. Network Recovery allows the network administrators to regain and

restore operations after a network goes offline, disconnects or any other event that stops normal

network operations.

In this thesis, the network recovery time will be measured in two ways. In one way, the power of

the module will be removed and the time required for the module to reconnect to the network

will be measured. In another way, the module will be taken out of transmission range and

similarly, the time required for reconnection to the network will be calculated.

1.2.1.4 Bandwidth and Spectral Efficiency

Bandwidth is the range of frequencies associated with signal that can pass through a medium.

Bandwidth is treated as a finite resource in a communication system. Bandwidth is always shared

among the communication technologies operating in the same frequency spectrum. In any

communication system it is always desired to have a high bandwidth in order to accommodate

more signals. But in the restricted frequency bands technologies the low bandwidth is preferred

over high bandwidth. As the bandwidth of a channel increases in a restricted frequency band, the

number of the devices that can make error free communication in the available frequency band

decreases. And also, the high bandwidth only matters if it is needed. Any bandwidth over the

21

required size of data is left unused. Beside this, the lower bandwidth technologies are less

susceptible to the noise compared to the high bandwidth technologies. Thus, all other parameters

being same, the technologies that use the least amount of bandwidth are preferred in the

restricted frequency band communication systems. The comparison of bandwidth between three

protocols is given in section 5.5.

The spectral efficiency or the bandwidth efficiency of any network is the amount of the

information rate that can be transmitted over a given bandwidth. It is generally expressed in the

format of bits per second per hertz. The spectral efficiency can be calculated using Equation 1:

(1)

The comparison of spectral efficiency between three protocols is given in section 5.5.

1.2.1.5 Security

Security in any wireless communication is the process of preventing unauthorized users from

accessing communication. The wireless networks are more vulnerable than the wired

communications. That is why security has been always considered an important factor in the

wireless communication. There are different wireless security protocols that can be used. But the

most commons are Wired Equivalent Privacy (WEP) and Wi-Fi Protected Access (WPA). The

ESP32 implementations of ESP-Now and BLE include encryption of the data sent over the

wireless connection as part of their standard protocols. The ESP32 supports RTC and

cryptographic hardware accelerators that are used to encrypt the data during transmission.

However, no encryption of the nRF24L01+ signals is part of the Enhanced ShockBurst protocol.

Encryption of data would be possible using hardware accelerated encryption within the MSP432

that is part of the wireless communication network using the nRF24L01+ devices. The security

22

feature available in three protocols is not being considered during the comparison in this thesis,

though a brief description of security feature available in each protocol is mentioned in section

5.7.

1.2.2 Network Topology

1.2.2.1 Star Network

A star network is a local area network (LAN) in which all nodes are connected to a central

network device, like a hub or computer. The Central device acts as a server while the rest of the

nodes act as clients. All the clients can communicate with each other through the central hub.

Figure 1 shows an example of a star network.

Figure 1: Star Network

In the star network, all the communication occurs through the central hub. If the peripheral nodes

want to send the data to each other, then at first the data is sent to the central hub, and after that

central hub sends the data to the intended receiver. The connections can be both wired and

wireless links. The advantages of this network are:

 Even if one device (except the central hub) fails, the rest of the network continues to

function normally.

 Devices can be added easily in the network.

 The range is doubled between nodes.

23

Some of the disadvantages are:

 If the central hub fails, the whole network goes down.

 In case of wired connection, this network can be expensive layout due to the number and

length of cables required to connect each device to the central hub.

 The overall throughput goes down in the star network due to the overhead of packet

routing through the central node.

1.2.3 Wireless Technology

1.2.3.1 Wi-Fi Direct

Wi-Fi Direct is a technology that allows Wi-Fi devices to connect directly to one another. This

technology makes the connection easy and convenient to do things like print, share, display, etc.

The devices which support Wi-Fi Direct do not need traditional hotspot network or router to

make a connection with each other. Wi-Fi Direct can use different standards to establish

communications, which are explained below:

 Wi-Fi: Wi-Fi Direct can use the same Wi-Fi technology to communicate with each other.

A Wi-Fi Direct device can act as an access point, and other Wi-Fi enabled devices can

directly connect to it. In this standard, Wi-Fi direct can also use different Wi-Fi attributes

such as different modes configuration, Wi-Fi channel range, the creation of SSID, etc.

These attributes make the set up, and discovery features easy. For example, in this thesis,

the ESP32 modules are configured in the station or soft-AP modes to connect with each

other. Soft-AP mode is a Software enabled Access Point mode, which when used turns

the ESP32 into an access point to which a connection can be established as any other Wi-

Fi device, whereas in a station mode, the device can connect to a Wi-Fi network. The Wi-

24

Fi direct devices use Wi-Fi set configuration functions to configure the devices. For

example, in ESP-Now esp_wifi_set_config() function of the Espressif implementations of

Wi-Fi standards can be used to set the device in either soft-AP or Station mode. The Wi-

Fi channel is used to make the connection.

 Wi-Fi Direct Device and Service Discovery: This protocol allows the Wi-Fi direct

devices a way to discover the available devices and services before connecting to each

other. For example, Wi-Fi direct devices can see all the compatible devices in the

surrounding and narrow down the list to only devices that support the printing before

displaying them as Wi-Fi direct enabled printers.

 Wi-Fi Protected Setup: When the two devices make the connection, they automatically

connect through Wi-Fi Protected Setup to support a secure connection. Wi-Fi Protected

Setup is a network security standard created to secure the wireless home network. The

security set up generally starts after the discovery of devices has been done or if the client

and master setup has been configured.

 WPA2: Wi-Fi direct devices use more secure encryption WPA2 encryption to make the

connection.

1.3 Description of Components

1.3.1 Hardware Description

1.3.1.1 MSP432 Launchpad

The MSP432P401R Launchpad development kit allows the development of high-performance

low-power applications. This Launchpad contains ARM 32-bit Cortex-M4F microcontroller and

onboard debug probe needed for programming, debugging and energy measurement [1]. Figure 2

25

shows that the Launchpad consists of a micro-USB port, a debugger, crystal, MSP432P401R

chip, energy trace software, LEDs and other components.

Figure 2: Block Diagram of MSP432 Launchpad [1]

The MSP432R Launchpad development kit is compatible with both 40-pin and 20-pinout

standards. The Launchpad also has 2 push buttons and 2 LEDs for user interaction.

1.3.1.1.1 MSP432P401R

The MSP432P401R Launchpad features MSP432P401R which includes a 48MHz ARM®

Cortex®-M4F, 80uA/MHz active power and 660nA RTC operation, 14-bit 1MSPS differential

SAR ADC and AES256 accelerator [1]. The RTC operation in MSP 432 uses a computer clock

to keep track of the current time. This feature can also be used to calibrate the clock, initialize the

dates in Calendar mode and enable the interrupts for the RTC modules. AES256 accelerator

module performs the encryption and decryption according to the AES256 encryption standard.

This feature provides the security for the communication data in the MSP432. Generally, the

encryption takes place between 128-bit data and a 128-bit key. For this thesis, both RTC and

26

AES features have not been used. The Launchpad development kit includes different clock

resources; among them the High-frequency oscillator was used in this thesis to generate 48 MHz

clock frequency. Figure 3 shows the functional block diagram of MSP432 Launchpad.

Figure 3: Functional Block Diagram of MSP432 Launchpad [2]

The CPU and all the peripherals interact with each other through a common AHB matrix. AHB

stands for Advanced High-performance Bus that enables parallel access between multiple

masters and slaves in a system. In this system, each master is connected to the slave devices

using an interconnection matrix [2]. In this system, the bus masters are assigned priorities which

are used to resolve the access when multiple masters request access to the same slave device.

MSP432 supports up to eight serial communication channels (I
2
C, Serial Peripheral Interface

(SPI), UART, and IrDA) [2]. Out of these eight communication capabilities, only two

capabilities – UART and SPI were used in this thesis. The UART and SPI capabilities of

MSP432 were used to realize the communication for the nRF24L01+ based networks. The SPI

27

protocol establishes the communication between the MSP432 board and nRF24L01+ module

while UART communication protocol takes the user input data from a terminal window to

MSP432 or vice -versa. For UART or SPI communications, MSP432 offers two different

modules; eUSCI_A modules which support both UART and SPI, and eUSCI_B modules that

support SPI and I2C protocols. In this thesis, eUSCI_A module was used since it supports both

SPI and UART communications. Besides this, internal clock source known as digitally-

controlled oscillator clock source was used to generate a high-frequency clock signal of 48MHz.

Besides these features, System Tick Time (SysTick) feature was also used for the time

measurement task. This timer generates an interrupt request on a regular basis and based on those

interrupt requests the time can be measured.

1.3.1.2 nRF24L01+

The nRF24L01+ is a highly integrated, ultra low power transceiver that communicates in 2.4

GHz ISM band. The industrial, scientific and medical (ISM) radio bands are the portions of the

radio spectrum reserved – unlicensed communications allocated for industrial, scientific and

medical research purposes other than telecommunications. The nRF14L01+ transceiver IC

supports 250kbps, 1Mbps, and 2 Mbps on air data rates and four different power settings.

The nRF24L01+ integrates a complete 2.4GHz RF transceiver, RF synthesizer, and baseband

logic including the Enhanced ShockBurst hardware protocol. The nRF24L01+ radio chip

supports the high speed serial peripheral interface (SPI) protocol which allows it to be operated

with any microcontrollers that support SPI communication. The nRF24L01+ always requires an

external microcontroller to operate, due to which the circuit becomes a bulky unit, sometimes not

ideal for the wireless sensor network.

28

The nRF24L01+ has four operational modes. They are Power down, Standby, TX and RX

modes. In power down mode, nRF24L01+ is disabled by using minimum current consumption.

In this mode, the register values are still available, and the configurations of the module can be

changed. If nRF24L01+ is not transmitting or receiving any packet, then it is recommended to

put nRF24L01+ in the standby mode. The current consumption in the standby mode is less than

the one in TX/RX mode.

The TX mode is an active mode where the transmission of packets is carried out. To put the

nRF24L01+ in TX mode, the PRIM_RX bit should set low, CE should be set high for more than

10us, and there should be a payload in TX FIFO. The module will continue transmitting the

packets as long as TX FIFO is refilled.

Similarly, the RX mode is an active mode where radio acts as a receiver. To enter RX mode from

standby mode, PRIM_RX and CE bits are set high. When the receiver receives a packet then at

first, it checks packet validity using CRC and matching address. If the packet is valid, then the

received packet is sent to a vacant slot in the RX FIFOs. But if the RX FIFOs are full or the

packet is invalid, the receiver discards the received packet.

The nRF24L01+ can operate on frequencies from 2.400 GHz to 2.525 GHz, and programming

resolution of the RF channel frequency setting is 1 MHz [3]. The channel bandwidth in

nRf24L01+ depends upon the data rates. At 250 Kbps, the channel bandwidth is between 700 to

1000 kHz, at 1 Mbps the channel bandwidth can be between 900 to 1000 kHz, and at 2 Mbps the

channel bandwidth is between 1800 kHz to 2000 kHz [3]. At 2 Mbps operation, there is channel

overlapping between consecutive channels as the bandwidth is greater than the resolution of RF

channel frequency setting. So, at 2 Mbps when using multiple channels, channel spacing must be

29

2 MHz or more than that to avoid overlapping between the channels. The RF channel frequency

is set by RF_CH register using Equation 2 [3]:

 (2)

Similarly, the spectral efficiency of nRf24L01+ also varies with the data rates. Using the

Equation 1 the spectral efficiency at 250 Kbps is calculated to be between 0.25 bits/s/Hz to 0.35

bits/s/Hz, at 1Mbps the efficiency is between 1 bits/s/Hz to 1.111 bits/s/Hz and at 2 Mbps the

efficiency is between 1 bit/s/Hz to 1.111 bits/s/Hz.

The nRF24L01+ module can work on any one of a number of channels (126) at one time, and the

transmitter and the receiver must use the same channel to establish communication. In the same

frequency channel, up to six different data pipes can be connected. But the communication can

be done through only one data pipe at a time. It is not possible to have communication in more

than one data pipes at the same time in the same frequency channel. The nRF24L01+ does not

provide any channel noise reducing methods. If two different nRF24L01+ networks try to

communicate on the same channel there will an error during the transmission. It is recommended

to use auto acknowledgment feature of nRF24L01+ so that the status of transmission can be

monitored and thus lost packets can be retransmitted. It is also recommended to use a simple

channel scanner to scan the channels in the environment to find a free channel before the

communication is established. Hence, in the case of nRF24L01+, there is no effective noise

reducing techniques. To prevent the interference from the outside environment, it is suggested to

use the highest 25 channels because other 2.4 GHz radio waves like Wi-Fi uses most of the lower

channels [4].

30

For this thesis, a radio module supporting the operation of the nRF24L01+ IC is used including a

clock crystal, antenna, and matching circuit. This module allows easy interface of the

nRF24L01+ chip with a microcontroller SPI port. Some of the features of nRF24L01+ are:

 Low cost, a single chip that works in 2.4 GHz ISM band.

 Supports GFSK modulation. In GFSK modulation different frequencies are assigned to

the carrier depending upon the bit that is transmitted. Let’s assume that the data consists

of only two symbols 0 and 1. In GFSK, the information is conveyed by assigning a fixed

carrier frequency for the duration of a 0 symbol and assigning another carrier frequency

for the duration of a 1 symbol. In GFSK modulation, the waveform is passed through a

Gaussian filter before the waveform goes into the modulator. This is done to smooth the

transition between the values of impulses. The Gaussian filter limits the spectral width of

the message signal and reduces the possibility of intersymbol interference in the signal.

 Supports Multiceiver feature in which six different modules can be configured as

receivers at the same time.

 It has 126 channels points; thus, it can meet multipoint communications and channel

hopping requirements. These channels points range from 0 to 125, and any channel

among these 126 channels can be used for communication.

 Since the link layer is fully integrated on the IC – writing code with instructions that

control the nRF24L01+ is easy. The link layer in the nRF24L01+ handles the functions

like data framing, physical addressing, error control and access control for the user.

Figure 4 is the functional block diagram of nRF24L01+. It shows that a typical nRF24L01+ chip

consists of RF transmitter and receiver, filters, modulator, demodulator, TX and RX FIFOs and

Enhanced ShockBurst Baseband Engine.

31

Figure 4: Functional Block Diagram of nRF24L01+ [3]

The digital signals are converted in to radio waves using GFSK modulation. The data in

nRF24L01+ is always put in packet format in the form of 0s and 1s. An embedded baseband

protocol engine handles the packet communication between two modules. A bit in the

configuration register is used to set the module in either transmit or receive mode. The Chip

Enable (CE) bit is used to activate the transmitter or put the radio in receiving mode. If the RF

module is configured as a receiver, then CE bit is set high to monitor the air and receive the

packets. While if it is configured as a transmitter, then the CE bit is set high for about 10us to

initiate the transmission and after that, it is set back to low. In this thesis, the transmitter receives

data from MSP432 through SPI communication, formats it into proper packets, and transmits it

to the receiver. While in the receiver side the received data is downloaded from FIFO, the error

checking mechanism is performed, and at last, the user sent data or payload is extracted from the

packet, and transmitted to MSP432 through SPI communication.

32

1.3.1.2.1 Enhanced ShockBurst Protocol

Enhanced ShockBurst is a packet based data link layer that features automatic packet assembly

and timing, automatic acknowledgement and retransmissions of packets [3]. This feature enables

the implementation of ultra-low power and high-performance communication. This feature

improves the power efficiency for both bi-directional and uni-directional systems significantly,

without adding any complexity. Some important features of Enhanced ShockBurst are given

below:

 It supports a star network topology with one Primary Receiver (PRX) and up to 6

Primary Transmitters (PTXs).

 Provides both static and dynamic payload length features.

 In dynamic payload length feature, a packet from 1 to 32 bytes can be transmitted to the

receiver.

 Supports bi directional data transfer between each PTX and the PRX.

 Supports Packet acknowledgment (ACK) and automatic packet re transmission.

 Have individual transmit (TX) and receive (RX) FIFOs for every pipe.

An Enhanced ShockBurst packet transaction is initiated when a packet is transmitted by the

Primary Transmitter (PTX) and the transaction is completed when it receives an

acknowledgment packet (ACK packet) from the Primary Receiver (PRX). The PRX also has an

option of transmitting a payload to PTX along with ACK packet, this feature is known as

Acknowledgement with Payload. If the PTX does not receive the acknowledgment after initial

transmission, it retransmits the packet until it receives back the acknowledgment from the

receiver. The total number of retransmissions attempts and the delay between the attempts can be

configured in the register values. The receiver checks the validity of the received packet with the

33

help of a packet ID (PID) and cyclic redundancy check (CRC) fields. The PID is a 2-bit field

which is used to detect if the received packet is a new or old one, while CRC is an error detection

mechanism in the packet. The CRC is automatically calculated based on the packet content with

the predefined polynomials. After receiving the packet, Enhanced ShockBurst performs CRC

and checks its validity. If the CRC is valid, the received PID is compared with the previous

received PID. If both PID fields are different, then the packet is considered a new one. But if the

PID fields are same, then the receiver checks the CRC field. If the received CRC field is equal to

the previous one, the newly received packet is defined as the previous packet and packet is

discarded. But if the CRC field of the new packet is different than the previous one, the packet is

considered a new one and is accepted.

Figure 5 is a basic auto acknowledgment communication timing diagram for the nRF24L01+.

Figure 5 shows that after the packet is transmitted by the PTX and received by the PRX the ACK

packet is transmitted from PRX to PTX. At first the PTX uploads the packet in the FIFO. Then,

the packet is transmitted to the PRX and after 130us PTX changes its state to receiving state to

receive the acknowledgement (ACK) packet from PRX. Similarly, when the PRX receives the

packet, it downloads the packet and checks for error. If the received packet is a new one, then it

sends the acknowledgment back to PTX. When PTX receives an acknowledgment, an interrupt is

generated in MCU to indicate the successful transmission of data.

34

Figure 5: Data Transfer Timing Diagram in ShockBurst [3]

Static and Dynamic Payload Length

Enhanced ShockBurst provides two different alternatives to handle payload length. The payload

in a whole transmitted packet is the actual user sent data. In normal condition, the nRF24L01+

transmits the data using static payload length feature. In static payload length configuration, all

packets transmitted between a transmitter and a receiver always has the same payload length that

is 32 bytes. But with dynamic payload length feature, the transmitter can send packets with

variable payload lengths to the receiver. So that means that for a system with different payload

lengths it is not necessary to scale the payload length to the longest payload size (32 bytes), thus

in dynamic payload length feature, the length of the payload is equal to the length of the actual

user sent data. The dynamic payload length decreases the transmission time in the nRF24L01+.

Auto Acknowledgment

Auto acknowledgment is a function that allows the receiver to automatically send the

acknowledgment (ACK) packet to the transmitter after it has received and verified the data. The

auto acknowledgment function reduces the load of the system MCU and also reduces cost and

35

average current consumption. An ACK packet from the receiver can also contain payload from

PRX to PTX. This feature is known as acknowledgment with payload feature. To use this

feature, the Dynamic Payload Length should be enabled. The MCU on the PRX side uploads the

payload by clocking it into the TX FIFO. This payload stays in the TX FIFO (PRX) until a new

packet is received from PTX. After a new packet is received this payload is transmitted with the

new acknowledgment packet. Figure 6 shows the TX FIFO in receiver side when the

acknowledgment with payload feature is enabled. From Figure 6 it can be observed that at a

time, nRF24L01+ can have up to three ACK payloads pending in the TX FIFO.

Figure 6: TX FIFO (PRX) with Pending Payloads [3]

 Multiceiver

Multiceiver is a feature used in RX mode that allows six different TX to connect with it using a

set of six parallel data pipes with unique addresses. This feature allows nRF24L01+ to

implement the Star Network protocol. A data pipe is a logical channel in the physical RF channel

and has its own physical address. All data pipes addresses are searched at the same time, but only

one data pipe can receive a packet a time. Figure 7 shows a Multiceiver network in nRF24L01+.

36

Figure 7: Data Pipe Addressing in Multiceiver [3]

The main characteristic of Multiceiver capability is having up to 6 radio communication

channels open in a receiving mode simultaneously. The first task is to open six reading pipes in

the primary receiver hub (PRX). This PRX acts as the central hub in the network. All the data

communication is done through this hub. Now each PTX or peripheral node links to one of these

opened pipes. These PTX nodes transmit and receive the packets using this pipe. So, when the

data is being transmitted from PRX to PTX, the writing address of PRX should match the

address of PTX it wants to transfer. The data pipe addressing in Multiceiver network has some

specific rules. Data pipe 0 always has a unique 5-byte address while data pipe 1-5 share the four

most significant address bytes. And also, the write address on the PRX side should match the

PTX address. Another one important thing to remember is that when transmitting from the PRX

to PTX, the write address should always be opened in pipe 0. For example, let us suppose that

there are 3 PTXs, and they are opened in pipe 0, 1 and 2 in PRX respectively. Now if the data

has to be transmitted from the PTX 1 to PTX 3, then the first transmission is done from the

37

PTX1 to PRX through data pipe 0. During the second transmission from the PRX to PTX 2, the

write address from central hub (PRX) should be opened in pipe 0 even though the PTX 2 was

opened initially in pipe 2 in PRX.

1.3.1.3 ESP32

ESP32 is a single 2.4 GHz Wi-Fi and Bluetooth combo chip designed with the TSMC ultra-

lower-power 40nm technology [5]. It is a dual-core system with two Harvard Architecture

Xtensa LX6 CPUs. This device is specifically designed for mobile, wearable electronics and the

IoT applications. Figure 8 shows the general block diagram of ESP32. The clock frequency of

ESP32 can be up to 240 MHz. There are different modules of ESP32 available in the market. In

this thesis, the ESP-WROOM-32 module on the ESP-DevKitC board [5] is used to realize the

BLE and ESP-Now protocols. ESP32 supports classical Bluetooth, BLE and Wi-Fi standard

wireless protocols. Beside these standard protocols, ESP32 also supports ESP-Now, which is a

nonstandard wireless protocol used for communicating Wi-Fi enabled devices without the use of

a router. The ESP32 also supports RTC and cryptographic hardware accelerators. None of these

securities and RTC features has been studied in this thesis.

38

Figure 8: Functional Block Diagram of ESP32 [5]

1.3.1.3.1 Bluetooth Low Energy (BLE)

Bluetooth Low energy is a wireless personal area network technology designed by the Bluetooth

Special Interest Group. BLE is an updated version of classical Bluetooth aimed at reducing the

power consumption and cost while maintaining similar communication range. The main

difference between the regular (classical) Bluetooth and BLE is the power consumption and

message size. The classical or regular Bluetooth was designed to handle large data size at high

power consumption. But BLE is used for those applications which do not need to exchange large

amounts of data, thus have low power consumption. The application throughput and

communication set up time for regular Bluetooth is higher compared to the BLE. Thus, BLE is

generally suited for those applications which require the periodic transfer of data and not the

39

continuous data stream, while classical Bluetooth is suitable for later one. Also, the classical

Bluetooth has 79 channels in the frequency band whereas BLE consists of only 40 channels in

the frequency band.

The Bluetooth Low Energy consists of 40 channels from 2.402 GHz to 2.480 GHz. Among 40

channels, three are used as advertising channels, and 37 are used as data channels. These

channels have center frequencies at where k = 0 to 39 [6]. The three

channels from 37 to 39 are used for advertising packets whereas the remaining channels are used

to exchange data packets in the connections. Each channel has a bandwidth of 2 MHz.

Figure 9 shows the BLE frequency channels. The first channel, 37, is assigned at 2402 MHz,

while the last one, the 39

is centered at 2480 MHz. The maximum data rate of BLE in ESP32 is

up to 700 kbps [7] . So, using Equation 1 the maximum spectral efficiency that can be achieved

in ESP32 BLE is 0.35 bits/s/Hz.

Figure 9: BLE Frequency Channels [6]

In the BLE, two devices use a shared physical channel for communication. In BLE specification,

for devices to communicate with each other they are tuned to same RF frequency at a time [8]. If

there are multiple BLE devices tuned into the same frequency, then there is a possibility of

40

channel collision among devices. To mitigate this issue, BLE uses a randomly generated Access

Address to identify the link between the devices.

The data channel of BLE is characterized by a pseudo-random sequence of PHY channel as

shown in Figure 9. In addition to this, it is also characterized by the three additional parameters

provided by master. A master is the BLE device in the network that initiates the connection and

handles almost every aspects of the connection. Either a server or client can act as master after

the connection is established. One of the parameters is the channel map that indicates the set of

physical channels used. The channel map is a sequence of 40 bits where three most significant

bits are reserved for advertising channels and rest 37 bits corresponding to the data channels. If

in a BLE network, channel x is used, then the bit corresponding to that data channel in channel

map is set to 1 [9]. The next parameter is a hop, whose value ranges from 5 to 16 and is set

when the connection is created. The data channel in BLE is divided into connection events where

each event corresponds to a physical frequency. The connection event in the ESP32 BLE occurs

when a client is connected to the server. The data exchanging occurs between BLE devices over

these dedicated frequency hopping data channels [10]. The connection will stay on the same

channel during the interval of connection events. During the new connection event, the master

switches to a new channel.

The maximum number of slaves that can connect to a master depends upon the software and

hardware characteristics, such as the amount of memory on BLE IC, the type of communications

between master and slave, and some connection parameters such as connInterval [6]. If a master

wants to connect to a new slave, then it has to reset its RF frequency since different slaves

belong to different piconets with a master in common. For this reason, the connInterval

parameter influences the number of slaves. This parameter is the time between the beginnings of

41

two consecutive connection events. It is always the multiple of 1.25ms in the range of 7.5ms to

4.0s [6]. This interval can be set in Generic Access Profile (GAP) parameters. The master needs

time to switch between the different slaves without overlapping their respective connection

events. Thus, it is possible to have two overlapping communications in BLE if connection

interval is not properly set. In this case, there will be a loss of data during communication.

Hence, if a master needs to connect with a lot of slaves, then the connection event of each

connection has to be decreased. At present, theoretically, a maximum number of 7 slaves can

connect to the master in the latest version of ESP32 BLE [11].

An adaptive frequency mechanism is used in BLE to reduce the interference from other

technologies. The hopping pattern in BLE is unique and is derived from the clock and BLE

device address of master. Adaptive frequency hopping is the type of hopping process in which

channel conditions are constantly monitored to identify the occupied or low quality channels.

This allows the Bluetooth to identify the fixed sources of interference and exclude them from the

list of available channels. Common metrics that are used to determine the quality on RX channel

are Received Signal Strength Indication, Bit Error Rate, and Signal to Noise Ratio [12].

A BLE device can communicate to another device in two ways: Broadcasting and Connection.

Broadcasting

Broadcasting is the method in which a device sends the data out to all listening devices. The

broadcaster sends the non-connectable advertising packets periodically to any listening device,

while the observer continuously scans the surrounding to receive the packet. Non- connectable

advertising packets mean that the central device cannot connect to the peripheral device. The

non-connectable advertising packet is used only for broadcasting, and the device transmits the

internally stored information in this type. This advertisement type is used when the device does

42

not want to connect to any devices but wants only to broadcast the internally stored information

to other peripheral devices. In this method, the observer passively listens to BLE devices in its

surrounding. After it receives the advertising packets from the broadcaster, it processes the data

from the received packets. A device can transmit data to more than one peer at a time by only

using non-connectable advertisings [13]. Figure 10 shows a network where a device is

broadcasting the non-connectable advertising packets to the observer devices.

Figure 10: BLE Broadcast Topology [13]

Connection

In the connection method, the link is permanent that means a connection is established between

two devices and periodical data exchanges occur between them unless they are disconnected.

In this thesis, the BLE devices are communicating with each other using this method. The master

scans the area for connectable advertising packets. The packets are connectable or non-

connectable based on the value of the packet data unit or PDU field in the BLE advertising

packets. The connectable advertising packets type allows the device to both transmit and

receive the information. This advertising packet can be both directed and undirected. The direct

43

method is used when a device needs to connect quickly with another device. The directed

advertisements have an intended receiving device, while undirected advertisements do not have a

specific intended receiver.

The central device initiates the connection in this topology. It commands almost every aspect of

the connection. It acts as an initiator in the SMP level, and thus commands the beginning of all

SMP procedures [13]. The SMP stands for Security Manager Protocol and is responsible for

functions like device authentication, authorization, integrity, etc. In this method, the pairing

device is not allowed to make any decisions regarding the connection or pairing. The pairing

device sits there advertising the packets and accepts all the incoming configurations about the

connection from the central device. The peripheral always follows the center’s timing and

commands to establish the connection. Figure 11 shows a connectable advertising packets

network where the central device is establishing the connections with the peripheral devices

which are advertising the connectable advertising packets in the network. Unlike in broadcasting,

Figure 11 shows that communication is both ways in connectable advertising packet method.

Figure 11: BLE Connected Topology [13]

44

BLE Architecture

BLE, like many other wireless technologies has some protocol layers, and each layer has its

purpose and plays a significant role in BLE communication. The main three building blocks of a

BLE device are Application, Host, and Controller. Figure 12 shows the general architecture of

BLE.

Application

The application layer is the top most layer and is responsible for user interface and data handling

logic. The architecture of this layer highly depends upon the project developed with BLE.

Host

The host layer in BLE provides information resources, services, and applications to the user or

other nodes. It consists of the upper layers of the Bluetooth protocol stack. This layer consists of

many sub layers as shown in Figure 12.

 Generic Access Profile (GAP)

This layer controls the advertising and connections between the devices. It specifies how

devices will implement control procedures such as discovery, connection, etc. The

discovery procedure handles the discovery of services, characteristics, and attributes on

the remote GATT server on the connected device. The remote GATT server means

GATT layer of the connected server device. The main focus of this layer is to control the

roles and interaction between devices.

 Generic Attribute Profile (GATT)

This layer defines how the data is organized and exchanged between devices. The data in

GATT is organized in Services, which contains one or more characteristics. Each

45

characteristic is a combination of user data along with the descriptive information about

the characteristic itself. GATT services are organized in GATT profiles. Each service

and characteristic has their 16-bit UUID which distinguish it from other services and

characteristics respectively.

 Security Manager Protocol (SMP): It defines the procedures and behaviors to manage

pairing, authentication, and encryption between the devices.

 Logical Link Control Adaptation Protocol (L2CAP): It is mainly responsible for two

tasks:

- It takes multiple data from upper layers and encapsulates them into the standard

BLE packet format and vice versa.

- It also breaks the large packets from upper layers into chunks that fit into the

maximum payload size and also recombines the fragmented chunk of received

data into a single large packet.

Controller

 Host Controller Interface (HCI): It implements commands, event, and data interface that

allow upper layers such as GAP to access link layer.

 Link Layer (LL): This layer manages the physical BLE connection between devices.

 Physical Layer (PHY): This layer contains the circuitry that manages the modulating and

demodulating analog signals and transforming into digital symbols. For this BLE uses a

technique known as frequency hopping spread spectrum. In frequency hopping spread

spectrum, the carrier frequency is rapidly switched among many frequency channels.

The available frequency channel is sub divided into many sub-frequencies. Signals

rapidly hop among these in a predetermined order to transmit the radio signals [14].

46

Figure 12: BLE Architecture [14]

The Generic Access Profile (GAP) and Generic Attribute (GAAT) are the most two important

layers of BLE Architecture when establishing the communication between client and server in

ESP32 BLE, so more detailed description of these two layers is given below:

Generic Access Profile (GAP)

The GAP is responsible for the discovery process, device management and the establishment of

device connection between BLE devices. The BLE GAP is implemented in the form of API calls

and Event returns [11]. Figure 13 shows the state transitions among GAP roles. The four main

responsibilities of GAP for a BLE device are:

 Broadcaster: A broadcaster is a device which sends the advertising packets so that it can

be discovered by the observers. This device is only responsible for broadcasting not

connecting.

 Observer: An observer is a device that scans for broadcasters. This device can only send

scan requests.

47

 Peripheral: It is a device that advertises the connecting advertising packets. This device

becomes a slave once the connection is made. In this thesis, the client was configured in

this role.

 Central: A central is a device that initiates connections to peripherals and becomes master

once the connection is made. In this thesis, the server was configured as central.

Figure 13: Status Transitions among GAPs [11]

BLE Modes

 Connectable Scannable Undirected Mode:

In Connectable Scannable Undirected mode, a device can be discovered by and

connected to any device. In this mode, the local device replies with a scan response, when

a peer device sends a scan request. The packet format for this mode contains 6 bytes of

the broadcast address and 0 – 31 bytes of broadcast packet data. In this thesis, ESP32

modules were configured in this mode.

 High Duty Cycle Directed Mode and Connectable Low Duty Cycle Directed Mode: In

this mode, the broadcaster can only connect to the designated devices. The packet

48

contains 6 bytes of the broadcasting device’s address and 6 bytes of the receiving

device’s address.

 Scannable Undirected Mode: In the Scannable Undirected mode, a device can be

discovered by any other device, but it cannot get connected to it. The packet format for

this mode is similar to Connectable Scannable Undirected Mode.

 Non-connectable Undirected Mode: In this mode, a device can be discovered by any

device, but neither can be connected to or scanned by any other device. An unscannable

device is a device that will not reply with any scan response to the peer device. The

packet contains 6 bytes of broadcast address and 0 – 31 bytes of broadcast packet data.

Generic Attribute [GATT]

The data inside the BLE architecture are in the form of Attributes which consist of four basic

elements:

 Attribute Handler: This helps us to locate any attribute, like using an address to locate

data in the memory.

 Attribute Type: This element identifies the type of information contained by the data. A

16-bit or 128-bit number, known as UUID is used to identify the type of attribute.

 Attribute value: The attribute value is the key information of each attribute. The length of

the attribute types can be fixed or variable.

 Attribute Permission: This element determines whether the information contained by the

attribute can only be read or written.

A server can send data to the client in two ways. The server can send data by using an Indication

or Notification, and a client can also obtain data from the server by initiating a Read Request. A

client sends data to a server by writing the data to the characteristic of the server. The Write

49

Request and Write Command are used to do write operation in the server. However, a Write

Response is only promoted when a Write Request is used [11]. Indication is similar to Write

Request and Notification is similar to Write Command. Figure 14 shows the common operations

that happen between a Server and a Client during data exchange.

Figure 14: Common Operations between a Server and a Client [11]

The Attribute gives the minimum data storage unit in the BLE architecture, while the GATT

defines how to represent the data set using its attributes and descriptors, how to aggregate similar

data into a service, and how to find out what services and data a peer device owns [11]. GATT

introduces the concept of Characteristics about the information. A characteristic can be

categorized into three basic parts:

 Characteristic Declaration: It is the beginning of the characteristics and informs the peer

device that the content followed by it is the characteristic value. The write and read

properties of a data set are also included in the declaration.

 Characteristic Value: It is the main part of a characteristic which contains the most

important information of a characteristic.

 Descriptor: Descriptors further describe the characteristic. A characteristic can have

single, multiple or no descriptors.

50

In BLE, the similar functions are grouped together in the services. Figure 15 shows the way

services, characteristics and descriptors are defined in the attribute table. Figure 15 indicates that

a service can have one or more characteristics and each characteristic includes zero or multiple

descriptors.

Figure 15: The Definition Table of service [11]

1.3.1.3.2 ESP-Now

ESP- Now is a proprietary wireless technology developed by Espressif systems that can be

implemented in ESP32 development board. ESP-Now is a Wi-Fi direct application. Like in Wi-

Fi direct, the AP or client roles are dynamic in the ESP-Now. ESP-Now does not require access

point or router to establish the connection. It uses the concept of soft-AP to negotiate the roles of

the pair to pair devices when they discover each other.

ESP-Now uses the same frequency and channels as Wi-Fi does. On the 2.4 GHz band in North

America, there are 11 channels of 22 MHz present in a Wi-Fi frequency band [15]. Figure 16

shows the Wi-Fi channels on the frequency band. Some or all channels from 12 to 14 are allowed

in some other countries. The center frequencies of channels from 1-13 differ by only 5 MHz.

51

Hence, there are only three non-overlapping channels in a Wi-Fi frequency band. The bandwidth

of the single channel in Wi-Fi is 22 MHz. The maximum throughput that can be achieved in

ESP32 Wi-Fi channel is 30 Mbit/s [16]. Thus, using Equation 1 the spectral efficiency of ESP-

Now is 1.36 bits/s/Hz.

Figure 16: Wi-Fi Channels on the 2.4 GHz Frequency band [15]

ESP32 Wi-Fi driver supports IEEE-802.11b and IEEE-802.11g standards to configure the

protocol mode [16]. IEEE-802.11b/g operate in the 2.4 GHz frequency band. This frequency

band contains only three non-overlapping channels for the communication, and it is

recommended to use these channels for communication. But nowadays, the density of nodes in

the available frequency band is very high, and there is always some risk of interference from

other radio networks.

IEEE 802.11 has provided two operating modes: Distributed Coordination Function (DCF) and

Point Coordination Function (PCF) to coordinate communication in the network [17]. In the

DCF operating mode, the channel claim process begins when a station senses the channel to

determine whether it is free or not. For this DCF utilizes two techniques: DCF Inter-frame Space

(DIFS) and the backoff algorithm [18]. DIFS is the time period where a channel should be idle

before transmission from the station can begin. If the medium is sensed busy for that time period,

then the transmission is delayed until the channel is idle again. In this case, a backoff interval

52

(BI) is randomly selected. The BI interval is in between a minimum contention period and a

maximum contention period. The difference between these periods is known as the contention

window (CW) [18]. There still is a chance of collision happening if two or more stations select

the same backoff interval for the channel. This problem is mitigated by doubling CW every time

a collision occurs [18]. When a station enters the backoff, the station monitors the channel as

before. This backoff timer is decreased as long as the channel is idle. When the transmission is in

progress, this timer is stopped and reactivated when the channel becomes idle again. Point

Coordination Function (PCF) uses Access Point to coordinate the communication within the

network. The AP waits for the PCF Inter-frame Space (PIFS) duration to grasp the channel. PIFS

duration is less than DIFS duration. Thus this method always has the priority to access the

channel. PCF is not that common and is only implemented in some hardwares since it is not part

of Wi-Fi Alliance’s interoperability standard.

There are mainly two kinds of interference that can occur in a Wi-Fi channel: co-channel

Interference (CCI) and adjacent channel interference (ACI). The CCI occurs when transmission

occurs on the same frequency in the same area. The ACI occurs when transmissions are sent on

the adjacent or partially overlapping channels. These interferences are decreased by different

operating modes of IEEE 802.11 MAC procedure. Besides these modes, the IEEE 802.11

standard has also defined the transmit spectrum mask intended to limit the energy of the

transmitted signal. This method is used to limit the invasion of the signal on adjacent channels

around the central frequency. The IEEE 802.11 standard also says that bandpass filters should

be applied in both transmitter and receiver, to isolate the desired signal before transmission and

reception [17]. This method decreases the energy received from another adjacent channel. In

ESP32 this filter can be enabled or disabled by using the channel_filter_en parameter.

53

One of the limitations of ESP32 is that it is limited to only one channel at a time. So, when there

are soft-AP and station mode, the soft-AP device always adjusts its channel to the channel of

ESP32 station device.

A wireless router or any other access point can handle up to 250 devices at once. This is just a

theoretical value, practically it is not feasible to connect that many devices to a single access

point at once. If there are many clients accessing the same access point, then there always is a

risk of data collision and interference. Thus, normally many routers are configured in such a way

that the maximum number of devices that can be connected is 50 [19]. Whereas, the maximum

number of peers that can be supported by ESP-Now is less than 20; this includes both encrypted

and unencrypted peers [16].

ESP-Now requires an initial pairing between the devices. Once pairing is established the

connection is persistent peer-to-peer. In an ESP-Now communication, the wireless module acting

as Master or Controller uses MAC address to pair with the slave device. A MAC address is a

unique identifier of a network hardware interface which is used for communicating on the

physical network. The MAC address of the slave can be set in the program itself using ESP32’s

Wi-Fi attributes. Further details on the MAC address are described in section 3.2.3. Up to 20

peer devices can be as paired devices.

Once the devices are paired with each other, the data can be sent from master to slave or vice

versa. ESP-Now uses callback functions to indicate the transmission and reception of the data. A

callback function is a function that is passed into another function as an argument, which is then

invoked inside the outer function when some event or routine occurs. The call back functions

used in ESP-Now for transmission and reception are OnDataSent() and OnDataRecv(). These

functions are passed as an argument into register functions – esp_now_register_send_cb() and

54

esp_now-register_rec_cb() respectively. The callback functions are defined as pointer type in

ESP-Now, and they are linked or registered with another pointer inside the register functions.

When ESP-Now is initialized, the Wi-Fi task starts running. In an RTOS environment of ESP32,

each task like Wi-Fi task is allocated its stack memory and priority. These stacks are added to the

scheduler, which runs one task at a time. The scheduler runs these tasks along with Wi-Fi task

based on their priority. The task with the highest priority runs first. Each task is provided a

certain time slice to run. If the task is not completed within the time slice, the scheduler saves the

context of the task into the stack and schedules the next task in the queue. In this way, RTOS of

ESP32 has a scheduler which continuously runs all the tasks including Wi-Fi task one at a time.

When the transmitter sends data to the receiver, the OnDataSent() is called using the linked

pointer that was registered inside the esp_now_register_send_cb() function. Similarly, in case of

the reception of new data, the pointer to the OnDataRecv() is called using the linked pointer that

was registered inside the esp_now-register_rec_cb() function. The arguments that are received

form the OnDataSent() call back function are MAC address and status of the transmission.

Whereas in the case of OnDataRecv(), the arguments are MAC address, the pointer to the

received data buffer and the length of received data in terms of bytes. These arguments are used

to retrieve the status of transmission in the transmitter and the received data in the receiver.

55

1.3.2 Software Description

Two different IDEs were used in this thesis, Code Composer Studio was used to implement the

ShockBurst Feature in nRG24L01+, and for ESP32 Arduino IDE was used.

1.3.2.1 Code Composer Studio

Code Composer Studio is an integrated development environment (IDE) that supports TI’s

Microcontroller and Processors portfolio [20]. Code Composer consists of tools used to develop

and debug embedded applications. It includes an optimizing C/C++ compiler, source code editor,

project build environment, debugger, profiler, and many other features [20]. It is designed for

embedded project design and low level JTAG based debugging.

EnergyTrace

EnergyTrace Technology is an energy based code analysis tool that measures and displays the

application’s energy profile and helps to optimize it for ultra-low power consumption [21] . This

technology implements a new method to measure the MCU current consumption. Traditionally

power is measured by amplifying the signal and measuring the current consumption and voltage

drop over a shunt resistor. But in EnergyTrace debugger generates target power supply by a

software controlled DC-DC converter. The energy consumption of the target microcontroller is

equal to the time density of the DC-DC converter charge pulses. A built-in calibration circuit

gives the energy equivalent for a single charge pulse. The width of each pulse remains constant.

So, the debugger can just count the number of pulses over a period of time and calculate the

average current consumption. The time periods with a small number of charge pulses indicate

low energy consumption while the higher one indicates high energy consumption. The main

advantage of using continuous sampling is that even the shortest device activity that consumes

56

energy contributes to overall recorded energy. This is not possible using the traditional shunt

based measurement system.

In this thesis, this feature is used to measure the current consumption by nRF24L01+. At first,

the current consumption of the only MSP432 was measured using EnergyTrace. After that, the

nRF24L01+ was connected and the communication channel was established. This feature gives

us three different current values – average, minimum and maximum values. Now when

nRF24L01+ was transmitting or receiving packets continuously, the EnergyTrace feature was

run for certain duration of time, and current consumed by the device was measured. As

nRF24L01+ consumes maximum current in TX or RX mode, the maximum current value from

EnergyTrace was taken and subtracted from the measured current value by only MSP432 to get

the final current consumption value of nRF24L01+ during transmission and reception.

1.3.2.2 Arduino IDE

Arduino IDE is a cross platform application written in JAVA that supports the languages C and

C++ using special rules of code structuring. The user written code in Arduino requires two

functions, one is to start the sketch, and another one is the main program loop. These functions

are compiled and linked with a program sub main() into an executable program with the GNU

tool chain .

Generally, Arduino IDE is only used for Arduino Boards. To make it work with ESP32, an

Espressif folder should be added and cloned into the Arduino sketchbook directory. Espressif has

its own IDE which can be used to program the ESP32. But with Espressif IDE the programming

is complex with all glue codes needed for event handling and processing. Whereas with Arduino

IDE, there already exits a library which contains all the classes in C++ that handle those complex

event handling and processing necessary for BLE and ESP-Now implementation. Also, more

57

work has been done in Arduino IDE implementation of BLE and ESP-Now in ESP32 than in

Espressif IDE. Thus, in thesis Arduino IDE was chosen over Espressif IDE because of simplicity

and availability of more resources.

1.4 Purpose

The purpose of thesis is to implement nRF24L01+ ShockBurst feature, Bluetooth Low Energy

and ESP-Now in a star network configuration, and then measure and compare the performance

metrics of these protocols in the wireless network. The performance metrics that will be

compared are Throughput, Transmission Range, Current Consumption and Network Recovery

Time. The main goal of this comparison is to find the advantages and disadvantages of these

three wireless protocols based on the four network performance metrics. The comparison will

also be done within nRf24L01+ only, by measuring the Throughput, Range and Current

Consumption in different data rates and power settings. The nRF24L01+ will be interfaced with

MSP432 microcontroller, while BLE and ESP-Now will be implemented in ESP32 development

board to realize the star connection.

1.5 Thesis Organization

This thesis is divided into total six sections. The section 1 has provided background for

understanding the problem studied in this thesis. It has introduced the wireless devices, and

protocols that are used to implement the networks compared in this thesis. This section also gives

the information about the hardware and software tools used in this thesis, and also defines the

research goals. Section 2 provides the review of Literatures which have compared the network

metrics of different wireless technologies with each other. Section 3 explains the procedures

involved in the design and implementation of the system. In this section the implementation of

58

all three protocols in one to one and star network is described. Section 4 provides the results

obtained from the experiments while the analysis of the results and comparison of network

metrics between the protocols is done in Section 5. Section 6 outlines the conclusion made from

the experiments and also provides insight into the probable future work.

59

2 Review of Literature

Various technologies communicate in different ways. The difference lies in the quality of service

and some considerations related to the application and its environment. Past research has

examined the performance analysis of wireless communication protocols based on network

metrics like transmission time, transmission power, range and energy consumption as seen in

Saad, Mostafa, Cheikh and Abderrahmane’s research study [22]. The authors compared and

studied the network metrics of Bluetooth, Wi-Fi, ZigBee and GPRS protocols. The transmission

time for the GPRS was found to be longer than other protocols in this study. Similarly, the

authors found that the range of ZigBee, Wi-Fi and Bluetooth was almost same, and greater than

that of GPRS. While in terms of energy consumption the authors noted that the ZigBee and

Bluetooth have lower power consumption compared to that of Wi-Fi and GPRS. Saha, Mandal,

Mitra and Banerjee [23] also did the comparative performance analysis of mesh recovery time,

and energy consumption between nRF24L01+ and XBEE ZB. They found that the nRF24L01+

had better power consumption and mesh recovery time compared to XBEE ZB.

The throughput of the Wi-Fi was found to be better than Bluetooth and ZigBee by Lee, Su and

Shen in their research study [24]. Besides throughput, the authors also studied power

consumption and network capacity among these three protocols. They observed that the

Bluetooth and ZigBee have low power consumption capability than Wi-Fi, and the network size

of ZigBee in a star network is greater than Wi-Fi and Bluetooth protocols. The same outcome for

throughput and energy consumption between Wi-Fi, ZigBee and Bluetooth was also found by

Arefin, Ali and Haque [25] , and they also suggest that the Packet Delivery Ratio (PDR) of Wi-

Fi is better than Bluetooth and ZigBee, and PDR decreases as the number of nodes increases in

60

all three protocols. The network metric Packet Delivery Ratio is not being considered during the

comparison in this thesis. After an overview of the research studies that have been done, the

network metrics: throughput, range, power consumption and network recovery time were chosen

for comparison. The brief description of these network metrics is given in section 1.2.1.

In present world, there are different wireless communication modules and technologies available

in the market. Among this vast spectrum of modules, the nRF24L01+ transceiver developed by

Nordic Semiconductor and ESP32 development board developed by Espressif System are

gaining popularity in local wireless sensor network. The nRF24L01+ chip has been immensely

popular in the application of local wireless sensor network system due to the factors like low

cost, low power, ease of use and availability. In addition to these factors, the proprietary

communication protocol Enhanced ShockBurst Feature provides some useful features that help

in establishing more reliable wireless communication. These features of Enhanced ShockBurst

Protocol are discussed in detail in section 1.3.1.2.1. Chen, Hu and Liao [26] studied the

performance of nRF24L01+ in a Wireless Body Area Network (WBAN) system. The authors

developed a non-standard wireless communication protocol for WBAN system using

nRF24L01+ transceivers in a star topology using some features from Enhanced ShockBurst

Feature protocol. From the implementation the authors concluded that then nRF24L01+ is a

good fit for WBAN system applications due to higher data rate, low power and low cost factors.

The nRF24L01+ has also been used along with MSP430 to design a Wireless Sensor Node

(WSN) by Sonavane, Patil and Kumar [27] in their research study. In the study, the authors have

described the design procedures involved in WSN node, and have calculated the power

consumption, range and packet loss of the designed WSN node. From their implementation, the

authors concluded that the nRF24L01+ is good choice for a local wireless sensor network due to

61

its low cost, low power and multiple data rates features. Besides this, the authors found out that

the packet loss of designed WSN node was about 0.1 % and it increased with the increment in

the range. Also, they concluded that the power consumption of the node dependent upon the

power and data rate settings in nRF24L01+ transmitter. The nRF24L01+ transceiver has also

been compared with other transmission modules such as CC1101 and Wi-Fi module by Wang,

Chu and Ren [28]. The comparison was done based on the power consumption and Data Error

Rate (DER) properties to find out the cost-effective modules in different applications. Through

the experiments and analysis of the wireless transmission modules, the authors concluded that

the nRF24L01+ and CC1101 are more appropriate for low power and low cost applications.

Also, the authors noted that the DER of CC1101 wireless transmission module is superior to the

nRF24L01+ and Wi-Fi modules.

ESP32 is a new development board which is especially designed for the IoT application. It was

released in late 2016, and since its release, it has become immensely popular in the IoT

applications. Maier, Sharp and Vagapov [29] did the comparative analysis of the ESP32 with

ESP8266, CC32 and XBEE in their research paper. The authors did the comparison of different

features of these wireless modules based on the different features and functions provided on the

technical data sheet of each module. Unlike other studies, this comparison was based on the

theoretical values provided on the technical data sheets. Also, this comparison was more focused

on the technical details of the modules such as CPU, SRAM, I/O, and other details rather than

the network properties of the communication protocols in each module. Since the ESP32 was

released recently, much research on the properties of communication protocols available in

ESP32 has not been done yet. ESP32 device supports standard communication protocols like Wi-

Fi, Bluetooth, and Bluetooth Low Energy. Besides these standard communication protocols, this

62

device also supports another nonstandard communication protocol known as ESP-Now. The

nonstandard communication protocol ESP-Now is an application of Wi-Fi direct technology that

allows the Wi-Fi enabled devices to connect with each other without the requirements of router

or access point. Due to this feature nowadays, many IoT applications are using Wi-Fi direct

technology over Wi-Fi for local wireless communication. Also, recently BLE has been replacing

the classical Bluetooth in many wireless sensor network applications due to low cost and low

power features. Therefore, ESP-Now and BLE were chosen over Wi-Fi and Classical Bluetooth

for performance comparison in ESP32.

During the review of literature, it was found that no significant comparison of the network

constraints such as throughput, power consumption, network recovery time and range between

the ESP-Now and BLE implemented in ESP32 has been done yet. The published throughput

values, range values and current consumption values in a datasheet or manual for different

protocols are theoretical values. In reality, there are different factors which affect the actual value

of a network metric. Thus, the measurement of actual values for these four network metrics and

comparing three technologies was also one of the motivations behind this thesis.

63

3 Design and Implementation of the System

3.1 Experimental Setup

A simple connection between nRF24L01+ and MSP432 was made to establish the wireless

connection. Figure 17 shows the connection between two devices along with the pin

configuration.

Figure 17: MSP432 Connection with nRF24L01+

The nRF24L01+ communicates with the MSP432 through the SPI protocol. Serial Peripheral

Interface (SPI) is a synchronous serial communication interface that is commonly used to send

data between microcontrollers and sensors, modules, etc. It uses a separate clock signal and data

lines for communication. For example, in Figure 17, the signals MISO and MOSI are the

dedicated data lines used for communication between MSP432 and nRF24L01+, and SCLK is

the clock signal. MOSI is Master Out Slave In signal

used to send the data from MSP432 to

64

nRF24L01+ and MISO is Master In Slave Out used for transmitting data from nRF24L01+ to

MSP432. The MSP432 is a master and nRf24L01+ is a slave in the above design configuration.

For that, GPIO pin 3.5, 3.6 and 3.7 were used as SCLK, MOSI and MISO respectively to

establish the SPI connection. Besides this, pin 4.2 was used as the interrupt pin for nRF24L01+,

and pins 4.3 and 4.1 were used as Chip Select Signal (CSN) and Chip Enable Signal (CE).

Unlike nRF24L01+, ESP32 was used in a stand alone condition. Thus the only connection from

ESP32 was to the laptop through a USB connection.

3.2 Software Flow

3.2.1 nRF24L01+

3.2.1.1 One to One Connection

The nRF24L01+s were configured as transmitter and receiver, and communication between them

was established in this network configuration.

3.2.1.1.1 Transmitter

Figure 18 shows the program flow in transmitter side in nRF24L01+. The first task was to

initialize the nRF24L01+ as a transmitter. For that initially, the CRC bit is enabled, the address

width of the channel, the power and speed, and the channel are set up. During initialization, SPI

transfer was enabled, pin 4.2 of MSP432 was configured as interrupt pin, and the auto re-

transmit feature was enabled. Then the size of the data pipe was set up. For the static payload the

packet size is always 32, but for dynamic payload, the packet size was initialized as zero, as there

is no fixed packet size in dynamic payload feature.

65

After that, an address of 5-byte length was assigned to the pipe. One thing to remember is that

the address in both PTX and PRX should be the same. All of these set up fall under the

initialization of nRF24L01+.

 After the initialization, the nRF24L01+ was put in standby condition unless the Chip Enable

signal was enabled, and data was made available in TX FIFO. For that, the terminal Tera Term

was used to provide the data to the chip. MSP432 serial port eUSCI_Ax was used to receive the

data from the keyboard through the terminal. When the user entered the data in the terminal, then

an Interrupt handler was generated, and the data was transmitted to the TX FIFO. After that, the

Chip Enable signal was enabled for around 10 us. Once the required conditions for the

initialization of TX were achieved, the TX was activated, and data was transmitted to the

receiver. Now after the transmission of data, TX went into a receiving state to receive the

acknowledgment packet from the receiver. Once the acknowledgment was received, an interrupt

was triggered which indicated the successful transmission of data. Then, at last, the interrupt was

cleared and nRF24L01+ went back to standby condition.

66

Figure 18: Transmitter Side in nRF24L01+

67

3.2.1.1.2 Receiver

Figure 19 shows the program flow in the receiving side of nRF24L01+ in Enhanced ShockBurst

Protocol. The initialization process of the receiver was similar to the transmitter. The only

significant difference was that the PRIM_RX is high for the receiver while it is low for the

transmitter. The initialization parameters such as address width, speed, power, channel, pipe

number, pipe size, and address were the same for both receiver and transmitter. As shown in

Figure 19, the receiver stayed in standby mode after the initialization until the chip enable (CE)

signal was activated. When the CE signal was activated, the receiver checked whether its FIFO

was full or not. If the FIFO was empty, then the receiver started listening for the packets from the

transmitter. When a packet was received, at first the PRX checked whether the auto

acknowledgment feature was enabled or not. If it was enabled, PRX performed an error checking

mechanism. If no error was found, the received packet was made available in RX FIFO. At last,

the receiver transmitted the acknowledgment back to the transmitter and went back to receiving

standby mode.

68

Figure 19: Receiver Side in nRF24L01+

69

3.2.1.2 Star Connection

Unlike one to one connection, where a radio module was acting either as a transmitter or

receiver, every nRF24L01+ (both hub and nodes) was working as a transceiver. Star Network

mainly consists of two parts: central hub and peripheral nodes.

3.2.1.2.1 Central Hub

The task of the central hub in the star network was to receive the data from a node and transmit it

to the intended end node. Figure 20 shows the general program flow in nRF24L01+ in the central

hub of a star network. The initial task was to initialize the nRF24L01+ as the receiver. During

the initialization, all the pipes were opened in a similar configuration. And, the addressing of

each pipe was done following the rules of Multiceiver as mentioned in section 1.3.1.2.1. After

the initialization was completed, the hub was in the receiving state and started listening for the

data from available nodes. Once the data arrived from a node, the next task for the central hub

was to determine the intended end node receiver.

 The standard nRF24L01+ packet does not provide any information about the intended receiving

node or pipe to the central hub in a star network. So, in this thesis, the user was told to write pre-

assigned device ID of the end node at the beginning of actual data before transmitting it. For

example, let’s assume that there are three nodes and the data need to be transmitted from node 1

to node 3. Now when the data arrives in central hub form node 1, the hub does not have the

information regarding the intended end receiving node, in this case node 3. In this thesis, the pre-

assigned devices IDs are numeric values, so device IDs for node one is 1; node two is 2 and node

three is 3. Hence when the user wanted to send the data to node three, the user had to enter 3 at

the beginning of the data.

70

When the data was received by the central hub, at first parsing of the received data was done to

find the intended end node. To determine the end nod, the first character of payload was

compared with the pre-defined device ID. Once the end node was located, the hub was

reinitialized as transmitter and data was sent to the intended end node. When the hub received

the acknowledgment back from the end node, the hub was reinitialized as a receiver and it

continued listening for the data.

Figure 20: Central Hub in Star Connection

71

3.2.1.2.2 Peripheral Node

Figure 21 shows the program flow in peripheral node side in nRF24L01+ in star connection.

Similar to the central hub, the nRF24L01+ in a peripheral mode was configured as a receiver at

the beginning. It stayed in the receiver mode until an interrupt was generated from the Terminal.

The interrupt from the Terminal indicated the node to reinitialize itself as a transmitter. This

interrupt from the Terminal is not a part of a star network. This configuration was done only for

testing of the communication between the nodes. Through the Terminal, the transmission and

reception of data can be monitored with much more reliability. When the user entered the data

along with the device ID in Terminal, the nRF24L01+ was initialized as a transmitter, and data

was transmitted to a central hub. When it received an acknowledgment back from hub, it was

reinitialized as a receiver and continued listening for the data from a central hub.

Figure 21: Peripheral node in nRF24L01+ in Star Connection

72

3.2.2 ESP32 BLE

The Bluetooth in ESP32 module was enabled using the Espressif software library. For that,

Espressif IoT Development Framework (ESP-IDF) was downloaded from the GitHub. Next, the

repository of ESP-IDF was cloned to the computer, and a path to IDF was entered. After

correctly setting up ESP-IDF in the PC, menu- driven configuration feature of IDF was used to

configure the ESP32 module. This ESP tool can be used to configure the serial COM port, baud

rate and many other features. Not only BLE, other features of ESP32 like Wi-Fi, Ethernet can

also be set using this tool.In the menuconfig tool component config was selected, and the

Bluetooth option was enabled. The next step was to specify the size of the Bluetooth stack and

select the Bluedroid Bluetooth stack to be enabled. These processes enabled the BLE in ESP32

board.

In this thesis, a library provided for implementation of BLE in Arduino was used. ESP32 BLE

APIs require different complex and glue code necessary for event handling and processing of

BLE requests. This library consists of different classes which handle those events handling

process so that BLE workflow can be efficiently processed.

3.2.2.1 One to One Connection

The BLE implementation in one to one connection can be distinguished into two parts: BLE

server and BLE client.

3.2.2.1.1 Server

Figure 22 shows the program in BLE server. In the beginning, the 128-bit long Service and

Characteristic UUIDs were defined for the server. UUID stands for Universally Unique ID that is

used to identify the services and characteristics. These UUIDs were used by the client side to

73

recognize the advertised services and characteristics of the server. The next task was to give a

device name. During the implementation, it was found that the device name should not be more

than five characters; otherwise the server could not connect to the client. Now after the above

processes were done, the service and characteristics for the server were created by using the

respective UUIDs. The characteristic can have read, write, notify or indicate properties. In this

thesis, during the creation, the characteristic was initialized to have read and write features. After

the creation was completed, the service was added into the advertisement payload, and finally,

the advertisement was started.

The onRead function was used to write the value in the server while onWrite was used to write

the new value to the client. The onRead function was called upon when the client made a read

request. This function enabled the client to read the server’s characteristic value, whereas

onWrite function was called upon when the client made a write request. This function allowed

the server to write the value in the client side.

74

Figure 22: BLE Server

75

3.2.2.1.2 Client

The client operation can be broken down into two parts: Scanning and Interaction. Every BLE

device has a unique address that can be used to identify it, and thus establish the connection. The

address has a length of 6 bytes. This address can be hard coded into the code, but this is not the

recommended way. Instead, a scanning procedure was performed to listen to the servers which

are advertising. From scanning performance, the address of the server was obtained. The first

task in client side was to define the UUIDs of the service and characteristic of the server; that the

client was trying to connect. After that, the scanning was performed, and a callback function was

called for each device that was found. Then the client was created, and a connection to the

detected device was established. Once the connection was formed, the UUIDs of service and

characteristic of the connected server were compared with the desired ones. If the UUIDs were

found to be same, then either a read or write operation was performed. If the UUIDs were

different, the client continued to search for the desired service and characteristic. Figure 23

shows the general flow of the program in the client side of BLE.

76

Figure 23: BLE Client

77

3.2.2.2 Star Connection

Like that in nRF24L01+, the ESP32 BLE in star topology also consisted of a central hub and

peripheral nodes, and both nodes and hub were acting as a transceiver.

3.2.2.2.1 Central Hub

Figure 24 shows the program flow of BLE in the central hub in star connection. Initially, the

central hub in the network was configured as a server. The current BLE library in Arduino does

not support more than one client connection at a time. The multi-client connection in BLE in

ESP32 was enabled only in the latest 30.2 version. This version was released on August 2018.

So, the ESP32 library for BLE is still in the building phase for multi-client connection.

For this thesis, a multi-client connection feature was necessary to realize the star connection. In

a star network, the central hub is connected to multiple peripheral nodes so that it can receive

data from any one off them and transmit the received data to any peripheral node. Hence, to

form a multi-client connection, the advertisement was restarted in the hub once there was a

connection between a client and server as shown in Figure 24. This process did not work all the

time, but most of the time multiple clients were able to connect with the hub. In the hub, only

one service was created, but inside that numerous characteristics were created. The number of

characteristics in the hub was dependent upon the number of peripheral nodes. Each

characteristic was assigned a separate UUID. For example, if there were two peripheral nodes,

two different characteristics were created.

At first, the callback functions for all characteristics were called in such a way that the central

hub was acting as the receiver and was listening for a write request from all nodes. Now when

the server received a write request from a node, the new value was written to the correct

78

characteristic. For example, if the data was received from node one, the new value was written to

the characteristic of node 1.

The next task was to determine the intended end receiver or node. The processing for

determining the end node is the same for all protocols. A pre-defined device ID was assigned to

each node; the received value was compared to the pre-defined ID to determine the end node.

When the central hub received data from the node, first a function was run to determine whether

the received data was number or not. Since the pre-assigned device IDs are numbers in this

thesis, the checking was done to differentiate between actual data and device ID. If it was found

to be a number, then ESP32 entered a new state. In this state, the server was still acting as

receiver and waited for the actual data from the node. In this thesis, the node was sending two

different characters right one after another. This was done to calculate the throughput of the

network. When the central hub received all the data from the node, then it went into a new state

where it determined the end receiving node. Once the correct end node was figured out, then the

central callback function for only that node was called, and data was written to the correct end

node.

79

Figure 24: Central Hub in BLE in Star Connection

80

3.2.2.2.2 Peripheral Node

Figure 25 shows the program flow of BLE in a peripheral node in star connection. The first task

was to configure the node as a client, after that scanning was performed to connect with the hub.

Once the connection to the hub was established the node went to receiving state. In this state,

receiver made a constant read request to read the data from hub. In the star connection, the

communication is always initiated by the peripheral node. So, in the receiving state, there was

another condition where the node was continually listening to the serial monitor for the data from

the user. If the node received any value from the serial monitor or the user, the node changed its

state from receiver to transmitter and made a write request to the hub. Once the write request was

made, the new value was written to hub. Thus, in the receiving state ESP32 was performing two

different tasks at the same time. As it was making a read request to the server, it was also

listening to see if any data was coming from the serial monitor or not.

The data obtained from the serial monitor is the device ID of the intended end node. After

writing operation of device ID was completed user defined data were written to the hub.

Once the all the data were written to the central hub the node came back to the receiving state.

81

Figure 25: Peripheral Node in BLE in Star

82

3.2.3 ESP-Now

ESP-Now in this thesis is implemented using Wi-Fi protected setup standard. So, the Wi-Fi

library for ESP32 was used to perform the ESP-Now wireless connection between two devices.

This library provides different Wi-Fi functions which are used to initialize the ESP32 in correct

configuration modes and make a successful connection.

3.2.3.1 One to One Connection

The operation of ESP-Now in this kind of configuration can be divided into two parts: master

and slave.

3.2.3.1.1 Master

Figure 26 shows the program flow of ESP-Now in master configuration. The first task was

configuring the Master in Station (STA) Wi-Fi mode. For this, the mode() function of the Wi-Fi

library was used. At first, this function obtained the current mode of the device and checks

whether the device is configured in STA mode or not. If the device is in STA mode, then nothing

was done, and true value was returned. But if the device was not set in STA mode, then it called

the esp_wifi_set_mode() function which finally set the device in STA mode. Then, the MAC

address of the device was obtained. For this macAddress() function was used. This function

called the esp_wifi_get_mac() function which gave the MAC address in STA mode. After the

setup was completed in STA mode, the ESP32 was initialized.

Once the initialization of master was done, the master was told to scan for any available access

points devices in the surrounding. When a device was found, then the SSID, RSSI, and BSSID

of each found devices were saved. SSID stands for service set identifier which is just a technical

term for a network name. RSSI is the received signal strength, and BSSID is the MAC address of

83

the wireless access point. After each of them was saved, the master was instructed to check if the

current device name began with slave or not. This name was given to the slave device during AP

configuration. If the name began with the slave, then the MAC address of the slave device was

saved in a variable otherwise the slave would be discarded.

Before sending or receiving the data to another device, the device needs to be added to the paired

device list. For that esp_now_add_peer() function was called. Once the pairing was made, the

data could be sent or received. The data was sent using the esp_now_send() function, and the

esp_now_register_send_cb() function was used to register for sending the callback function. This

callback function in the transmitter indicated whether the data was successfully transmitted or

not. Whereas, esp_now_register_recv_cb() was called to register the receiving callback function

on the receiving side. This callback function was used to receive the data from the transmitter.

84

Figure 26: ESP-Now Master

85

3.2.3.1.2 Slave

Figure 27 shows the program flow in slave side of ESP-Now. The first task that was done was to

configure the ESP32 device in soft-AP mode. For this, the mode() function of the Wi-Fi library

was used. After that, the next task was to generate the access point of the client. For that initially,

the client was provided with a MAC Address and prefix in front of the MAC Address. The prefix

was provided before the Mac address so that it would be easy for the Master to recognize the

slave. For the MAC address, macAddress() function was called. This function at first checked

whether the device was in null mode or not. In null mode the ESP32 is not initialized as a station

or the soft-AP mode. This mode is used to stop both AP and STA mode. If it was in the null

mode, then the function was terminated, and nothing happened. But if the device was not in Null

mode then it called a function esp_wifi_get_mac() to obtain the MAC address. After the

generation of the MAC address, the MAC address and prefix were combined to generate the

SSID of the client network. The last task was to finalize the AP configuration of the client

network. For this the softAP() function was called. The parameters provided to this function are

combined SSID (prefix + MAC address), password, Channel and hidden network cloaking. Since

in this thesis we are configuring the ESP32 device in WPA2 standard, a password of minimum

eight characters was provided. The hidden network cloaking is used to broadcast or hide the

SSID of the client.

After the successful configuration of ESP32 in soft-AP mode, the initialization of the device was

completed. Once the initialization was done, the client successfully broadcasted its SSID and

waited for the connection with the server. When the connection was established, register callback

functions were called to either send or receive the data from the server.

86

Figure 27: Slave side in ESP-Now

87

3.2.3.2 Star Connection

Similar to the BLE and nRF24L01+, the star connection for ESP-Now had central hub and

peripheral nodes.

3.2.3.2.1 Central Hub

Figure 28 shows the program flow of ESP-Now in the central hub in a star network. In a star

network, the central hub was configured as master. There is a slight difference in the

configuration process of master in star and one to one connection. In one to one connection, the

MAC address of master was generated using Wi-Fi, macAddress() function. But in a star

connection, the MAC address of the ESP32 was hardcoded in the code. This was done so that the

clients can add the master in their paired device list during their initialization. The MAC address

was set by using esp_base_mac_addr_set() function. Once the MAC address was configured,

next the ESP32 was initialized, and the hub began scanning for the available devices. Once the

scanning was complete, the devices or nodes were added to the paired list. Initially, the hub was

acting as a receiver, so the callback register functions to receive the data from the nodes were

called. The end user was determined by using the concept of device ID similar to that of BLE

and nRF24L01+.

In this state, the master was expecting three different data from the nodes. The first value was the

device ID, and rest was the user data. After all data were received from the node, the master went

into a new state. In this state, the hub acted as a transmitter, and for that, the register callback

function to send data was called. Then the hub transmitted the user data to the intended end node.

The correct node was determined inside the send function. After the data are transmitted, the

register callback function gave the status of transmission to the hub.

88

Figure 28: Central Hub in Star Connection of ESP-Now

89

3.2.3.2.2 Peripheral Node

Figure 29 shows the general flow of the program of ESP-Now in a peripheral node in star

connection. The node in the star connection was configured as a client in AP mode. The setup

process was same in both star and one to one connection. Once the setup was completed, the

ESP32 was initialized. There was a slight difference in the initialization process in star and one

to one connection. In star connection, we knew MAC address of the hub. So, during the

initialization process, this MAC address of the server was used to add our server in the paired

device list.

Now after the connection was made to the hub, the node acted as receiver and called the register

callback function to receive the data from the hub. In this state, there was also another condition

if the node received a user data from the serial monitor the node was told to act as a transmitter.

To act as a transmitter, a register callback function to send data was called by the node. After

that, the node transmitted the device ID received from serial monitor to hub using send function.

Once this first transmission was completed, the node entered a new state and transmitted the user

defined data to the hub as shown. After all data were transmitted to the hub, the client went back

to receiving state.

90

Figure 29: Peripheral node (ESP-Now) in Star Connection

91

3.2.4 Measurement of Performance Metrics

3.2.4.1 Throughput

Figure 33 shows the methodology used for the throughput calculation. The throughputs

were calculated for all three protocols in both one to one and star connections. Different payload

sizes were transmitted, and throughput for each case was calculated. In the case of nRF24L01+,

throughputs were calculated in different available data rates and power settings. This was done to

compare the performance of nRf24L01+ in different available speed and power settings.

Figure 30: Throughput Calculation Methods

3.2.4.1.1 nRF24L01+

In nRF14L01+, the receiver sends back the acknowledgment to the transmitter when it receives

the data. The acknowledgment indicates the successful transmission of data from a transmitter to

receiver. In star connection, the transmission of data from one node to another occurs through a

central hub. So, the data was transmitted twice, one from transmitting node to the central hub and

another from the central hub to end receiving node. Thus, in this thesis for star network

throughput was calculated in two phases. The first phase involved calculation of throughput

when data was transmitted from transmitting node to a central hub, and another phase involved

92

transmission from the central hub to end node. The two corresponding transmission time in a

single transmission were then added and saved in an array in the program. Now after 50

transmissions those saved values were called, added with each other and averaged out to find the

total transmission time of the network. At last Equation 3 was used to calculate the throughput of

the system.

(3)

In case of static payload length, the total length of bytes that is transmitted is 32 bytes, but in

dynamic payload length, the packet size varies with the length of the payload. The total

transmission time is calculated using the SysTick Timer of MSP432. The timer is initialized in

such a way that it generates an interrupt in every microsecond. The total number of ticks between

the transmission of data and arrival of the acknowledgment signal is measured to calculate the

total transmission time. The throughputs for different power and speed configuration of

nRF24L01+ are calculated.

The Enhanced ShockBurst packet in nRF24L01+ contains preamble, CRC, address and payload

field. Except for payload field, all other fields are used for data verification, reception and error

checking. The payload field is the actual user sent data and is the only thing that can be

controlled by the user during communication. So, in this thesis, only payload field was

considered for throughput calculation and comparison.

3.2.4.1.2 ESP-Now and BLE

The throughput calculation concept was the same for both ESP-Now and BLE. Two different

data of certain length were sent one after another. The time difference between the arrival of first

and second data was measured at the end node to calculate the transmission time of the packet.

93

This process was repeated many times to get the several measures of transmission time, and each

measured value was saved in an array. At the end of the 50
th

 transmission, those values were

extracted from the array and averaged out to obtain the average transmission time. At last using

Equation 3, the throughputs were calculated for both protocols. The micros() function of Arduino

IDE was used for time measurement.

ESP-Now packet format contains different data fields like MAC, Category Code, etc. along with

payload body. Similar to nRF24L01+, only payload body size was considered for throughput

calculation.

3.2.4.2 Current Measurement

3.2.4.2.1 ESP-Now and BLE

To measure the current consumption in the ESP32, a series connection was established using

current sensing resistor of 0.005 ohm. A Lithium-Ion battery of rating 3.7 V and 2000mah was

used as power supply. The current measurement configuration consisted of two different circuits

for transmitter and receiver. If the current was to be measured in the transmitter side, then the

transmitter was connected to the Lithium Ion battery through a resistor. There was no USB

connection to transmitter in this condition, so it was getting the power only from the battery.

Whereas, the receiver was connected to the computer through USB connection, this was done to

monitor the values in serial monitor to make sure that the receiver is receiving the correct

transmitted values.

Now similarly to measure the current consumption in the receiver side, the circuits were exactly

opposite, that is receiver was connected to the battery while the transmitter was connected to the

laptop through USB connection. In both conditions continuous transmission was done and the

94

voltage across the resistor was monitored continuously. Figure 31 shows the circuit diagram of

the current measurement circuit.

Different resistors values ranging from 1 ohm to 5 ohm were used initially to calculate the

current consumption. But due to the high voltage drop in those resistors, the ESP32 was not able

to transmit the data to the receiver. Whereas when a current sensing resistor of 0.005 ohm was

used, ESP32 was able to transmit the data to the receiver. Then the voltage across the resistor

was measured using a digital multi-meter to obtain the current in the circuit.

Figure 31: Current Measurement Circuit

3.2.4.2.2 nRF24L01+

The current consumption in nRF24L01+ was done in two methods. In the first method, the

EnergyTrace feature of CCS was used to measure the current consumption in TX and RX states.

To measure the current consumption of nRF24L01+, the data was transmitted continuously from

PTX to PRX with some delay. Then, the EnergyTrace software was run in the Code Composer

Studio IDE to measure the current consumption.

In the second method, current measurement circuit of Error! Reference source not found. was

used to measure the current consumption of nRf24L01+ in TX and RX state. A current sensing

95

resistor of 0.005 ohm was placed in series between nRF24L01+ and MSP432. The voltage across

the resistor was measured using a digital multi-meter to measure the current.

3.2.4.3 Network Recovery Time

The network recovery time for all three protocols was calculated in two different conditions:

when power is removed and when device is taken out of range. The brief description of the

process involved for the measurement of time is given below:

3.2.4.3.1 Power Removed

nRF24L01+

The nRF24L01+ has four operating modes: power down, standby, TX, and RX mode. The

nRF24L01+ consumes high current in TX and RX modes. When nRF24L01+ is powered up, at

first, it goes to power down mode and then goes to standby mode followed by either RX or TX

mode. In order to calculate the network recovery time, nRF24L01+ was put in power down

mode. The standard mode of operation when the module is not transmitting or receiving is to

keep module in standby mode. So, the time taken by nRF24L01+ to go from power down mode

to TX Mode through standby mode was measured.

ESP-Now and BLE

In ESP-Now, the network recovery time was calculated in only master side since most of the

tasks needed for the connection are done by master. The master scans for the slaves available and

makes a connection to them. At first, it checks the validity of the slave, and after that, it begins

the connection and pairing is established between the master and slave. To calculate the network

recovery time in ESP-Now, the input power was removed and again restored, and when the

96

power was restored the time required between the scanning of devices to the successful pairing

of slaves was measured.

In the case of BLE server advertises its services and characteristics, and the client makes a

connection to them. The network recovery time was calculated only in client side since most of

the work needed to make a connection is done by client. The general pattern for operation is that

at first client scans the area for any BLE device. When it finds one, the client is initialized and

then it is connected to the server address. After that, it makes a connection to the service and

characteristic of the connected device. The input power was removed and again restored. Once

the power was restored the time required for the client to perform a scanning operation and

establish the connection to the server was measured.

3.2.4.3.2 Out of Range

nRF24L01+

In the nRF24L01+, when it is taken out of the range, it goes to standby mode not the power

down mode. When taken back within the range, the nRF24L01+ goes from stand by mode to the

TX or RX state and starts transmitting or receiving the data. Thus, the time taken by the

nRF24L01+ to reconnect from standby mode to the TX or RX was calculated.

ESP32 and BLE

In ESP-Now, it was observed that the processes involved in reconnecting the device back to the

network when taken out of range are same as the ones when the power is removed. This means

in ESP-Now when the server is taken out of range and put back within the range, at first master

scans for the slave in the surronding and checks the validity of the available slaves. Once the

slave is found to be valid, it begins the connection and pairing is established between the master

and slave. To calculate the network recovery time, the ESP32 was taken out of range and again

97

put back in, and the time required between the scanning of devices to the pairing of slaves was

measured.

 Similarly, in BLE when client is taken out of range and put back in, initially the client scans the

surrounding for the advertising BLE device. When a server is found, the client is initialized, and

connection to the server is established. Thus, the time required for the client to perform a

scanning operation and establish the connection to the server was measured.

3.2.4.4 Range

The experiment for range measurement was conducted in GVSU football field in cloudy

weather. There were no obstructions between the transmitter and receiver. The line of sight

between the transceivers was kept straight throughout the experiment. Some experiments were

conducted by keeping fixed antennas in the module in an angle with each other. The value of the

range from those experiments was less than the values obtained by keeping the antennas in a

straight line. Those values are not included in this thesis since they do not give the maximum

range capability of the device.

3.2.4.4.1 One to One Connection

To measure the range in one to one connection, continuous data transmission from the

transmitter to receiver was done. And after that receiver was slowly continuously taken away

from the transmitter until the communication ceased. In case of one to one connection, when the

communication ceased out the receiver was walked back in the network until it made error free

communication and then was again separated. This procedure was repeated several times before

a distance was measured.

98

3.2.4.4.2 Star Connection

To calculate the range in a star connection, two peripheral nodes and one central hub were

configured in a star network. It was not possible to use more than two nodes due to the lack of

resources (laptops) since the Terminal window was needed for each node to check the successful

transmission of the data from one node to another node. In the experiment, two nodes were

powered using the same laptop, and two Terminals (Tera Term) were running for each node to

monitor the transmission, while the central node was using a separate laptop. The continuous

transmission was done from one node to another through the central node, and central node was

taken slowly away from the peripheral nodes. Figure 32 shows the experimental procedure used

for range calculation. The distance between the peripheral nodes and central node was increased

gradually to measure the range. The arrow between the central hub and the peripheral node

shows the direction of data transmission. When the communication ceased, the hub was put back

in the network until an error free transmission was again re-established. After that, the hub was

again walked away from network, and this process was repeated several times before the

distance between the central and peripheral node was measured. Since both nodes are in the same

position and the communication occurred through the central node, the measured distance

between the central and peripheral nodes was multiplied by two to obtain the total range of the

network.

99

Figure 32: Experiment Procedure of Range Measurement in Star Network

100

4 Result

4.1 Throughput

4.1.1 nRF24L01+

The throughputs of nRF24L01+ for different payload sizes were measured. The payload length

varied from 1 byte to 32 bytes. This radio module is generally used in a sensor network to

transmit data. In most applications, the size of the data can be of small size (1 byte or 4 bytes).

Due to this reason, throughput for small payload size was also calculated. In addition,

throughputs in different power settings and data rates were also calculated for nRF24L01+. This

was done to study the performance of nRF24L01+ in different available power and data rate

settings.

4.1.1.1 One to One Connection

The throughputs for nRf24L01+ in one to one connection were measured for different payload

sizes in different data rate and power setting configurations.

Figure 33 shows the distribution of measured transmission time over fifty transmissions in static

payload length (32 bytes) at 250 Kbps data rate. Similarly, the distribution of transmissions times

over fifty transmissions at 1 Mbps and 2 Mbps data rates are shown in Figure 34 and Figure 35.

The raw data for each transmission is given in Appendix A.

101

Figure 33: Distribution of Transmission Time at 250 Kbps

Figure 34: Distribution of Transmission Time at 1 Mbps

102

Figure 35: Distribution of Transmission Time at 2 Mbps

Table 1 to Table 4 show the measured transmission time and calculated throughput values for

different payload conditions. For each payload, the calculation of throughput was done in

different power setting and data rate configurations.

The mean values of measured transmission time over 50 transmissions are given along with their

respective standard deviations. Using those measured mean values and Equation 3, the

throughputs of the network in different conditions are calculated.

Table 1: Average transmission time and calculated throughput for 32 bytes

SET UP IN nRF24L01+ Mean Values

with standard

deviations

Calculated

Values based on

Mean

Data Rate Power Time(us) Throughput(kbps)

250 kbps 0 dBm 1727 (1.43) 148.23

250 kbps MIN 12dBm 1726 (1.43) 148.31

250 kbps MIN 18dBm 1728 (1.42) 148.14

1 Mbps 0 dBm 470 (1.65) 544.68

1 Mbps MIN 12dBm 471 (1.64) 543.52

1 Mbps MIN 18dBm 471 (1.64) 544.68

2 Mbps 0 dBm 264 (1.51) 969.7

2 Mbps MIN 12dBm 265 (1.52) 966

2 Mbps MIN 18dBm 264 (1.51) 969.7

103

Table 2: Average transmission time and calculated throughputs for 1 byte

Table 3: Average transmission time and calculated throughputs for 4 bytes

Table 4: Average transmission time and calculated throughput for 16 bytes

SET UP IN nRF24L01+ Mean Values

with standard

deviations

Calculated

Values based on

Mean

Data Rate Power Time(us) Throughput(kbps)

250 kbps 0 dBm 733 (0.49) 10.91

250 kbps MIN 12dBm 733 (0.48) 10.91

250 kbps MIN 18dBm 733 (0.48) 10.91

1 Mbps 0 dBm 222 (1.25) 36.03

1 Mbps MIN 12dBm 221 (1.23) 36.19

1 Mbps MIN 18dBm 222 (1.24) 36.03

2 Mbps 0 dBm 144 (0.54) 55.56

2 Mbps MIN 12dBm 144 (0.55) 55.56

2 Mbps MIN 18dBm 144 (0.54) 55.56

SET UP IN nRF24L01+ Mean Values

with standard

deviations

Calculated

Values based on

Mean

Data Rate Power Time(us) Throughput(kbps)

250 kbps 0 dBm 850 (1.47) 37.64

250 kbps MIN 12dBm 852 (1.46) 37.55

250 kbps MIN 18dBm 849 (1.48) 37.69

1 Mbps 0 dBm 246 (1.48) 130.08

1 Mbps MIN 12dBm 247 (1.46) 129.55

1 Mbps MIN 18dBm 246 (1.47) 130.08

2 Mbps 0 dBm 153 (1.28) 209.15

2 Mbps MIN 12dBm 152 (1.29) 210.52

2 Mbps MIN 18dBm 154 (1.28) 207.8

SET UP IN nRF24L01+ Mean Values

with standard

deviations

Calculated

Values based on

Mean

Data Rate Power Time(us) Throughput(kbps)

250 kbps 0 dBm 850 (1.47) 37.64

250 kbps MIN 12dBm 852 (1.46) 37.55

250 kbps MIN 18dBm 849 (1.48) 37.69

1 Mbps 0 dBm 246 (1.48) 130.08

1 Mbps MIN 12dBm 247 (1.46) 129.55

1 Mbps MIN 18dBm 246 (1.47) 130.08

2 Mbps 0 dBm 153 (1.28) 209.15

2 Mbps MIN 12dBm 152 (1.29) 210.52

2 Mbps MIN 18dBm 154 (1.28) 207.8

104

4.1.1.2 Star Connection

The process involved for throughput calculation in nRF24L01+ in star connection is discussed in

section 3.2.4.1.1. From one to one connection it was observed that the throughput did not depend

upon the transmitting or receiving powers. So, the transmission time of nRF24L01+ in star

connection was measured for only different payload sizes in different data rates.

Figure 36 shows the distribution of measured transmission time in star network over fifty

transmissions in static payload length (32 bytes) at 250 Kbps data rate. Similar distributions are

also given for 1 Mbps and 2 Mbps at the same payload condition in Figure 37 and Figure 38. The

raw data for each transmission in star network is given in Appendix A.

Figure 36: Distribution of Transmission time in Star Connection (32 Bytes)

105

Figure 37: Distribution of Transmission time in Star Connection (32 Bytes)

Figure 38: Distribution of Transmission time in Star network (32 Bytes)

Table 5 to Table 8 show the measured transmission time and calculated throughput values for

different payload conditions in a star network. For each payload condition, the calculation of

throughput was done in different data rate configurations.

106

The total calculated transmission time (T) of measured mean transmission time (T1 and T2) in

each condition is given. Using those total calculated transmission time values and Equation 3, the

throughputs of the network in different conditions are calculated.

Table 5: Throughput and Time Taken for 32 bytes (Star Network)

Table 6: Throughput and Transmission Time for 1 byte (Star Network)

 Transmission Time

Mean Values with

standard deviations

Calculated Values

based on Mean

Data

Rate

Throughput

1 (kbps)

Throughput

2 (kbps)

Time

1(us)

(T1)

Time 2

(us)

(T2)

Total

Throughput(kbps)

(PacketSize)/(T1+T2)

Time (us)

(T1 + T2)

250 kbps 148.40 148.57 1725

(1.47)

1723

(1.52)

74.24 3448

1 Mbps 545.84 544.68 469

(1.17)

470

(1.22)

272.63 939

2 Mbps 966.03 969.69 265

(0.72)

264

(0.74)

483.93 529

 Transmission Time

Mean Values with

standard deviations

Calculated Values

based on Mean

Data

Rate

Throughput

1 (kbps)

Throughput

2 (kbps)

Time

1(us)

(T1)

Time

2 (us)

(T2)

Total

Throughput(kbps)

(PacketSize)/(T1+T2)

Time (us)

(T1 + T2)

250 kbps 10.91 10.92 733

(0.47)

732

(0.48)

5.46 1465

1 Mbps 36.19 36.19 221

(1.24)

221

(1.25)

18.09 442

2 Mbps 55.94 56.33 143

(0.55)

142

(0.54)

28.07 285

107

Table 7: Transmission Time and Throughput for 4 bytes (Star Network)

Table 8: Throughput and Transmission Time for 16 bytes (Star Network)

4.1.2 BLE and ESP-Now

4.1.2.1 One to One

To calculate the throughput for ESP-Now and BLE, the data was transmitted between two

ESP32s which were kept at 2.5 ft away from each other. For each transmission, the transmission

time was measured and used to calculate the throughput of the system.

Like that in nRF24L01+, throughputs in ESP-Now and BLE were calculated different payload

sizes. Unlike nRF24L01+, these protocols do not offer different data rates. Hence the throughput

calculation in BLE and ESP-Now were done in the only one configuration. Figure 39 shows the

 Transmission Time

Mean Values with

standard deviations

Calculated Values

based on Mean

Data

Rate

Throughput

1 (kbps)

Throughput

2 (kbps)

Time

1(us)

(T1)

Time 2

(us)

(T2)

Total

Throughput(kbps)

(PacketSize)/(T1+T2)

Time (us)

(T1 + T2)

250 kbps 38.04 38.09 841

(0.83)

840

(0.82)

19.03 1681

1 Mbps 130.61 130.61 245

(0.75)

245

(0.76)

65.30 490

2 Mbps 210.52 210.52 152

(0.73)

152

(0.72)

105.26 304

 Transmission Time

Mean Values with

standard deviations

Calculated Values

based on Mean

Data

Rate

Throughput

1 (kbps)

Throughput

2 (kbps)

Time

1(us)

(T1)

Time 2

(us)

(T2)

Total

Throughput(kbps)

(PacketSize)/(T1+T2)

Time (us)

(T1 + T2)

250 kbps 105.34 105.43 1215

(0.84)

1214

(0.83)

52.69 2429

1 Mbps 375.36 374.26 341

(0.56)

342

(0.58)

187.40 683

2 Mbps 640 640 200

(0.80)

200

(0.82)

320 400

108

distribution of transmission time in ESP-Now in One to One Connection when 32 bytes of data

are transmitted. The experimental data is given in Appendix A.

Figure 39: Distribution of Transmission time in ESP-Now

Figure 40 shows the distribution of transmission time in BLE in One to One Connection when 32

bytes of data are transmitted. The experimental data is given in Appendix A.

109

Figure 40: Distribution of Transmission time in BLE

Table 9 contains the measured transmission time and calculated throughput values for different

payload conditions in ESP-Now. The mean values of transmission time along with their standard

deviation and calculated throughput based on those values are given.

Table 9: Throughput and Transmission time for ESP-Now in different Payload sizes

ESP-Now Mean Values with standard

deviations

Calculated Values based on

Mean

Payload Sizes (byte) Time (us) Throughput (kbps)

1 929 (10.08) 8.611

4 966 (12.07) 33.126

16 1058 (17.30) 120.98

32 1179 (14.22) 217.13

Table 10 contains the measured transmission time and calculated throughput values for different

payload conditions in BLE. The mean values of transmission time along with their standard

deviation and calculated throughput based on those values are given.

110

Table 10: Throughput and Transmission time for BLE in different Payload sizes

BLE Mean Values with standard

deviations

Calculated Values based on

Mean

Payload Sizes (byte) Time (us) Throughput (kbps)

1 114 (0.68) 69.89

4 142 (0.92) 225.35

16 334 (6.16) 338.23

32 514 (4.85) 498.05

4.1.2.2 Star Connection

The process involved for throughput calculation in ESP-Now and BLE in star connection is

discussed in section 3.2.4.1.2.

Figure 41 shows the distribution of transmission time in ESP-Now in a star connection when 32

bytes of data are transmitted. The experimental data is given in Appendix A.

Figure 41: Distribution of Transmission time in Star Network (ESP-Now)

Table 11 shows the measured transmission time and calculated throughput values in a star

network for different payload conditions in ESP-Now. The total transmission time (T1)

111

calculated based on the mean transmission values (T1 and T2), and calculated throughput values

are given.

Table 11: Throughput and Transmission Time in ESP-Now in Star Connection

Table 12 shows the measured transmission time and calculated throughput values in a star

network for different payload conditions in BLE. The total transmission time (T1) calculated

based on the mean transmission values (T1 and T2), and calculated throughput values are given.

Table 12 shows that the measured transmission Time 2 (T2) when data was transmitted from the

central hub to the end node is not valid data.

Table 12: Throughput and Transmission Time in BLE in Star Connection

 Transmission Time

Mean Values with

standard deviations

Calculated Values

based on Mean

Payload

Size

(Byte)

Throughput

1 (kbps)

Throughp

ut 2 (kbps)

Time 1(us)

(T1)

Time

2 (us)

(T2)

Total

Throughput(kbps)

(PacketSize)/(T1+T2)

Time (us)

(T1 + T2)

1 8.57 8.60 933 930 4.29 1863

4 33.07` 33.02 967.60 967 16.54 1934.6

16 121.21 120.98 1056 1058 60.54 2114

32 217.74 217.31 1175.7 1178 108.76 2353.7

 Transmission Time

Mean Values with

standard deviations

Calculated Values

based on Mean

Payload

Size

(Byte)

Throughput

1 (kbps)

Throughput

2 (bps)

Time

1(us)

(T1)

Time

2 (s)

(T2)

Total Throughput(bps)

(PacketSize)/(T1+T2)

Time 2(s)

(T1 + T2)

1 59.26 1.6 135 5.025 1.6 5.025

4 205.12 6.25 156 5.12 6.25 5.12

16 336.84 25.34 380 5.05 25.64 5.05

32 467.15 50.50 548 5.069 50.50 5.069

112

4.2 Range

4.2.1 One to One

The process involved for range measurement in one to one connection is described in section

3.2.4.4.1. The experiment was repeated thirty times to measure the distance .

Figure 42 shows the distribution of the measured range in nRF24L01+in maximum power

settings. Similar range measurements were also done for other power settings. The experimental

data is data is given in Appendix B.

Figure 42: Distribution of Range in nRF24L01+ (0dBm)

Figure 43 shows the distribution of measured range for BLE; the experimental data is data given

in Appendix B.

113

Figure 43: Distribution of Range in BLE

Figure 44 shows the distribution of measured range for BLE; the experimental data is data given

in Appendix B.

Figure 44: Distribution of Range in ESP-Now

Table 13 shows the maximum range of three protocols in one to one connection. For nRf24L01+,

the range calculation has been done in different available power settings.

114

Table 13: Range of nRF24L01+, ESP-Now and BLE in One to One connection

Wireless Module Power (in case of nRF24L01+

Only)

Range Mean Values with

standard deviations (ft)

nRF24L01+ Min 18dBm 45

Min 12 dBm 84

Min 6 dBm 97

0 dBm 122

BLE 189

ESP-Now 271

4.2.2 Star Connection

The process involved for range measurement in one to one connection is described in section

3.2.4.4.2. The experiment was done for thirty times and distance was measured in each instance.

Figure 45 shows the distribution of measured range for nRF24L01+ in star connection at

maximum power; the experimental data is data given in Appendix B.

Figure 45: Range of nRF24L01+ in a star network

Figure 46 shows the distribution of measured range for BLE in a star connection; the

experimental data is data given in Appendix B.

115

Figure 46: Range of BLE in a star network

Figure 47 shows the distribution of measured range for ESP-Now in a star connection; the

experimental data is data given in Appendix B.

Figure 47: Range of ESP-Now in a star network

Table 14 shows the maximum range of three protocols in star connection. For nRf24L01+, the

range calculation has been done in different available power settings.

116

Table 14: Range of nRf24L01+, ESP-Now and BLE in a star connection

Wireless Module Power (in case of nRF24L01+

Only)

Range Mean Values with

standard deviations (ft.)

nRF24L01+ Min 18dBm 90

Min 12 dBm 168

Min 6 dBm 193

0 dBm 233

BLE 393

ESP-Now 513

4.3 Network Recovery Time

4.3.1 Power Removed

nRF24L01+

The process involved for measuring network recovery time in nRF24L01+ when power was

removed is discussed in section 3.2.4.3.1.

Figure 48 shows the distribution of network recovery time of nRF24L01+ when power was

removed. The average time taken by nRF24L01+ is 335 us. The experimental data is given in

Appendix B.

Figure 48: Distribution of Network Recovery Time in nRF24L01+ (power removed)

117

ESP-Now and BLE

The process involved for measuring network recovery time in ESP-Now and BLE when power

was removed is discussed in section 3.2.4.3.1.

Figure 49 shows the distribution of network recovery time in ESP-Now when power was

removed. In most instances, the network recovery time for ESP-Now was in between 16ms to

36ms with a mean value of 31ms. The experimental data is given in Appendix B.

Figure 49: Distribution of Network Recovery Time in ESP-Now (Power Removed)

Figure 50 shows the distribution of network recovery time in BLE when power was removed.

The average time taken by BLE to reconnect to the network was 1.3s. The experimental data is

given in Appendix B.

118

Figure 50: Distribution of Network Recovery Time in BLE (Power Removed)

4.3.2 Out of Range

nRF24L01+

The process involved for measuring network recovery of nRF24L01+ when it is taken out of the

range is discussed in section 3.2.4.3.2.

Figure 51 shows the distribution of network recovery time in nRF24L01+ when taken out of the

range. The average time required to reconnect back to the network was 224 us.

119

Figure 51: Distribution of Network Recovery Time in nRF24L01+ (out of range)

ESP-Now and BLE

The process involved for measuring the network recovery time in ESP-Now and BLE when the

device is taken out of range is discussed in section 3.2.4.3.2.

Figure 52 shows the distribution of network recovery time in ESP-Now when taken out of the

range. In most instances, the network recovery time for ESP-Now was in between 15ms to 35ms

with a mean value of 33ms. The experimental data is given in Appendix B.

120

Figure 52: Distribution of Network Recovery Time in ESP-Now (out of range)

Figure 53 shows the distribution of network recovery time in BLE when taken out of the range.

The average time taken by BLE to reconnect to the network was 1.34s. The experimental data is

given in Appendix B.

Figure 53: Distribution of Network Recovery Time in BLE (out of range)

121

4.4 Current Measurement

4.4.1 nRF24L01+

The process for measuring current in nRF24L01+ is discussed in section 3.2.4.2.2. The delays

used in the experiment were 2.5us, 250us, and 25000us. The delay was used to provide some

time to the receiver to process the received data before it receives next one. When data was

transmitted without delay, many packets were lost due to latency in receiving side.

4.4.1.1 Current Measurement using EnergyTrace

Figure 54 shows the current consumption by nRF24L01+ during transmission of data. The

current consumption is the minimum when nRF24L01+ is not transmitting and maximum when

transmission occurs. Since there is a fixed delay between transmissions, the current consumption

is high during transmission and low during the fixed delay period.

Figure 54: Current Consumption of nRF24L01+

122

Figure 55 shows the plot when nRF24L01+ powers up and begins transmitting. The power is

about 34 mW in the initial condition, but as nRf24L01+ starts transmitting the relative power go

up to 70 mW.

Figure 55: EnergyTrace plot when nRF24L01+ starts transmitting

Figure 56 and Figure 57 show the EnergyTrace plot for power measurement at 2.5 us delay at

1Mbps and 2 Mbps data rates respectively. In both figures, we observe the effect of current draw

at periodic intervals due to the delay in the transmission. The minimum power consumption in

the circuit is about 25 mW. As the nRf24L01+ starts transmitting, the power in the circuit goes

high in the periodic intervals. That periodic interval depends upon the delay in transmission.

123

Figure 56: EnergyTrace Measurement at 2.5 us delay at MAX Power and 1Mbps

124

Figure 57: EnergyTrace Measurement at 2.5 us delay at MAX Power and 2Mbps

Transmitter

Table 15 shows the current consumption of nRF24L01+ while transmitting at max power (0

dBm) in different dates and delays. The current measurement was also made for other power

settings in different data rates and delays which are given in Appendix C.

125

Table 15: Current Consumption of nRF24L01+ at 0 dBm in different data rates and delays

Delay(us) Speed Current(mA)

2.5 250 Kbps 15.97

250 250 Kbps 15.97

25000 250 Kbps 15.88

2.5 1 Mbps 11.41

250 1 Mbps 7.99

25000 1 Mbps 8.46

2.5 2 Mbps 11.25

250 2 Mbps 5.08

25000 2 Mbps 5.573

Receiver

Table 16 shows the current consumption of nRF24L01+ while receiving at max power (0 dBm)

in different dates and delays. The current was also measured for other power settings in different

data rates and delays; those measured values are given in Appendix C.

Table 16: Current Consumption of nRF24L01+ in receiver side at 0 dBm in different data

rates and delays

Delay(us) Speed Current(mA)

2.5 250 Kbps 12.75

250 250 Kbps 12.89

2.5 1 Mbps 12.49

250 1 Mbps 12.27

2.5 2 Mbps 12.19

250 2 Mbps 12.70

4.4.1.2 Current Measurement using Circuit

This current measurement technique is discussed in section 3.2.4.2.2. The continuous

transmission was done, and the current was measured in different data rates and power settings in

both the transmitter and receiver side.

126

Transmitter

Table 17 shows the current consumption of nRF24L01+ while transmitting at max power (0

dBm) in different dates. The current measurement was also made for other power settings in

different data rates which are given in Appendix C.

Table 17: Measured Current values in 0 dBm power (TX)

Speed Current(mA)

250 Kbps 9.8

1 Mbps 6.51

2 Mbps 4.85

Receiver

Table 18 shows the current consumption of nRF24L01+ while receiving at max power (0 dBm)

in different dates. The current measurement was also made for other power settings in different

data rates which are given in Appendix C.

Table 18: Measured Current values in 0 dBm power (RX)

Speed Current(mA)

250 Kbps 13.15

1 Mbps 11.67

2 Mbps 10.42

4.4.2 ESP-Now and BLE

The current measurement technique used for measuring the current in both ESP-Now and BLE is

described in section 3.2.4.2.1.Table 19 shows the measured current values in BLE in both

transmitter and receiver.

Table 19: Current Measurement of BLE

 Voltage across resistor(mv) Resistance(ohm) Current(mA)

TX 0.407 0.005 81.4

RX 0.333 0.005 66.6

127

Table 20 shows the measured current values in ESP-Now in both transmitter and receiver.

Table 20: Current Measurement of ESP-Now

 Voltage across resistor(mv) Resistance(ohm) Current(mA)

TX 0.650 0.005 130

RX 0.740 0.005 148

128

5 Discussion

5.1 Throughput

5.1.1 Performance of nRF24L01+ in different configurations

The throughput of nRF24L01+ was found to be independent of different power settings. This can

be observed from Table 1 to Table 4. As expected, the throughput of nRF24L01+ was changing

with data rates in both one to one and star connections. Figure 58 shows the relation of

throughput with different data rates in nRF24L01+ in a star network when payloads of different

sizes were transmitted.

Figure 58: Throughput of nRF24L01+ in different Data rates

Besides this, the throughput of nRF24L01+ was also found to be changing when

acknowledgment with payload feature was enabled. Figure 59 shows the comparison of

throughput of nRF24L01+ in one to one, star and when acknowledgment with payload is enabled

129

in star connection. As seen from Figure 59, the throughput becomes less when acknowledgment

with payload feature is enabled.

Figure 59: Comparison of Throughput in Star, One to One and ACK_Payload (Star)

5.1.2 Comparison of three protocols

5.1.2.1 One to One Connection

For the comparison of throughput between three protocols, the maximum throughput condition

(2Mbps) of nRF24L01+ is considered. Table 21 shows the comparison of throughput between

three protocols at different payload sizes in one to one connection.

Table 21: Throughput of three protocols in different Payload Sizes in One to One

Throughput (Kbps)

Payload Size nRF24L01+ ESP-Now BLE

1 55.56 8.611 69.89

4 209.15 33.126 225.35

16 636.81 120.98 338.23

32 969.7 217.13 498.05

130

Figure 60 shows the comparison of throughput in graphical form. From Figure 60 it can be seen

that the throughput of BLE is higher than nRF24L01+ when the payload size is smaller (1byte

and 4 bytes). But as the payload size increases, the throughput of nRF24L01+ becomes greater

than the BLE’s throughput. The throughput of ESP-Now is the lowest one in all payload sizes

condition.

Figure 60: Comparison of Throughput in One to One connection

Thus from Figure 60 and Table 21, it can be concluded that in one to one connection the

throughput of nRF24L01+ is highest among these three protocols when the payload size is

bigger (more than 4 bytes).

5.1.2.2 Star Connection

Similar to one to one connection, maximum throughput condition of nRF24L01+ (2Mbps) is

taken for throughput comparison in a star network. Table 22 shows the throughput value of three

protocols in different payload sizes in star connection. The throughput value of BLE in Table 22

is not a valid one.

131

Table 22: Comparison of Throughput of three protocols in Star connection

Throughput (Kbps)

Payload Size nRF24L01+ ESP-Now BLE (bps)

1 28.07 4.29 1.6

4 105.26 16.54 6.25

16 320 60.54 25.64

32 483.93 108.76 50.50

In case of BLE, during the second transmission, from the central hub to end peripheral node the

measured time taken value was longer than expected. There was always some delay from the

client (node) side when trying to read two different data in quick succession. After it received the

first data, it took some time before making another read request to the server. The library that

was used in this thesis was using getValue() function to make a read request to the server. The

client can only read the server characteristic’s value after making a read request. During

implementation, it was seen that this function getValue() was not able to make read request in

quick succession, that is why data was being transmitted from server to client with a delay. Due

to this reason, the throughput value of BLE in Table 22 is not the valid one. Many data packets

were sent one after another without any delay in server side to check the reading capability of the

client, but many packets were lost during the transmission.

To overcome this issue, the library contributors were contacted. They advised another method

known as notify() to send data from server to client. In this method, the server notifies the client

as soon as the characteristic’s value in the server side is changed. Using this method, the server

was able to notify the client and client was able to read two different values in quick succession,

and thus giving the correct time taken value and throughput. But since the current BLE library

used in this thesis does not support the multi-connection feature of BLE, the notify() could not

132

send data to more than one client even though server was connected to multiple clients. Thus,

notify() method could not be used to realize the star connection.

Figure 61 shows the comparison of throughput between in nRF24L01+ and ESP-Now in star

connection. The throughput value for BLE is not included since the calculated data is not the

valid one. The throughput for nRF24L01+ is greater than ESP-Now in star connection.

Figure 61: Comparison of Throughput in Star Connection

5.2 Range

Figure 62 shows the comparison of the range between nRF24L01+, ESP-Now and BLE in star

connection. In the case of nRF24L01+, the range for different available power settings has also

been calculated. The data for Figure 62 is given in Table 14. From Figure 62, it can be observed

that the ESP-Now has the highest range among the three protocols. BLE comes in second while

the nRF24L01+ has the smallest range. Figure 62 also shows that the range of nRF24L01+ can

be increased by increasing the reception and transmission power.

133

Figure 62: Comparison of range between nRF24L01+, BLE and ESP-Now in Star

Connection.

5.3 Network Recovery Time

Table 23 shows the comparison of Network Recovery Time between three protocols in both

cases. The network recovery time of ESP-Now and BLE was found to be significantly higher

than nRF24L01+. When power was removed from the devices, nRF24L01+ took 335 us, ESP-

Now took about 31ms on average, and BLE took 1.3 s to reconnect to the network.

Similarly, when taken out of range, the network recovery time for nRF24L01+, ESP-Now and

BLE were 224us, 34ms, and 1.34s respectively. In both cases, the Network Recovery Time for

BLE was the highest one. The reason for large Network Recovery Time in BLE might be due to

the presence of many procedures involved to make a successful connection. Unlike in ESP-Now,

in the BLE during scanning, a callback function is called for every possible advertising device

(server) found in the surrounding. Also, when a device is found, initially it is checked whether

134

the new device has a service ID or not, and if it has one then, the found service ID is compared

with the one defined in the program. If both service IDs are same, then it is assumed that the

wanted device has been found, and scanning is stopped. Then, the next step in the BLE is to

create an instance of client. Once the client is successfully created the connection to the desired

device is established. Hence, the Network Recovery Time of the BLE is large due to presence of

more procedures involved in connection process than the ESP-Now and nRF24L01+.

Table 23: Comparison of Network Recovery Time between three protocols

Condition Time

Power Removed nRF24L01+ 335us

 ESP-Now 31ms

 BLE 1.3s

Out of Range nRF24L01+ 224us

 ESP-Now 34ms

 BLE 1.34s

5.4 Current Measurement

5.4.1 Performance of nRF24L01+ in different configurations

The current consumption in nRF24L01+ was found to be dependent upon both the transmission

power and data rate. The current consumption increased as the power was increased. Whereas in

the case of data rate, it was found that the current consumption in nRF24L01+ is inversely

proportional to the data rate. The same result has also been found in another study [31]. It might

be due to the fact that in higher data rate the transceiver spends less time in the power consuming

mode, due to which the current consumption might be lesser in this condition compared to low

data rate condition where the transmitter spends more time in power consuming mode.

Figure 63 shows the relationship between the current at different data rates at 0 dBm power at

the 25000us delay.

135

Figure 63: Current Consumption of PTX at Different Data Rate at MAX Power using

EnergyTrace

Figure 64 shows the comparison of current at different power settings at 250 Kbps data rate. The

current values used in Figure 64 were measured using EnergyTrace.

Figure 64: Current Consumption in Transmit Condition at Different Power Ratings

136

Besides these two things, the current consumption at PTX side when data rates were 1Mbps or

2Mbps was observed to be depending upon the delay between the transmissions. When the

transmission was done quickly, the current consumption was higher than the condition when the

transmission was done slowly as shown. This might be because when nRf24L01+ is transmitting

with less delay (2.5us), many packets are lost due to the latency in the receiver. Due to this

reason, the TX tries to resend the lost packet which increases the time spent in TX mode that

might cause an increase in current consumption. Figure 65 shows the relationship between

current and transmission delay at 0 dBm power and 2 Mbps data rate.

Figure 65: Current Consumption at Different Delays at MAX Power (0 dBm) and MAX

Data Rate (2Mbps)

The current consumption values of the nRf24L01+ was measured to be about 15.97mA and

12.89mA in the Transmitter and Receiver sides respectively. These measurements were done

using the EnergyTrace software. Past studies [23] [28] have measured that the current

137

consumption of nRf24L01+ to be around 12mA and 13mA in Transmitter and Receiver sides

respectively. Thus, it can be said that the measured current values in this thesis are almost similar

to the values obtained from past studies.

5.4.2 Comparison of three protocols

Transmitter

Table 24 shows the current comparison between the three protocols. For nRf24L01+, measured

current values at 0 dBm power and 250 Kbps data rate are taken for comparison.

Table 24: Comparison of Current Values in Transmitter

 Current(mA)

nRF24L01+ (EnergyTrace) 15.97

nRF24L01+ (Current Measurement Circuit) 9.8

BLE 81.4

ESP-Now 130

From Table 24, it can be seen that ESP-Now consumes the maximum amount of current while

nRF24L01+ consumes the minimum one.

Receiver

Table 25 shows the current comparison between three protocols in the receiver side. For

nRf24L01+, measured current values at 0 dBm power and 250 Kbps data rate are taken for

comparison.

Table 25: Comparison of Current Values in Receiver

 Current(mA)

nRF24L01+ (EnergyTrace) 12.89

nRF24L01+ (Current Measurement Circuit) 13.15

BLE 66.6

ESP-Now 148

Table 25 clearly shows that in receiving side also, ESP-Now has the maximum current

consumption while nRF24L01+ has the lowest one.

138

5.5 Bandwidth, Spectral Efficiency and Noise Reduction

All three protocols that are compared in this thesis operate in 2.4 GHz spread spectrum. The

bandwidth of the nRF24L01+depends upon the data rate of the device. The highest available

bandwidth in the nRF24L01+ is 2 MHz. This protocol provides 126 different channels in its

frequency spectrum for communication. Whereas, the BLE has 40 channels in its frequency

spectrum and each channel has a bandwidth of 2 MHz. Similarly, ESP-Now has 11 channels in

its frequency band and each channel has bandwidth of 22 MHz. Among these three protocols, the

low bandwidth technologies like BLE and nRF24L01+ can be used to transmit the small packet

size in an application, but if large bandwidth is needed in an application, the ESP-Now can be

used.

The nRF24L01+ has a spectral efficiency of 1.111bits/s/Hz at 2 Mbps and 1 Mbps data rate. The

spectral efficiencies of BLE and ESP-Now are 0.35bits/s/Hz and 1.3 bits/s/Hz respectively.

Spectral efficiency is the ability of a modulation scheme to accommodate data within a limited

bandwidth. It measures how many bps can be transmitted in 1 Hz of bandwidth. So, it can be

assumed that more data can be transmitted in high spectral efficiency scheme. Thus, in terms of

spectral efficiency the ESP-Now is superior compared to BLE and nRF24L01+, and can transmit

more data within its limited bandwidth.

ESP-Now and BLE provide different level of protection from the noise. BLE uses adaptive

frequency hopping in its 37 data channels to avoid interference. BLE’s adaptive frequency

hopping enables BLE radio to identify the congested frequencies which are then avoided in

future transactions. This helps to increase the throughput of the system while minimizing

interference for the system. ESP-Now uses the same frequency and channel as Wi-Fi does. Wi-Fi

uses direct sequence spread spectrum (DSSS) or orthogonal frequency division multiplexing

139

(OFDM) modulation over 11 RF channels (in US). Wi-Fi uses IEEE 802.11 DCF protocol to

maximize the throughput of system by preventing the packet collisions. The DCF protocol is

discussed in section 1.3.1.3.2. This protocol allows the Wi-Fi device to know about the

availability of a channel before transmission is made. Beside this, DSSS or OFDM modulation

technique provides significant resistance to transmission interference and jamming in Wi-Fi.

Unlike ESP-Now and BLE, the nRF2401+ Enhanced ShockBurst Protocol does not provide

effective noise mitigating techniques. It is recommended to use auto acknowledgment feature in

this protocol to monitor the status of transmission. Also, while selecting the channel in

nRF24L01+, it is recommended to select high frequency channels as other RF radios like Wi-Fi

mostly work in low frequency.

In the latest version of ESP32 BLE, it is possible to connect 7 slaves at a time. While, for ESP-

Now up to 20 peer devices can be connected at a time and for nRF24L01+ 6 devices can be

connected to a PRX in a Multiceiver network.

5.6 Maximum Payload Size

Table 26 shows the maximum payload size available in three protocols. The BLE has the

maximum payload size while nRF24L01+ has the minimum one. This indicates that unlike

nRF24L01+, BLE and ESP-Now can be used to transmit the large payload.

Table 26: Maximum Payload Sizes in Three Protocols

Protocol Payload Size (byte)

nRF24L01+ (ShockBurst) 32

ESP-Now 250

BLE 500

140

5.7 Security

ESP32 has its own native hardware encryption for AES.The security in ESP32 BLE is defined by

Bluetooth Specification version 4.2. It is implemented on the ESP-IDF, specifically on the

Security Manager Protocol API. The security in BLE consists of three concepts: pairing, bonding

and encryption. Pairing means the exchange of security features and types of keys needed. The

generation and exchange of shared keys is handled by pairing procedure. ESP32 supports both

leagacy and Secure Connections pairing. Once the shared keys are exchanged, next task is to

store the exchanged keys. This process of storing is known as bonding. At last, the encrprtion of

the palin texts ca be done using AES-128 engine and the shared keys. ESP32 offers different

types of security modes for ESP-Now such as WPA, WPA2,WEP,etc. The different modes of

security in ESP32 Wi-Fi or ESP-Now can be done by choosing proper auhentication mode in

wifi_auth_mode_t parameter. However, nRF24L01+ does not provide any way to encrypt the

signals in Enhanced ShockBurst Protocol. The encryption in nRF24L01+ can be done using the

hardware accelerated encryption available in adajcent microcontroller. For example, the

encryption of data would be possible by using AES256 accelerator module present in MSP432

which performs the encryption and decryption according to the AES256 encryption standard.

5.8 Design cost

The nRF24L01+ requires an external microcontroller to make communication with each other.

The microcontroller and nRF24L01+ are connected with each other by using wires. Due to this

fact, the design of the circuit is not that compact, and there are always some risks for loose

connections. Also, nRF24L01+ is more prone to damage than ESP32. In this thesis, the

141

nRF24L01+ is getting its power from MSP432 Launchpad. In some cases, the nRF24L01+ drew

high current from MSP432 may be due to loose connections and got damaged.

Unlike nRF24L01+, ESP32 does not need any external microcontrollers. Due to this reason, the

design was more rigid and reliable. Thus, it can be concluded that ESP32 is much more rigid

than nRF24L01+ and can handle more harsh conditions than RF chip. Table shows the cost of

nRF24L01+ and ESP32.

Table 27: Cost of radio modules

ESP-Now $14.95

nRF24L01+ $2

142

6 Conclusion

6.1 Summary

Three wireless protocols the proprietary Enhanced ShockBurst, Bluetooth Low Energy and the

proprietary ESP-Now, were implemented in both one to one and star connections. The Nordic

manufactured nRF24L01+ radio module was used for Enhanced ShockBurst while the Espressif

ESP32 was used to implement BLE and ESP-Now. Once the communication was established

different network performance metrics such as throughput, transmission time, network recovery

time, range and current consumption were measured, and compared to each other to find the

advantage and disadvantage of each protocol over one another.

The result tells that the nRF24L01+ has the highest throughput among three protocols when the

payload size is large. But when the payload size is less than 4 bytes, the throughput of BLE is

greater than the nRF24L01’s throughput value. Similarly, in the case of node to node

transmission time, the BLE has the lowest transmission time value in small payload size but as

payload size increases the transmission time for BLE becomes greater than nRF24L01+. The

ESP-Now has maximum transmission time and lowest throughput for all payload sizes. The

experimental result shows that the current consumption of nRF24L01+ depends upon the

transmission power, data rate, and delay. The nRF24L01+ has maximum current consumption at

max power (0dBm), minimum transmission delay and minimum data rate (250 Kbps). Among

three protocols, the nRF24L01+ consumes least amount of current than BLE and ESP-Now in

both transmitting and receiving states. ESP-Now consumes more current than BLE. Also, the

result shows that ESP-Now has maximum range followed by BLE and nRF24L01+. The

nRF24L01+ has the least range and the range of nRF24L01+ changes with the transmission and

143

reception power. Now in the case of network recovery time, the result shows that nRF24L01+

takes the least amount of time to reconnect to the network compared to the ESP-Now and BLE.

BLE has the longest network recovery time in both conditions, when power is removed and

when the device is taken out of range.

Thus, in this thesis, three different wireless protocols were implemented in star and one to one

connection, and performance metrics were measured and compared with each other. From the

results, it was seen that the nRF24L01+ has maximum throughput when transmitting large

payloads (344% higher than ESP-Now in 32 bytes payload size, BLE throughput was 50.50 bps

in 32 bytes payload size), least current consumption (ESP-Now consumes 714% more current

and BLE consumes 409.7% more current), and shortest network recovery time (nRF24L01+ took

335us, ESP-Now took 31ms and BLE took 1.3s on average), while the Wi-Fi based ESP-Now

has a maximum range(30.53% better than BLE and 120% better than nRF24L01+).

6.2 Future Work

The star connection implementation of BLE network done in this thesis is not that reliable. The

existing library does not support the multi-client connection. The new library is expected to be

out in couple of months. After the new library is introduced, the star connection can be done to

establish more reliable and efficient network. In the future implementation using new library the

notify() method can be used to read the value form server. Beside this, during the implementation

of star network it was found out that the client is not able to make read requests to server in quick

succession. In the future, further research can be done in this issue. In this thesis, in ESP-Now

the data transmission is being done using the call back functions. In future, the concept of MQTT

can be applied to implement the ESP-Now and the results from the current implementation can

be compared with the MQTT’s implementation to find the advantage and disadvantage of one

144

over another. MQTT stands for Message Queuing Telemetry Transport, is an ISO standard

machine to machine, Internet of Things connectivity protocol. This messaging protocol is for IoT

devices and low bandwidth, high latency or unreliable networks. In addition, security concerns of

intercepting wireless communications were not addressed in detail by this thesis. This security

concern can also be compared in the future work. This work can be taken into the next level by

comparing more network metrics and may by adding more wireless protocol or module.

145

Appendix A

A.1 Transmission Times

The following tables show the transmission times measured during 50 experiments for

nRF24L01+, BLE and ESP-Now.

A.1.1 nRF24L01+

One to One connection

Table 28 shows the measured transmission time values for the nRF24L01+ in one to one

connection when 32 bytes of data was transmitted.

Table 28: Transmission Time values for static payload length (32 bytes)
Transmission Time(us)

250Kbps 1Mbps 2Mbps

1728 472 265

1726 470 263

1728 465 264

1727 467 266

1727 468 267

1728 467 264

1726 472 265

1725 470 263

1726 471 267

1727 472 264

1728 471 267

1727 472 265

1726 468 264

1729 467 265

1728 470 266

1725 470 267

1729 471 265

1730 471 263

1728 469 262

1725 468 268

1724 470 265

1727 471 266

1727 472 264

1728 470 267

1727 469 265

1726 468 268

1728 469 265

1728 470 263

1728 471 262

1727 472 265

1726 470 264

1726 469 267

146

Table 29 shows the measure transmission time values for the nRF24L01+ in one to one

connection when 1 byte of data was transmitted.

Table 29: Transmission Time values for 1 byte

1728 468 265

1726 469 263

1727 469 264

1728 470 265

1729 471 268

1726 472 265

1728 469 264

1729 470 264

1725 470 263

1727 471 267

1726 469 264

1728 468 263

1726 470 264

1727 471 265

1729 472 265

1725 473 266

1724 472 265

1730 471 265

1729 469 264

Transmission Time(us)

250Kbps 1Mbps 2Mbps

733 222 144

733 221 144

732 222 144

733 221 144

733 222 144

732 221 144

733 220 144

733 222 144

731 221 144

733 221 142

733 219 144

733 223 144

732 222 144

733 221 144

733 221 144

731 222 144

733 223 144

732 224 144

733 221 144

733 223 143

733 221 144

733 220 144

733 221 144

733 224 144

733 222 144

733 223 144

732 222 144

733 221 144

733 222 144

733 223 141

733 220 144

733 221 144

733 224 144

733 220 143

147

Table 30 shows the measured transmission values for the nRF24L01+ in one to one connection

when 4 bytes of data was transmitted.

Table 30: Transmission Time values for 4 bytes

733 221 144

733 219 144

733 222 144

733 223 144

733 224 143

732 219 144

733 220 144

733 221 144

733 223 144

733 222 143

733 221 144

733 222 144

733 223 144

733 222 144

733 221 144

733 221 144

733 222 144

Transmission Time(us)

250Kbps 1Mbps 2Mbps

852 247 154

851 246 153

851 244 154

848 246 152

849 244 153

850 243 154

850 243 156

851 244 153

849 243 154

848 244 154

849 243 153

850 245 156

852 246 152

850 245 157

849 244 154

849 243 155

850 244 154

852 242 156

851 244 154

852 246 156

848 247 153

849 243 156

850 244 154

847 244 154

852 241 153

852 246 156

851 244 154

849 245 155

850 246 154

851 243 155

849 247 156

850 241 153

850 243 156

851 246 153

852 244 154

850 248 156

148

Table 31 shows the measured transmission time values for the nRF24L01+ in one to one

connection when 16 bytes of data was transmitted.

Table 31: Transmission Time values for 16 bytes

848 245 154

849 243 153

850 246 153

850 244 154

848 244 156

850 244 154

852 246 153

853 244 154

851 245 154

846 243 156

850 245 157

850 244 156

851 243 153

852 244 154

852 244 155

Transmission Time(us)

250Kbps 1Mbps 2Mbps

1213 341 257

1213 342 256

1212 340 257

1214 341 257

1215 342 257

1216 339 255

1215 340 258

1214 340 254

1215 342 257

1216 341 256

1217 340 254

1213 342 255

1214 343 256

1215 342 253

1213 342 254

1214 342 256

1216 341 253

1214 340 257

1215 343 253

1216 342 255

1214 341 254

1214 342 253

1215 343 254

1216 342 254

1217 341 255

1214 342 254

1217 340 254

1214 342 256

1213 344 253

1212 340 256

1214 339 253

1214 344 254

1214 342 256

1215 340 253

1216 341 254

1217 141 253

1218 342 256

1214 341 253

149

Star Connection

Table 32 shows the measured transmission time values for the nRF24L01+ in star connection

when 32 bytes of data was transmitted.

Table 32: Transmission Time values for 32 bytes in star connection
Transmission Time (us)

250 Kbps 1 Mbps 2 Mbps

T1 T2 T1 T2 T1 T2

1724 1723 469 469 265 264

1723 1725 469 468 265 265

1725 1725 467 468 264 263

1724 1723 468 469 265 264

1726 1722 467 469 264 265

1723 1724 468 469 265 264

1723 1725 468 467 265 266

1724 1726 466 467 265 264

1722 1724 468 465 264 265

1723 1723 467 466 265 265

1724 1724 466 467 263 264

1725 1727 465 464 265 264

1723 1728 466 469 264 265

1724 1722 468 467 266 265

1722 1724 469 469 264 266

1724 1725 469 468 265 264

1725 1726 469 469 264 265

1726 1723 468 468 264 263

1725 1724 467 466 265 264

1722 1727 469 468 264 265

1723 1725 468 467 265 265

1723 1726 469 466 263 265

1724 1725 468 465 264 264

1723 1723 466 466 265 265

1722 1724 468 468 265 263

1721 1722 467 469 265 265

1724 1724 466 469 264 264

1725 1725 466 469 265 266

1727 1726 465 469 263 264

1728 1725 466 468 264 266

1722 1722 468 467 266 264

1724 1723 469 469 264 265

1725 1723 469 468 266 264

1216 343 254

1214 342 253

1217 341 254

1218 340 256

1214 342 254

1216 341 253

1214 342 254

1213 341 253

1214 340 254

1215 340 255

1214 341 254

1214 342 255

1215 341 254

150

1726 1724 469 469 264 264

1723 1723 468 467 265 265

1724 1724 467 469 264 264

1727 1725 469 468 264 265

1725 1726 468 468 265 263

1726 1725 469 470 266 264

1725 1727 468 468 265 264

1723 1728 466 465 264 265

1724 1723 469 469 265 264

1723 1725 469 468 265 265

1725 1725 467 468 264 263

1724 1723 468 469 265 264

1726 1722 467 469 264 265

1723 1724 468 469 265 264

1723 1725 468 467 265 266

1724 1726 466 467 265 264

1722 1724 468 465 264 265

Table 33 shows the measured transmission times for the nRF24L01+ in star connection when 1

byte of data was transmitted.

Table 33: Transmission Time values for 1 byte in star connection
Transmission Time (us)

250 Kbps 1 Mbps 2 Mbps

T1 T2 T1 T2 T1 T2

733 733 222 222 144 144

733 733 221 221 144 144

733 733 222 222 144 144

733 733 223 221 141 145

733 733 224 220 144 144

732 732 219 222 144 144

733 733 220 221 144 144

733 733 221 221 144 144

733 733 223 224 142 144

732 732 222 222 144 144

733 733 221 223 144 144

733 733 222 222 144 143

733 732 223 221 144 144

733 733 222 222 144 144

733 733 221 223 144 144

733 732 221 220 144 144

733 733 222 221 144 142

733 733 224 224 144 144

731 731 221 220 144 144

733 731 223 223 144 144

733 733 221 221 144 144

733 732 220 220 144 144

733 733 221 221 144 143

732 733 224 224 143 144

733 733 222 222 144 144

733 733 223 223 144 144

733 733 222 222 144 144

731 733 221 221 144 144

733 733 222 222 144 144

733 733 223 223 145 144

151

733 732 220 220 144 144

731 733 221 221 144 144

733 733 224 224 144 144

733 732 220 220 144 144

732 733 221 221 144 144

733 733 222 222 145 145

733 733 223 221 144 144

733 731 224 221 144 144

733 733 221 219 144 144

731 733 223 223 144 144

733 733 221 222 144 144

733 731 220 221 144 144

733 733 221 221 144 144

733 733 224 222 144 144

733 733 222 223 144 144

733 733 223 224 144 144

732 733 222 221 144 143

733 733 221 223 143 144

733 732 221 221 144 144

733 733 221 220 144 144

733 733 222 222 144 144

Table 34 shows the measured transmission times for the nRF24L01+ in star connection when 4

byte of data was transmitted.

Table 34: Transmission Time values for 4 bytes in star connection
Transmission Time (us)

250 Kbps 1 Mbps 2 Mbps

T1 T2 T1 T2 T1 T2

840 841 246 245 152 153

840 840 245 245 152 151

839 841 246 246 152 152

840 839 247 245 151 153

840 841 246 246 152 154

840 841 245 245 153 151

841 840 244 245 152 153

839 840 245 246 152 152

840 839 245 244 151 151

840 841 246 245 151 152

839 840 246 245 150 153

841 839 245 246 151 152

841 840 246 245 152 153

840 841 246 245 151 152

839 841 246 246 152 152

839 840 245 246 153 151

841 840 246 245 151 152

841 840 246 245 152 152

842 840 246 245 152 152

841 841 246 244 153 153

840 842 245 245 150 152

840 841 245 245 151 153

841 839 245 246 152 152

842 840 244 246 153 152

841 840 245 245 152 153

839 839 245 246 152 152

152

840 841 246 246 152 152

840 841 246 246 152 152

839 842 247 247 153 151

839 841 245 245 152 151

841 840 244 245 152 150

841 840 245 246 152 151

840 841 246 245 151 152

840 839 245 245 153 151

841 840 246 245 152 152

842 840 246 246 153 153

840 842 245 246 152 151

839 841 246 245 152 152

840 840 246 246 151 152

841 840 247 246 152 153

841 841 245 245 152 152

840 842 245 246 153 151

841 841 246 246 152 152

841 842 245 245 151 151

840 841 244 246 152 152

841 841 246 245 152 152

840 840 245 244 153 152

841 842 246 245 152 152

840 841 245 245 152 153

841 841 246 245 152 151

840 842 244 245 152 152

Table 35 shows the measured transmission time values for the nRF24L01+ in star connection

when 4 byte of data was transmitted.

Table 35: Transmission Time values for 16 bytes in star connection
Transmission Time (us)

250 Kbps 1 Mbps 2 Mbps

T1 T2 T1 T2 T1 T2

1215 1215 342 342 200 200

1215 1213 341 341 200 201

1214 1214 342 341 201 200

1213 1215 342 342 200 200

1215 1215 342 341 199 201

1214 1214 341 341 200 200

1214 1214 342 342 201 199

1213 1216 342 341 200 202

1214 1214 342 343 201 201

1215 1215 342 341 200 199

1213 1214 341 342 200 200

1215 1215 342 342 199 201

1214 1216 342 342 200 200

1213 1214 342 341 201 201

1214 1215 341 342 201 200

1215 1214 342 342 202 201

1214 1215 342 342 200 200

1214 1214 342 341 200 200

1215 1215 342 342 201 201

1214 1215 342 343 200 202

1215 1216 341 342 199 201

1213 1215 342 341 198 200

153

1215 1214 342 341 200 200

1215 1215 342 342 200 201

1214 1215 342 342 200 200

1214 1216 341 342 200 198

1213 1214 343 342 201 200

1215 1215 342 342 199 201

1214 1216 341 341 198 200

1215 1215 342 341 200 200

1216 1215 342 342 200 200

1215 1215 342 341 200 199

1215 1215 342 342 200 200

1214 1213 342 342 201 201

1215 1214 341 343 200 201

1216 1215 343 341 202 202

1214 1216 342 341 199 200

1215 1214 341 342 200 200

1215 1213 341 342 200 201

1216 1214 342 341 201 200

1215 1215 342 342 200 199

1214 1216 343 342 200 198

1215 1214 342 342 199 200

1215 1215 342 342 201 200

1216 1214 342 342 200 200

1214 1215 341 341 200 200

1215 1216 341 342 201 201

1216 1214 342 342 200 200

1215 1213 343 343 200 201

1215 1214 343 342 201 200

1216 1215 342 342 200 199

154

A.1.2 ESP-Now

Table 36 shows the measured transmission time values for the ESP-Now in both one to one and

star connections when 1 byte of data was transmitted.

Table 36: Transmission Time of ESP-Now for 1 byte
Transmission Time(us) (1byte)

One to One Star

 T1 T2

929 932 935

930 931 935

929 932 934

931 931 932

929 931 932

929 934 934

928 933 931

927 932 935

930 932 931

929 932 932

930 932 933

929 933 934

930 932 931

929 934 931

931 935 932

930 936 933

929 933 932

930 934 934

929 932 931

930 931 932

929 935 933

932 932 932

929 932 931

930 931 932

929 935 933

930 936 932

929 931 934

933 933 932

929 932 932

931 933 932

929 931 932

930 932 932

929 931 935

929 931 932

930 931 932

928 931 932

930 932 933

929 932 932

930 933 934

928 934 935

930 931 936

928 931 933

930 932 934

928 933 932

155

930 932 931

930 934 935

928 931 932

931 932 934

928 933 934

930 932 935

Table 37 shows the measured transmission time values for the ESP-Now in both one to one and

star connections when 4 byte of data was transmitted.

Table 37: Transmission Time of ESP-Now for 4 bytes
Transmission Time(us) (4bytes)

One to One Star

 T1 T2

955 957 953

955 957 953

955 957 953

964 966 962

963 944 961

959 978 957

982 952 980

990 955 988

991 955 989

955 993 959

973 983 977

945 984 949

942 962 946

976 951 980

950 958 954

953 959 957

953 955 957

991 993 995

981 983 985

982 984 986

960 962 964

955 957 953

962 964 960

963 965 961

957 959 955

958 976 956

959 983 957

980 975 978

987 971 985

979 970 977

975 958 973

974 959 972

962 960 960

963 989 961

964 981 962

974 976 991

977 979 983

969 971 979

970 972 978

950 952 966

962 964 967

156

958 976 970

963 979 981

973 971 973

975 972 974

956 952 954

959 960 962

964 966 968

955 957 953

955 957 953

Table 38 shows the measured transmission time values for the ESP-Now in both one to one and

star connections when 16 byte of data was transmitted.

Table 38: Transmission Time of ESP-Now for 16 bytes
Transmission Time(us) (16bytes)

One to One Star

 T1 T2

1021 1019 1023

1031 1029 1033

1060 1066 1062

1035 1073 1019

1064 1051 1029

1071 1122 1058

1049 1059 1033

1120 1078 1062

1057 1054 1069

1076 1066 1047

1052 1064 1118

1064 1062 1055

1062 1060 1074

1037 1035 1050

1070 1068 1072

1071 1069 1073

1063 1061 1065

1056 1054 1058

1064 1062 1066

1059 1057 1062

1045 1043 1057

1043 1041 1043

1036 1034 1041

1039 1037 1034

1047 1045 1037

1059 1057 1045

1065 1061 1057

1078 1047 1063

1077 1045 1079

1074 1038 1076

1072 1041 1074

1073 1049 1075

1080 1061 1082

1055 1067 1057

1056 1080 1058

1057 1079 1059

1054 1052 1056

1064 1062 1066

157

1067 1065 1069

1066 1068 1071

1067 1069 1078

1034 1036 1053

1040 1042 1054

1047 1049 1055

1045 1047 1052

1058 1060 1062

1060 1062 1062

1046 1048 1048

1021 1019 1023

1031 1029 1033

Table 39 shows the measured transmission time values for the ESP-Now in both one to one and

star connections when 16 byte of data was transmitted.

Table 39: Transmission Time of ESP-Now for 32 bytes
Transmission Time(us) (32bytes)

One to One Star

 T1 T2

1145 1147 1142

1180 1177 1187

1185 1182 1207

1205 1202 1174

1172 1169 1170

1168 1165 1208

1206 1203 1184

1182 1179 1199

1197 1194 1172

1170 1167 1193

1191 1188 1179

1177 1174 1176

1174 1171 1171

1164 1166 1161

1171 1173 1168

1197 1199 1194

1182 1184 1179

1185 1187 1182

1160 1157 1157

1181 1178 1186

1175 1172 1168

1176 1173 1180

1184 1181 1192

1166 1163 1194

1178 1175 1166

1190 1187 1168

1192 1189 1176

1164 1161 1174

1166 1163 1160

1174 1171 1164

1172 1169 1169

1158 1155 1155

1162 1164 1159

1188 1190 1185

1185 1187 1182

158

1186 1188 1183

1195 1197 1192

1179 1181 1176

1204 1185 1201

1209 1173 1211

1167 1172 1169

1188 1186 1190

1176 1165 1178

1175 1156 1177

1189 1167 1191

1168 1170 1170

1159 1161 1161

1170 1172 1172

1145 1147 1142

1180 1177 1187

A.1.3 BLE

Table 40 shows the measured transmission time values for the ESP-Now in both one to one and

star connections when 1 byte of data was transmitted.

Table 40: Transmission Time of BLE for 1 byte
Transmission Time (1 byte)

One to One (us) Star

 T1 (us) T2 (s)

114 135 5.025

114 134 5.02

113 135 5.03

114 135 5.025

115 135 5.03

114 135 5.02

114 135 5.04

115 134 5.03

113 135 5.03

115 134 5.025

114 134 5.01

115 135 5.015

114 135 5.025

114 135 5.03

115 135 5.02

113 135 5.025

114 134 5.025

114 134 5.03

115 135 5.02

114 134 5.03

114 134 5.025

115 135 5.03

114 134 5.02

114 135 5.03

114 134 5.03

113 135 5.02

114 134 5.03

114 135 5.025

115 134 5.025

114 135 5.03

115 135 5.04

159

115 134 5.03

115 135 5.03

116 133 5.025

114 135 5.01

115 134 5.015

116 134 5.025

115 135 5.03

115 135 5.02

115 134 5.03

114 135 5.02

114 135 5.03

114 135 5.03

114 134 5.02

114 135 5.03

114 135 5.025

115 133 5.025

114 135 5.025

115 134 5.024

114 134 5.023

Table 41 shows the measured transmission time values for the ESP-Now in both one to one and

star connections when 4 byte of data was transmitted.

Table 41: Transmission Time of BLE for 4 bytes
Transmission Time (4 bytes)

One to One (us) Star

 T1 (us) T2 (s)

141 156 5.025

143 162 5.02

141 155 5.03

142 159 5.025

141 157 5.03

142 160 5.02

141 153 5.04

143 154 5.03

142 159 5.03

141 161 5.025

142 155 5.01

143 157 5.015

142 158 5.025

141 159 5.03

143 160 5.02

144 155 5.025

142 154 5.025

140 158 5.03

142 157 5.02

141 159 5.03

142 153 5.025

143 155 5.03

142 156 5.02

141 154 5.03

142 158 5.03

143 157 5.02

141 161 5.03

140 155 5.025

160

142 156 5.025

141 155 5.03

140 157 5.04

141 159 5.03

142 158 5.03

141 156 5.025

142 157 5.01

142 158 5.015

141 154 5.025

142 158 5.03

142 157 5.02

141 156 5.03

141 157 5.02

143 158 5.03

140 154 5.03

143 158 5.02

141 157 5.03

142 161 5.025

143 155 5.025

141 156 5.025

142 159 5.024

141 158 5.023

Table 42 shows the measured transmission time values for the ESP-Now in both one to one and

star connections when 16 byte of data was transmitted.

Table 42: Transmission Time of BLE for 16 bytes
Transmission Time (16 bytes)

One to One (us) Star

 T1 (us) T2 (s)

353 380 5.025

334 385 5.02

330 384 5.03

329 378 5.025

335 374 5.03

328 375 5.02

330 376 5.04

334 386 5.03

330 387 5.03

328 383 5.025

335 387 5.01

328 372 5.015

330 376 5.025

334 374 5.03

330 372 5.02

329 379 5.025

336 390 5.025

328 405 5.03

330 365 5.02

325 378 5.03

334 388 5.025

332 395 5.03

321 397 5.02

331 379 5.03

330 376 5.03

161

350 381 5.02

347 380 5.03

345 383 5.025

335 384 5.025

330 396 5.03

340 397 5.04

339 391 5.03

337 392 5.03

338 400 5.025

329 371 5.01

330 378 5.015

332 395 5.025

333 388 5.03

331 384 5.02

337 405 5.03

336 365 5.02

334 378 5.03

331 388 5.03

330 395 5.02

342 397 5.03

343 379 5.025

341 384 5.025

330 385 5.025

337 376 5.024

332 378 5.023

Table 43 shows the measured transmission time values for the ESP-Now in both one to one and

star connections when 32 byte of data was transmitted.

Table 43: Transmission Time of BLE for 32 bytes
Transmission Time (32 bytes)

One to One (us) Star

 T1 (us) T2 (s)

528 548 5.025

505 520 5.02

515 535 5.03

511 540 5.025

508 536 5.03

512 550 5.02

514 545 5.04

505 537 5.03

511 539 5.03

509 536 5.025

512 537 5.01

514 564 5.015

513 547 5.025

505 543 5.03

510 542 5.02

509 541 5.025

511 540 5.025

513 541 5.03

517 536 5.02

516 537 5.03

514 530 5.025

518 538 5.03

162

508 539 5.02

520 543 5.03

521 542 5.03

519 556 5.02

514 542 5.03

517 540 5.025

518 547 5.025

511 556 5.03

510 539 5.04

521 536 5.03

520 537 5.03

513 564 5.025

516 547 5.01

517 543 5.015

518 542 5.025

509 541 5.03

518 540 5.02

522 552 5.03

514 546 5.02

515 547 5.03

509 555 5.03

508 559 5.02

514 560 5.03

513 548 5.025

517 537 5.025

520 535 5.025

514 536 5.024

521 545 5.023

163

Appendix B

B.1 Network Recovery Time

Table 44 shows the measured Network Recovery times for three protocols in 30 experiments.

Table 44: Network Recovery Time for three protocols
nRF24L01+ ESP-Now BLE

Power is removed (us) Out of Range (us) Power is removed (ms) Out of Range (ms) Power is removed (s) Out of Range (ms)

335 224 18 17 1.15 1.2

332 223 19 19 1.2 1.3

334 220 19 21 1.3 1.18

336 222 20 25 1.25 1.15

335 221 21 56 1.35 1.3

335 225 22 39 1.2 1.4

334 226 23 35 1.3 1.5

336 227 21 15 1.27 1.4

332 224 24 40 1.34 1.25

334 226 67 23 1.3 1.35

335 223 56 31 1.4 1.30

334 225 50 32 1.5 1.7

332 224 70 54 1.2 1.2

333 224 29 42 1.1 1.19

334 225 39 27 1.3 1.55

335 221 35 60 1.5 1.42

336 223 25 22 1.2 1.45

335 226 36 33 1.4 1.50

334 224 60 35 1.5 1.39

333 225 26 18 1.6 1.26

335 223 27 24 1.4 1.27

335 224 33 26 1.3 1.29

336 225 29 34 1.2 1.37

334 224 16 52 1.2 1.22

333 225 35 27 1.3 1.55

335 224 26 29 1.7 1.3

334 225 24 31 1.1 1.4

336 222 28 32 1.2 1.35

334 221 27 31 1.4 1.27

335 223 23 24 1.5

164

B.2 Range

One to One Connection

Table 45 shows the measured range values for three protocols in one to one connection. The

experiment was conducted for thirty times.

Table 45: Measured Range values for three protocols in one to one connection
Distance (Ft.)

nRF24L01+ BLE ESP-Now

Minimum

(-18dBM)

Medium

(-12dBM)

(-6dBM) Maximum

(0 dBM)

44 84 97 122 189 271

45 85 97 121 188 270

46 84 96 123 189 272

45 85 97 122 190 271

46 83 98 122 189 270

45 84 95 123 188 272

43 84 97 121 187 271

45 84 98 122 189 271

46 85 96 123 187 271

43 84 97 122 186 270

45 85 96 123 189 272

45 86 97 121 190 273

44 85 98 122 189 271

46 84 97 123 190 270

45 85 97 121 189 271

47 84 96 123 189 272

44 85 97 122 187 273

45 85 97 121 189 272

45 86 96 123 189 273

44 85 97 121 188 271

46 83 97 122 188 272

43 84 98 122 189 273

44 84 97 123 189 272

46 84 98 121 190 271

44 85 97 122 187 272

45 84 96 123 188 273

46 85 97 122 189 272

43 86 98 121 191 271

47 85 97 122 189 271

46 84 96 122 189 272

165

Appendix C

C.1 Current Measurement

EnergyTrace

Table 46 to Table 48 show the measured current values of nRF24L01+ (TX) in different power

settings using EnergyTrace.

Table 46: Current Consumption in Min 6 dBm power

Delay(us) Speed Current(mA)

2.5 250 Kbps 11.41

250 250 Kbps 11.798

25000 250 Kbps 11.89

2.5 1 Mbps 9.51

250 1 Mbps 6.99

25000 1 Mbps 6.86

2.5 2 Mbps 8.50

250 2 Mbps 4.326

25000 2 Mbps 4.625

Table 47: Current Consumption in Min 12 dBm power

Delay(us) Speed Current(mA)

2.5 250 Kbps 10.27

250 250 Kbps 10.40

25000 250 Kbps 11.1

2.5 1 Mbps 8.62

250 1 Mbps 6.35

25000 1 Mbps 6.10

2.5 2 Mbps 8.32

250 2 Mbps 4.57

25000 2 Mbps 4.69

Table 48: Current Consumption in Min 18 dBm power

Delay(us) Speed Current(mA)

2.5 250 Kbps 9.64

250 250 Kbps 9.64

25000 250 Kbps 9.45

2.5 1 Mbps 7.74

166

250 1 Mbps 5.84

25000 1 Mbps 6.05

2.5 2 Mbps 5.98

250 2 Mbps 5.12

25000 2 Mbps 4.94

Table 46 to Table 48 show the measured current values of nRF24L01+ (RX) in different power

settings using EnergyTrace.

Table 49: Current Consumption in Min 6 dBm power (PRX)

Delay(us) Speed Current(mA)

2.5 250 Kbps 9.90

250 250 Kbps 10.85

2.5 1 Mbps 11.28

250 1 Mbps 11.06

2.5 2 Mbps 11.80

250 2 Mbps 11.82

Table 50: Current Consumption in Min 12 dBm power (PRX)

Delay(us) Speed Current(mA)

2.5 250 Kbps 9.586

250 250 Kbps 9.7

2.5 1 Mbps 10.9

250 1 Mbps 11.17

2.5 2 Mbps 11.49

250 2 Mbps 11.701

Table 51: Current Consumption in Min 18 dBm power (PRX)

Delay(us) Speed Current(mA)

2.5 250 Kbps 10.85

250 250 Kbps 11.06

2.5 1 Mbps 11.70

250 1 Mbps 11.49

2.5 2 Mbps 11.701

250 2 Mbps 11.701

167

Using Current Measurement Circuit

Table 52 and Table 53 show the measured current values of nRF24L01+ in TX side in different

power settings.

Table 52: Measured Current values in Min 12 dBm power (TX)

Speed Current(mA)

250 Kbps 6.51

1 Mbps 5.41

2 Mbps 4.85

Table 53: Measured Current values in Min 18 dBm power (TX)

Speed Current(mA)

250 Kbps 5.45

1 Mbps 4.5

2 Mbps 3.84

Table 54 and Table 55 show the measured current values of nRF24L01+ in TX side in different

power settings.

Table 54: Measured Current values in Min 12 dBm power (RX)

Speed Current(mA)

250 Kbps 13.15

1 Mbps 11.67

2 Mbps 10.42

Table 55: Measured Current values in Min 18 dBm power (RX)

Speed Current(mA)

250 Kbps 13.15

1 Mbps 11.67

2 Mbps 10.42

168

Appendix D

The following source codes are for star connection network for three protocols. The source codes

of both central hub and peripheral node for each protocol have been given. The library used for

ESP32 BLE is given in Bibliography section [32].

D.1 nRF24L01+ Code (Star)

Central Hub

// Central Hub in Star Network

#include "driverlib.h"

#include "clk.h"

#include "ST7735.h"

#include "msprf24.h"

#include "nrf_userconfig.h"

#include "nRF24L01.h"

#include <string.h>

#include <stdio.h>

uint8_t user = 0;

int nrf_state = 0;

volatile uint32_t tick = 0;//Systick Timer variable

volatile uint32_t start_trans = 0 , end_trans = 0;//transmission time when packet is sent to the nodes

volatile uint32_t diffTrans[10] = {0}, total_diffTrans = 0;

volatile long double total_throughput, throughput[10] = {0};

int th =0;

uint8_t r_length;

void uart_init(){//initialization of UART

 const eUSCI_UART_Config uartConfig =

 {

 EUSCI_A_UART_CLOCKSOURCE_SMCLK, // SMCLK Clock Source

 104, // BRDIV = 26

 0, // UCxBRF = 0

 0, // UCxBRS = 0

 EUSCI_A_UART_NO_PARITY, // No Parity

 EUSCI_A_UART_LSB_FIRST, // MSB First

 EUSCI_A_UART_ONE_STOP_BIT, // One stop bit

 EUSCI_A_UART_MODE, // UART mode

 EUSCI_A_UART_LOW_FREQUENCY_BAUDRATE_GENERATION // Low Frequency Mode

 };

 /* Selecting P1.2 and P1.3 in UART mode. */

 MAP_GPIO_setAsPeripheralModuleFunctionInputPin(GPIO_PORT_P1,

 GPIO_PIN2 | GPIO_PIN3, GPIO_PRIMARY_MODULE_FUNCTION);

 /* Configuring UART Module */

 MAP_UART_initModule(EUSCI_A0_BASE, &uartConfig);

169

 /* Enable UART module */

 MAP_UART_enableModule(EUSCI_A0_BASE);

//

// UART_enableInterrupt(EUSCI_A0_BASE, EUSCI_A_UART_RECEIVE_INTERRUPT);

// Interrupt_enableInterrupt(INT_EUSCIA0);

}

void rf_rx_init()

{

 uint8_t addr[5], addr1[5],addr2[5];

 uint8_t buf[32];

 user = 0xFE;

 /* Initial values for nRF24L01+ library config variables */

 rf_crc = RF24_EN_CRC | RF24_CRCO; // CRC enabled, 16-bit

 rf_addr_width = 5;

 rf_speed_power = RF24_SPEED_MAX | RF24_POWER_MAX;

 rf_channel = 108;

 msprf24_init();//initialization of nRf24L01+

 MAP_Interrupt_enableMaster();

 msprf24_set_pipe_packetsize(0, 0);//enabling dynamic payload length in pipe 0

 msprf24_open_pipe(0, 1); // Open pipe#0 with Enhanced ShockBurst

 msprf24_set_pipe_packetsize(1, 0);//enabling dynamic payload length in pipe 1

 msprf24_open_pipe(1, 1); // Open pipe#1 with Enhanced ShockBurst

 msprf24_set_pipe_packetsize(2, 0);//enabling dynamic payload length in pipe 2

 msprf24_open_pipe(2, 1); // Open pipe#2 with Enhanced ShockBurst

 // Set our RX addresses for each node

 addr[0] = 0xAA; addr[1] = 0xBB; addr[2] = 0xCC; addr[3] = 0xDD; addr[4] = 0xEE;//for node 1

 addr1[0] = 0xB4; addr1[1] = 0xB5; addr1[2] = 0xB6; addr1[3] = 0xB7; addr1[4] = 0xC0;//for node 2

 addr2[0] = 0xB4; addr2[1] = 0xB5; addr2[2] = 0xB6; addr2[3] = 0xB7; addr2[4] = 0xC0;//for node 3

 w_rx_addr(0, addr);//opening pipe 0 for node 1

 w_rx_addr(1, addr1);//opening pipe 1 for node 2

 w_rx_addr(2, addr2);//opening pipe 2 for node 3

 // Receive mode

 if (!(RF24_QUEUE_RXEMPTY & msprf24_queue_state())) {

 flush_rx();

 }

 msprf24_activate_rx();

 nrf_state = 1;

}

uint8_t rx_buff[32];

uint8_t buf[32];

void rf_rx(){

 if (rf_irq & RF24_IRQ_FLAGGED) {

 rf_irq &= ~RF24_IRQ_FLAGGED;

 msprf24_get_irq_reason();

 }

 if (rf_irq & RF24_IRQ_RX || msprf24_rx_pending()) {

 start_rec= tick;

 r_length = r_rx_peek_payload_size();

 memset(buf,0x00,32);

170

 memset(rx_buff,0x00,32);

 r_rx_payload(r_length, buf);

 reg1 = r_reg(0x07);

 msprf24_irq_clear(RF24_IRQ_RX);

 memcpy(rx_buff,buf,32);

 printf("Received from node: %s",rx_buff);

// printf("%s", rx_buff);

 nrf_state = 2;

 } else {

 user = 0xFF;

 }

}

void rf_init()

{

 uint8_t addr[5];

 uint8_t test = 0x00;

 user = 0xFE;

 /*Initial Values for NRF24L01+ library config variables*/

 rf_crc = RF24_EN_CRC | RF24_CRCO; // CRC enabled, 16-bit

 rf_addr_width = 5;

 rf_speed_power = RF24_SPEED_MAX | RF24_POWER_MAX;

 rf_channel = 108;

 msprf24_init();

 test = r_reg(0x00);

 nrf_state = 3;

}

char txbuff[50];

int k;

void rf_transtx(){

 uint8_t addr[5], addr1[5];

 if (rx_buff[0] == '1')//if received device id is 1 then open pipe 0 for node 1

 {

 msprf24_set_pipe_packetsize(0, 0);

 msprf24_open_pipe(0, 1); // Open pipe#0 with Enhanced ShockBurst enabled

 auto3 = r_reg(RF24_EN_AA);

 msprf24_standby();

 addr[0] = 0xAA; addr[1] = 0xBB; addr[2] = 0xCC; addr[3] = 0xDD; addr[4] = 0xEE;//node 1 address

 w_tx_addr(addr);

 w_rx_addr(0, addr); // Pipe 0 receives auto-ack's, autoacks are sent back to the TX addr so the PTX

node

 // needs to listen to the TX addr on pipe#0 to receive them.

 }

 else if (rx_buff[0] == '2')//if received device id is 1 then open pipe 0 for node 2

 {

 msprf24_set_pipe_packetsize(0, 0);

 msprf24_open_pipe(0, 1); // Open pipe#0 with Enhanced ShockBurst enabled

 auto4 = r_reg(RF24_EN_AA);

 msprf24_standby();

 //user = msprf24_current_state();

171

 addr1[0] = 0xB4; addr1[1] = 0xB5; addr1[2] = 0xB6; addr1[3] = 0xB7; addr1[4] = 0xC0;//node 2

address

 w_tx_addr(addr1);

 w_rx_addr(0, addr1); // Pipe 0 receives auto-ack's, autoacks are sent back to the TX addr so the PTX

node

 // needs to listen to the TX addr on pipe#0 to receive them.

 }

 else if (rx_buff[0] == '3')//if received device id is 2 then open pipe 0 for node 2

 {

 msprf24_set_pipe_packetsize(0, 0);

 msprf24_open_pipe(0, 1); // Open pipe#0 with Enhanced ShockBurst

 msprf24_standby();

 //user = msprf24_current_state();

 addr1[0] = 0xB4; addr1[1] = 0xB5; addr1[2] = 0xB6; addr1[3] = 0xB7; addr1[4] = 0xC1;//node 3

address

 w_tx_addr(addr2);

 w_rx_addr(0, addr2); // Pipe 0 receives auto-ack's, autoacks are sent back to the TX addr so the

PTX node

 // needs to listen to the TX addr on pipe#0 to receive them.

 }

 for (k = 0; k<50 ; k++)

 {

 txbuff[k] = rx_buff[k+1];//remove device ID before sending the packet to the end user

 }

 nrf_state = 4;

}

void rf_tx(){

 w_tx_payload(r_length, txbuff);

 msprf24_activate_tx();//activate tx and send packet

 nrf_state = 5;

 if (rf_irq & RF24_IRQ_FLAGGED) {

 rf_irq &= ~RF24_IRQ_FLAGGED;

// timer = count;

 msprf24_get_irq_reason();

 if (rf_irq & RF24_IRQ_TX){

 MAP_GPIO_setOutputHighOnPin(GPIO_PORT_P2,GPIO_PIN1);

 MAP_GPIO_setOutputLowOnPin(GPIO_PORT_P2,GPIO_PIN0);

 }

 if (rf_irq & RF24_IRQ_TXFAILED){

 MAP_GPIO_setOutputHighOnPin(GPIO_PORT_P2,GPIO_PIN0);

 MAP_GPIO_setOutputLowOnPin(GPIO_PORT_P2,GPIO_PIN1);

 }

 msprf24_irq_clear(rf_irq);

 }

}

void main(void)

{

 WDTCTL = WDTPW | WDTHOLD; // Stop watchdog timer

 clk_init();

 uart_init();

 MAP_SysTick_enableModule();

 MAP_SysTick_setPeriod(48);//Systick Interrupt in every 1 us

 MAP_SysTick_enableInterrupt();//enable interrupt

 MAP_Interrupt_enableMaster();//enable master

172

 printf("STAR NETWORK IMPLEMENTATION\r\n");

 printf("Central Hub of Network\r\n");

 while (1)

 {

 if(nrf_state == 0)//state machine to control transceiver

 {

 rf_rx_init();//initialization in receiver mode

 }

 else if (nrf_state ==1)

 {

 rf_rx();//received data from node 0

 _delay_cycles(12000000);

 }

 else if (nrf_state == 2)

 {

 rf_init();//initialization as transmitter

// _delay_cycles(12000000);

 }

 else if (nrf_state ==3)

 {

 rf_transtx();//assigning end node in accordance to the device ID

 }

 else if (nrf_state == 4)

 {

 rf_tx();//transmit the packet

 _delay_cycles(12000000);

 printf("Transmitted to node %c\r\n", rx_buff[0]);

 }

 else if (nrf_state == 5)

 {

 diffTrans[th] = end_trans - start_trans - 130; //finding the time difference

 throughput[th] = ((r_length * 8) * 1000000) / diffTrans[th];

 tick = 0;

 nrf_state = 0;//go back to initial state

 }

 }

}

char buff[50];

void EUSCIA0_IRQHandler(void)

{

}

void SysTick_Handler(void)

{

// MAP_GPIO_toggleOutputOnPin(GPIO_PORT_P1, GPIO_PIN0);

 tick++;

}

173

Peripheral Node

This is for only one node. Same code is also used for other nodes also, but the address of pipe

will be different.

//***

//nRF24L01+ star network node

//**

#include "msp.h"

#include "driverlib.h"

#include "clk.h"

#include "msprf24.h"

#include "nrf_userconfig.h"

#include "nRF24L01.h"

#include "msp432_spi.h"

#include <string.h>

#include <stdio.h>

#define CPU_CLK_MHZ 48

#define SYSTICK_TICK_MS 10

uint8_t state_transceiver = 0;

char txbuff[50];

uint32_t packetSize = 0;

uint8_t r_length;

uint8_t user = 0;

volatile uint32_t tick = 0;

volatile uint32_t start_trans = 0, end_trans = 0;//variables to calculate the time

volatile long double diffTrans[10] = {0}, throughput[10] = {0};

volatile long double total_diffTrans= 0, total_throughput = 0;

int th = 0;

void rf_rx_init()

{

 uint8_t addr[5];

 uint8_t buf[32];

 user = 0xFE;

 /* Initial values for nRF24L01+ library config variables */

 rf_crc = RF24_EN_CRC | RF24_CRCO; // CRC enabled, 16-bit

 rf_addr_width = 5;

 rf_speed_power = RF24_SPEED_MAX | RF24_POWER_MAX;

 rf_channel = 108;

 msprf24_init();//initializing nRF24L01+

 MAP_Interrupt_enableMaster();

 msprf24_set_pipe_packetsize(0, 0);//Enabling Dyanmic Payload Length

 msprf24_open_pipe(0, 1); // Open pipe#0 with Enhanced ShockBurst

 auto1 = r_reg(RF24_EN_AA);

 // Set our RX address

 addr[0] = 0xAA; addr[1] = 0xBB; addr[2] = 0xCC; addr[3] = 0xDD; addr[4] = 0xEE;//pipe address

 w_rx_addr(0, addr);

 // Receive mode

 if (!(RF24_QUEUE_RXEMPTY & msprf24_queue_state())) {

 flush_rx();

174

 }

 msprf24_activate_rx();

 state_transceiver = 1;

// value_reg = r_reg(RF24_FEATURE);

}

uint8_t rx_buff[32];

char buf[32];

void rf_rx(){

 reg = r_reg(0x00);

 uint8_t addr[5];

 uint8_t temp;

 static int g_tcount= 0;

 // int i;

 if (rf_irq & RF24_IRQ_FLAGGED) {

 rf_irq &= ~RF24_IRQ_FLAGGED;

 msprf24_get_irq_reason();

 }

 if (rf_irq & RF24_IRQ_RX || msprf24_rx_pending()) {

 r_length = r_rx_peek_payload_size();

 // temp = r_reg(9);

 // printf("RF Power: %d\r\n", temp);

 memset(buf,0x00,32);

 memset(rx_buff,0x00,32);

 r_rx_payload(32, buf);

 msprf24_irq_clear(RF24_IRQ_RX);

 // user = buf[0];

 memcpy(rx_buff,buf,r_length);

 printf("Received data:%s\r\n",rx_buff);

 } else {

 user = 0xFF;

 }

}

void rf_init()

{

 uint8_t addr[5];

 uint8_t test = 0x00;

 user = 0xFE;

 /*Initial Values for NRF24L01+ library config variables*/

 rf_crc = RF24_EN_CRC | RF24_CRCO; // CRC enabled, 16-bit

 rf_addr_width = 5;

 rf_speed_power = RF24_SPEED_MAX | RF24_POWER_MAX;

 rf_channel = 108;

 msprf24_init();

 test = r_reg(0x00);

 w_reg(0x00,0x5);

 test = r_reg(0x00);

175

 msprf24_set_pipe_packetsize(0, 0);//Enabling Dyanmic Payload length

 msprf24_open_pipe(0, 1);//opening pipe 0 with Enhanced ShockBurst feature

 msprf24_standby();

 //user = msprf24_current_state();

 addr[0] = 0xAA; addr[1] = 0xBB; addr[2] = 0xCC; addr[3] = 0xDD; addr[4] = 0xEE;

 w_tx_addr(addr);

 w_rx_addr(0, addr); // Pipe 0 receives auto-ack's, autoacks are sent back to the TX addr so the PTX node

 state_transceiver = 3;

}

uint8_t regadd = 0;

void rf_tx(){

 w_tx_payload(packetSize - 2, txbuff);

 msprf24_activate_tx();//activating transmitter

 state_transceiver = 4;

 if (rf_irq & RF24_IRQ_FLAGGED) {

 rf_irq &= ~RF24_IRQ_FLAGGED;

 msprf24_get_irq_reason();

 if (rf_irq & RF24_IRQ_TX){

 MAP_GPIO_setOutputHighOnPin(GPIO_PORT_P2,GPIO_PIN1);

 MAP_GPIO_setOutputLowOnPin(GPIO_PORT_P2,GPIO_PIN0);

 }

 if (rf_irq & RF24_IRQ_TXFAILED){

 MAP_GPIO_setOutputHighOnPin(GPIO_PORT_P2,GPIO_PIN0);

 MAP_GPIO_setOutputLowOnPin(GPIO_PORT_P2,GPIO_PIN1);

 }

 msprf24_irq_clear(rf_irq);

 }

}

void uart_init(){

 const eUSCI_UART_Config uartConfig =

 {

 EUSCI_A_UART_CLOCKSOURCE_SMCLK, // SMCLK Clock Source

 104, // BRDIV = 26

 0, // UCxBRF = 0

 0, // UCxBRS = 0

 EUSCI_A_UART_NO_PARITY, // No Parity

 EUSCI_A_UART_LSB_FIRST, // MSB First

 EUSCI_A_UART_ONE_STOP_BIT, // One stop bit

 EUSCI_A_UART_MODE, // UART mode

 EUSCI_A_UART_LOW_FREQUENCY_BAUDRATE_GENERATION // Low Frequency Mode

 };

 /* Selecting P1.2 and P1.3 in UART mode. */

 MAP_GPIO_setAsPeripheralModuleFunctionInputPin(GPIO_PORT_P1,

 GPIO_PIN2 | GPIO_PIN3, GPIO_PRIMARY_MODULE_FUNCTION);

 /* Configuring UART Module */

 MAP_UART_initModule(EUSCI_A0_BASE, &uartConfig);

 /* Enable UART module */

 MAP_UART_enableModule(EUSCI_A0_BASE);

 UART_enableInterrupt(EUSCI_A0_BASE, EUSCI_A_UART_RECEIVE_INTERRUPT);

 Interrupt_enableInterrupt(INT_EUSCIA0);

176

}

void main(void)

{

 WDTCTL = WDTPW | WDTHOLD;// Stop watchdog timer

 clk_init();//initialization of clock

 uart_init();//initialization of uart

// rf_init();

 MAP_SysTick_enableModule();

 MAP_SysTick_setPeriod(48);//systick timer gives interrupt in every micro second

 MAP_SysTick_enableInterrupt();//enabling interrupt

 MAP_Interrupt_enableMaster();

// value_reg = r_reg(RF24_STATUS);

 printf("STAR NETWORK IMPLEMENTATION\r\n");

 printf("This is node 1. Please enter 2 at the beginning of message to transmit to node 2: \r\n");

 while (1)

 {//state machine is used to control the transceivers processed

 if (state_transceiver == 0)

 {

 rf_rx_init();//initialization as receiver

 }

 else if (state_transceiver == 1)

 {

 rf_rx();//ready to receive

 }

 else if (state_transceiver == 2)

 {

 rf_init();//initialization as transmitter

 }

 else if (state_transceiver == 3)

 {

 printf("Packet to send is:\r\n%s\r\n",txbuff);

 rf_tx();//transmitted the packet

// state_transceiver = 0;

 }

 else if (state_transceiver == 4)

 {

 diffTrans[th] = end_trans - start_trans - 130;// calculating the time taken for transmission

 throughput[th] = ((packetSize - 2)*8) * 1000000)/ diffTrans[th];//calculating the throughput only packet size is

taken into consideration

 total_throughput =total_throughput + throughput[th];

 total_diffTrans = total_diffTrans + diffTrans[th];

 tick = 0;

 state_transceiver = 0;

 }

 __delay_cycles(12000000);

 }

}

void EUSCIA0_IRQHandler(void)

{

177

 static int i =0;

 int receive = UCA0RXBUF;//taking input from keyboard through terminal

 EUSCI_A_UART_transmitData(EUSCI_A0_BASE, receive);//using UART capability of MSP432

 txbuff[i++] = receive;//buffer to store the input date and time

 if(receive == 0x0a){

 txbuff[i] = '\0';

 packetSize = i;

 state_transceiver = 2;

 i = 0;

 }else{

 }

}

void SysTick_Handler(void)

{

 tick++;

}

178

D.2 BLE Code (Star)

Central Hub

#include <BLEDevice.h>

#include <BLEUtils.h>

#include <BLEServer.h>

#include "time.h"

//volatile uint32_t isrCounter = 0;

//volatile uint32_t islCounter = 0;

//volatile long difCounter = 0;

//volatile long throughput = 0;

int state = 0, states = 0, states1 =0;

char data[20];

char node[20], rec12[20], rec_data1[20], rec_data2[20];

char node2[20];

bool result;

///bool result2;

int comp1,comp2;

int num =0;//to check whether device ID is receive or not

int reception_complete = 0;//to make sure data is completely received

int state_num = 0;

int state_num_trans = 0;

int node_num = 0;//to check from which node initially data was received

volatile uint32_t rec_start = 0;

volatile uint32_t rec_end = 0;

volatile long difCounter = 0;

#define SERVICE_UUID "4fafc201-1fb5-459e-8fcc-c5c9c331914b"// service UUID

#define CHARACTERISTIC_UUID1 "beb5483e-36e1-4688-b7f5-ea07361b26a8"//characteristic 1 UUID

#define CHARACTERISTIC_UUID2 "beb5483e-36e1-4688-b7f5-ea07361b26a9"//characteristic 2 UUID

bool bleConnected = false;

 BLEAdvertising *pAdvertising;//for advertising

 BLECharacteristic *pCharacteristicclient1;//for client 1

 BLECharacteristic *pCharacteristicclient2;//for client 2

bool IsValidNumber (char * rec12)//function to check whther received user data is device ID (number) or not

{

 if (rec12[0] < 48 || rec12[0] > 57)

 {

 return false;

 }

 return true;

}

class MyServerCallbacks: public BLEServerCallbacks {//callback function to connect or disconnect with client

179

 void onConnect(BLEServer *pServer){

 bleConnected = true;

 pAdvertising->start();

 };

 void onDisconnect(BLEServer* pServer)

 {

 bleConnected = false;

 }

};

class MyCallbacks: public BLECharacteristicCallbacks {

 void onRead(BLECharacteristic *pCharacteristic)

 {

 if (pCharacteristic == pCharacteristicclient1){

 if (reception_complete == 1 && num == 1 && node_num == 2)//if data received from client 2 transmit it to

client 1

 {

 if (state_num_trans == 0)

 {

 pCharacteristic->setValue(rec_data1);//transmit first data

 Serial.println("transmitted rec_data1 node1: ");

 Serial.println(rec_data1);

 state_num_trans = 1;

 }

 else if (state_num_trans == 1)

 {

 pCharacteristic->setValue(rec_data2);

 Serial.println("transmitted rec_data2 node1: ");//transmit second data

 Serial.println(rec_data2);

 state_num_trans = 0;

 nodes = 0;

 num = 0;

 }

 }

 else

 {

 pCharacteristic->setValue("Hello");//arbitary value Hello is written to make sure that client is in receiving

state

 }

 }

 else if (pCharacteristic == pCharacteristicclient2){

 if (reception_complete == 1 && num == 1 && node_num == 1)//if data received from client 1 transmit it to

client 2

 {

 if (state_num_trans == 0)

 {

 pCharacteristic->setValue(rec_data1);

 Serial.println("transmitted rec_data1 node 2: ");//transmit first data

 Serial.println(rec_data1);

 state_num_trans = 1;

 }

180

 else if (state_num_trans == 1)

 {

 pCharacteristic->setValue(rec_data2);

 Serial.println("transmitted rec_data2 node 2: ");//transmit second data

 Serial.println(rec_data2);

 state_num_trans = 0;

 nodes = 0;

 num = 0;

 }

 }

 else

 {

 pCharacteristic->setValue("Hello");//arbitary value Hello is written to make sure that client is in receiving

state

 }

 }

 }

 void onWrite(BLECharacteristic *pCharacteristic){

 if (pCharacteristic == pCharacteristicclient1){

 node_num = 1;//value received from node 1

 if (num == 0)//state to check whether the received value is device ID (number or not)

 {

 std::string value1 = pCharacteristic->getValue();//get value from client

 strcpy(rec12,value1.c_str());

 result = IsValidNumber(rec12);//check whether data is number or not

// Serial.print(result);

 if (result)

 {

 strcpy(node,rec12);

 num = 1;//reecived data is device ID now wait for user data

 Serial.print("The data will be transmitted to node: ");

 Serial.println(node);

 }

 }

 else if (num == 1)

 {

 if (state_num == 0)//state to receive first user data

 {

 std::string value1 = pCharacteristic->getValue();

 strcpy(rec_data1,value1.c_str());//first user data received

 Serial.print("Value Received: ");

 Serial.println("rec_data1: ");

 Serial.println(rec_data1);

 rec_start = micros();//arrival of first user data

 Serial.println("rec_start");

 Serial.println(rec_start);

 state_num = 1;//receive second user data

 }

 else if (state_num == 1)//state to receive second user data

 {

181

 std::string value1 = pCharacteristic->getValue();

 strcpy(rec_data2,value1.c_str());//second user data arrived

 Serial.print("Value Received: ");

 Serial.println("rec_data2: ");

 Serial.println(rec_data2);

 rec_end = micros();//arrival of second user data

 Serial.println("rec_end");

 Serial.println(rec_end);

 state_num = 0;//change it back to zero for another transmission

 reception_complete = 1;

 }

 }

 }

 else if (pCharacteristic == pCharacteristicclient2){

 node_num = 2;//value received from node 2

 if (num == 0)//state to check whether the received value is device ID (number or not)

 {

 std::string value1 = pCharacteristic->getValue();//get value from client

 strcpy(rec12,value1.c_str());

 result = IsValidNumber(rec12);//check whether data is number or not

// Serial.print(result);

 if (result)

 {

 strcpy(node,rec12);

 num = 1;//reecived data is device ID now wait for user data

 Serial.print("The data will be transmitted to node: ");

 Serial.println(node);//data received from node now ready to transmit

 }

 }

 else if (num == 1)

 {

 if (state_num == 0)//state to receive first user data

 {

 std::string value1 = pCharacteristic->getValue();

 strcpy(rec_data1,value1.c_str());//first user data received

 Serial.print("Value Received: ");

 Serial.println("rec_data1: ");

 Serial.println(rec_data1);

 rec_start = micros();//arrival of first user data

 Serial.println("rec_start");

 Serial.println(rec_start);

 state_num = 1;//receive second user data

 }

 else if (state_num == 1)//state to receive second user data

 {

 std::string value1 = pCharacteristic->getValue();

 strcpy(rec_data2,value1.c_str());//second user data arrived

 Serial.print("Value Received: ");

 Serial.println("rec_data2: ");

 Serial.println(rec_data2);

182

 rec_end = micros();//arrival of second user data

 Serial.println("rec_end");

 Serial.println(rec_end);

 state_num = 0;//change it back to zero for another transmission

 reception_complete = 1;//data received from node now ready to transmit

 }

 }

 }

 }

};

void setup() {

 Serial.begin(115200);

 Serial.println("1- Download and install an BLE scanner app in your phone");

 Serial.println("2- Scan for BLE devices in the app");

 Serial.println("3- Connect to MyESP32");

 Serial.println("4- Go to CUSTOM CHARACTERISTIC in CUSTOM SERVICE and write something");

 Serial.println("5- See the magic =)");

 BLEDevice::init("MyE");//initialization of server

 BLEServer *pServer = BLEDevice::createServer();//create server

 pServer->setCallbacks(new MyServerCallbacks());//set callback function for server to connect or disconnect

 BLEService *pService = pServer->createService(SERVICE_UUID);//create Service of given UUID

 pCharacteristicclient1 = pService->createCharacteristic(//create Characteristic of defined UUID and open it in read

or write mode for client 1

 CHARACTERISTIC_UUID1,

 BLECharacteristic::PROPERTY_WRITE |

 BLECharacteristic::PROPERTY_READ

);

 pCharacteristicclient2 = pService->createCharacteristic(//create Characteristic of defined UUID and open it in read

or write mode for client 2

 CHARACTERISTIC_UUID2,

 BLECharacteristic::PROPERTY_WRITE |

 BLECharacteristic::PROPERTY_READ

);

 pService->start();//start service

 pAdvertising = pServer->getAdvertising();//get advertising

 pAdvertising->addServiceUUID(pService->getUUID());

 pAdvertising->start();//start advertising

}

void loop() {

 if (state == 0)//state where server is in receing stage, listening to clients for data

 {

 pCharacteristicclient1->setCallbacks(new MyCallbacks());

 pCharacteristicclient2->setCallbacks(new MyCallbacks());

 if (result)//device ID (or whole data received) received

 {

 state = 1;

 }

 }

183

 else if (state == 1)//state where server is ready to transmit the data to client

 {

 comp1 = strcmp(node, "1");//comparing the received number to determine end user

 if (comp1 == 0 && reception_complete == 1)

 {

 num1_transmission++;

 pCharacteristicclient1->setCallbacks(new MyCallbacks());//call callback function for only client 1

 state = 0;//going back to receiver state

 }

 comp2 = strcmp(node, "2");//comparing the received number to determine end user

 if (comp2 == 0 && reception_complete == 1)

 {

 num2_transmission++;

 pCharacteristicclient2->setCallbacks(new MyCallbacks());//call callback function for only client 2

 state= 2;//calculating the time difference between arrival of data

 }

 }

 else if (state == 2)

 {

 difCounter = rec_end - rec_start; //calculating the transmission time when data is received from node to central

hub

 state = 0;//going back to receiver state

 }

 delay(1000);

}

Peripheral Node

This is for only one node. Same code is also used for other nodes also, but the characteristic ID

will be different.

//A BLE node

#include "BLEDevice.h"

#include <string.h>

//#include "BLEScan.h"

// The remote service we wish to connect to.

static BLEUUID serviceUUID("4fafc201-1fb5-459e-8fcc-c5c9c331914b");

// The characteristic of the remote service we are interested in.

static BLEUUID charUUID("beb5483e-36e1-4688-b7f5-ea07361b26a8");

int state = 0;

int i =1 , j =1 ;

static BLEAddress *pServerAddress;

static boolean doConnect = false;

static boolean connected = false;

184

static BLERemoteCharacteristic* pRemoteCharacteristic;

char incomingchar;

int state_ble = 0;

char rec[10];

int result;

int throughput_state =0;

volatile uint32_t isrCounter = 0;//variable to store arrivable time of first character

volatile uint32_t islCounter = 0;//variable to store arrivable time of second character

volatile long difCounter;

static void notifyCallback(

 BLERemoteCharacteristic* pBLERemoteCharacteristic,

 uint8_t* pData,

 size_t length,

 bool isNotify) {

 Serial.print("Notify callback for characteristic ");

 Serial.print(pBLERemoteCharacteristic->getUUID().toString().c_str());

 Serial.print(" of data length ");

 Serial.println(length);

}

bool connectToServer(BLEAddress pAddress) {

 if (state == 0)

{

 Serial.print("Forming a connection to ");

 Serial.println(pAddress.toString().c_str());

 BLEClient* pClient = BLEDevice::createClient();

 Serial.println(" - Created client");

 // Connect to the remove BLE Server.

 pClient->connect(pAddress);

 Serial.println(" - Connected to server");

 // Obtain a reference to the service we are after in the remote BLE server.

 BLERemoteService* pRemoteService = pClient->getService(serviceUUID);

 if (pRemoteService == nullptr) {

 Serial.print("Failed to find our service UUID: ");

 Serial.println(serviceUUID.toString().c_str());

 return false;

185

 }

 Serial.println(" - Found our service");

 // Obtain a reference to the characteristic in the service of the remote BLE server.

 pRemoteCharacteristic = pRemoteService->getCharacteristic(charUUID);

 if (pRemoteCharacteristic == nullptr) {

 Serial.print("Failed to find our characteristic UUID: ");

 Serial.println(charUUID.toString().c_str());

 return false;

 }

 Serial.println(" - Found our characteristic");

 }

 else if (state == 1)

 {

 std::string myValue = pRemoteCharacteristic->readValue();//reading value from server

 strcpy(rec, myValue.c_str());

 result = strcmp(rec,"Hello");//Checking whether the received data is user data or not

 if (result != 0)

 {

 if (throughput_state == 0)

 {

 isrCounter = micros();

 Serial.print("The characteristic value was ");

 Serial.println(rec);

 Serial.println(isrCounter);//arrival of first character

 throughput_state = 1;

 }

 else if (throughput_state ==1)

 {

 islCounter = micros();

 Serial.print("The characteristic value was ");

 Serial.println(rec);

 Serial.println(islCounter);//arrival of second character

 throughput_state = 2;

 }

 else if (throughput_state ==2)

 {

 difCounter = islCounter - isrCOunter;//transmission time from server to node

186

 }

 }

 }

 else if (state == 2)

 {

 pRemoteCharacteristic->writeValue(incomingchar);//write the value entered by user to the server

 }

 else if (state == 3)

 {

 pRemoteCharacteristic->writeValue('a');//writing two data one after another to server

 pRemoteCharacteristic->writeValue('b');

 }

 pRemoteCharacteristic->registerForNotify(notifyCallback);

}

/**

 * Scan for BLE servers and find the first one that advertises the service we are looking for.

 */

class MyAdvertisedDeviceCallbacks: public BLEAdvertisedDeviceCallbacks {

 /**

 * Called for each advertising BLE server.

 */

 void onResult(BLEAdvertisedDevice advertisedDevice) {

 Serial.print("BLE Advertised Device found: ");

 Serial.println(advertisedDevice.toString().c_str());

 // We have found a device, let us now see if it contains the service we are looking for.

 if (advertisedDevice.haveServiceUUID() && advertisedDevice.getServiceUUID().equals(serviceUUID)) {

 //

 Serial.print("Found our device! address: ");

 advertisedDevice.getScan()->stop();

 pServerAddress = new BLEAddress(advertisedDevice.getAddress());

 doConnect = true;

 } // Found our server

 } // onResult

}; // MyAdvertisedDeviceCallbacks

void setup() {

 Serial.begin(115200);

187

 Serial.println("Starting Arduino BLE Client application...");

 BLEDevice::init("");

 BLEScan* pBLEScan = BLEDevice::getScan();

 pBLEScan->setAdvertisedDeviceCallbacks(new MyAdvertisedDeviceCallbacks());

 pBLEScan->setActiveScan(true);//starting the scanning and running it for 30 seconds

 pBLEScan->start(30);

} // End of setup.

void loop() {

 if (state == 0)//making connection to server

 {

 if (doConnect == true) {

 if (connectToServer(*pServerAddress)) {

 Serial.println("We are now connected to the BLE Server.");

 connected = true;

 } else {

 Serial.println("We have failed to connect to the server; there is nothin more we will do.");

 }

 doConnect = false;

 state = 1;

 }

 }

 else if (state == 1)

 {

 connectToServer(*pServerAddress);//reading value from server

 if (Serial.available () > 0)

 {

 incomingchar = Serial.read();//reading value from serial monitor

 state = 2;//state where we write the user entered value from serial monitor to server

 connectToServer(*pServerAddress);

 state = 3;

 }

 }

 else if (state == 3)//writing two characters 'a' and 'b' to server

 {

 Serial.print("Transmission:");

 Serial.println(i);

 connectToServer(*pServerAddress);

188

 state = 1;

 i++;

 }

 delay(5000); // Delay a second between loops.

 }

189

D.3 ESP-Now Code (Star)

Central Hub

//central hub for ESPNOW

#include <esp_now.h>

#include <WiFi.h>

#include "time.h"

// Global copy of slave

#define NUMSLAVES 6

esp_now_peer_info_t slaves[NUMSLAVES] = {};

int SlaveCnt = 0;

uint8_t new_mac[8] = {0x30, 0xAE, 0xA4, 0x11, 0x11, 0x11};//mac address of hub

 uint8_t data_received ;

 uint8_t dataID ;

 uint8_t data1;

 uint8_t data2;

#define CHANNEL 1//channel

#define PRINTSCANRESULTS 0

int espnow_hub = 0;

int state_trans = 0;

volatile uint32_t rec_start = 0, rec_end = 0;//transmission time when data received from node

volatile uint32_t trans_start = 0, trans_end = 0;//transmission time when data is sent to node

volatile long difcounter1, difcounter2;

volatile long difCounter[20] = {0};

volatile long throughput[20] = {0};

volatile long total_difCounter = 0, total_throughput = 0;

int th = 0;

int trans_state = 0;//state to keep track in star connection

// Init ESP Now to connect

void InitESPNow() {

 WiFi.disconnect();

 if (esp_now_init() == ESP_OK) {

 Serial.println("ESPNow Init Success");

 }

 else {

 Serial.println("ESPNow Init Failed");

 // Restart if connection failed

 ESP.restart();

 }

}

// Scan for slaves in AP mode

void ScanForSlave() {

 int8_t scanResults = WiFi.scanNetworks();

 //reset slaves

 memset(slaves, 0, sizeof(slaves));

 SlaveCnt = 0;

 Serial.println("");

 if (scanResults == 0) {

 Serial.println("No WiFi devices in AP Mode found");

 } else {

190

 Serial.print("Found "); Serial.print(scanResults); Serial.println(" devices ");

 for (int i = 0; i < scanResults; ++i) {

 // Print SSID and RSSI for each device found

 String SSID = WiFi.SSID(i);

 int32_t RSSI = WiFi.RSSI(i);

 String BSSIDstr = WiFi.BSSIDstr(i);

 if (PRINTSCANRESULTS) {

 Serial.print(i + 1); Serial.print(": "); Serial.print(SSID); Serial.print(" ["); Serial.print(BSSIDstr);

Serial.print("]"); Serial.print(" ("); Serial.print(RSSI); Serial.print(")"); Serial.println("");

 }

 delay(10);

 // Check if the current device starts with `Slave`

 if (SSID.indexOf("Slave") == 0) {

 // SSID of interest

 Serial.print(i + 1); Serial.print(": "); Serial.print(SSID); Serial.print(" ["); Serial.print(BSSIDstr);

Serial.print("]"); Serial.print(" ("); Serial.print(RSSI); Serial.print(")"); Serial.println("");

 // Get BSSID => Mac Address of the Slave

 int mac[6];

 if (6 == sscanf(BSSIDstr.c_str(), "%x:%x:%x:%x:%x:%x%c", &mac[0], &mac[1], &mac[2], &mac[3],

&mac[4], &mac[5])) {

 for (int ii = 0; ii < 6; ++ii) {

 slaves[SlaveCnt].peer_addr[ii] = (uint8_t) mac[ii];

 }

 }

 slaves[SlaveCnt].channel = CHANNEL; // pick a channel

 slaves[SlaveCnt].encrypt = 0; // no encryption

 SlaveCnt++;

 }

 }

 }

 if (SlaveCnt > 0) {

 Serial.print(SlaveCnt); Serial.println(" Slave(s) found, processing..");

 } else {

 Serial.println("No Slave Found, trying again.");

 }

 // clean up ram

 WiFi.scanDelete();

}

// Check if the slave is already paired with the master.

// If not, pair the slave with master

void manageSlave() {

 if (SlaveCnt > 0) {

// Serial.println(SlaveCnt);

 for (int i = 0; i < SlaveCnt; i++) {

 const esp_now_peer_info_t *peer = &slaves[i];

 const uint8_t *peer_addr = slaves[i].peer_addr;

 Serial.print("Processing: ");

 for (int ii = 0; ii < 6; ++ii) {

 Serial.print((uint8_t) slaves[i].peer_addr[ii], HEX);

 if (ii != 5) Serial.print(":");

 }

 Serial.print(" Status: ");

 // check if the peer exists

191

 bool exists = esp_now_is_peer_exist(peer_addr);

 if (exists) {

 // Slave already paired.

 Serial.println("Already Paired");

 } else {

 // Slave not paired, attempt pair

 esp_err_t addStatus = esp_now_add_peer(peer);

 if (addStatus == ESP_OK) {

 // Pair success

 Serial.println("Pair success");

 } else if (addStatus == ESP_ERR_ESPNOW_NOT_INIT) {

 // How did we get so far!!

 Serial.println("ESPNOW Not Init");

 } else if (addStatus == ESP_ERR_ESPNOW_ARG) {

 Serial.println("Add Peer - Invalid Argument");

 } else if (addStatus == ESP_ERR_ESPNOW_FULL) {

 Serial.println("Peer list full");

 } else if (addStatus == ESP_ERR_ESPNOW_NO_MEM) {

 Serial.println("Out of memory");

 } else if (addStatus == ESP_ERR_ESPNOW_EXIST) {

 Serial.println("Peer Exists");

 } else {

 Serial.println("Not sure what happened");

 }

 delay(100);

 }

 }

 } else {

 // No slave found to process

 Serial.println("No Slave found to process");

 }

}

// send data

void sendData() {

 const uint8_t *peer_addr;

 if (dataID == 1)

 {

 SlaveCnt = 0;

 const esp_now_peer_info_t *peer = &slaves[SlaveCnt];

 const uint8_t *peer_addr = slaves[SlaveCnt].peer_addr;

 esp_err_t result = esp_now_send(peer_addr, &data1, sizeof(data1));//transmitting data1 to node 1 from central

hub

 esp_err_t result1 = esp_now_send(peer_addr, &data2, sizeof(data2));//transmitting data1 to node 1 from central

hub

 Serial.print("Send Status: ");

 if (result == ESP_OK && result1 == ESP_OK) {

 Serial.println("Success");

// state_trans = 0;

 } else if (result == ESP_ERR_ESPNOW_NOT_INIT && result1 == ESP_ERR_ESPNOW_NOT_INIT) {

 // How did we get so far!!

 Serial.println("ESPNOW not Init.");

 } else if (result == ESP_ERR_ESPNOW_ARG && result1 == ESP_ERR_ESPNOW_ARG) {

 Serial.println("Invalid Argument");

 } else if (result == ESP_ERR_ESPNOW_INTERNAL && result1 == ESP_ERR_ESPNOW_INTERNAL) {

192

 Serial.println("Internal Error");

 } else if (result == ESP_ERR_ESPNOW_NO_MEM && result1 == ESP_ERR_ESPNOW_NO_MEM) {

 Serial.println("ESP_ERR_ESPNOW_NO_MEM");

 } else if (result == ESP_ERR_ESPNOW_NOT_FOUND && result1 == ESP_ERR_ESPNOW_NOT_FOUND) {

 Serial.println("Peer not found.");

 } else {

 Serial.println("Not sure what happened");

 }

 delay(100);

 }

 else if (dataID == 2)

 {

 SlaveCnt = 1;

 const esp_now_peer_info_t *peer = &slaves[SlaveCnt];

 const uint8_t *peer_addr = slaves[SlaveCnt].peer_addr;

 esp_err_t result = esp_now_send(peer_addr, &data1, sizeof(data1));//transmitting data1 to node 2 from central

hub

 esp_err_t result1 = esp_now_send(peer_addr, &data2, sizeof(data2));//transmitting data1 to node 2 from central

hub

 Serial.print("Send Status: ");

 if (result == ESP_OK && result1 == ESP_OK) {

 Serial.println("Success");

// state_trans = 0;

 } else if (result == ESP_ERR_ESPNOW_NOT_INIT && result1 == ESP_ERR_ESPNOW_NOT_INIT) {

 // How did we get so far!!

 Serial.println("ESPNOW not Init.");

 } else if (result == ESP_ERR_ESPNOW_ARG && result1 == ESP_ERR_ESPNOW_ARG) {

 Serial.println("Invalid Argument");

 } else if (result == ESP_ERR_ESPNOW_INTERNAL && result1 == ESP_ERR_ESPNOW_INTERNAL) {

 Serial.println("Internal Error");

 } else if (result == ESP_ERR_ESPNOW_NO_MEM && result1 == ESP_ERR_ESPNOW_NO_MEM) {

 Serial.println("ESP_ERR_ESPNOW_NO_MEM");

 } else if (result == ESP_ERR_ESPNOW_NOT_FOUND && result1 == ESP_ERR_ESPNOW_NOT_FOUND) {

 Serial.println("Peer not found.");

 } else {

 Serial.println("Not sure what happened");

 }

 delay(100);

 }

 }

// callback when data is sent from Master to Slave

void OnDataSent(const uint8_t *mac_addr, esp_now_send_status_t status) {

 char macStr[18];

 snprintf(macStr, sizeof(macStr), "%02x:%02x:%02x:%02x:%02x:%02x",

 mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3], mac_addr[4], mac_addr[5]);

 if (trans_state == 0)

 {

 trans_start = micros();//first data is sent to end node from hub

 trans_state = 1;

 }

 else if (trans_state == 1)

 {

 trans_end = micros();//second data is sent to end node from hub

 trans_state = 0;

 }

193

}

void setup() {

 Serial.begin(115200);

 //Set device in STA mode to begin with

 esp_base_mac_addr_set(new_mac);//set MAC address of hub or server.

 WiFi.mode(WIFI_STA);

 Serial.println("ESPNow/Multi-Slave/Master Example");

 // This is the mac address of the Master in Station Mode

 Serial.print("STA MAC: "); Serial.println(WiFi.macAddress());

 // Init ESPNow with a fallback logic

 InitESPNow();

 ScanForSlave();

 manageSlave();

 // Once ESPNow is successfully Init, we will register for Send CB to

 // get the status of Trasnmitted packet

 esp_now_register_recv_cb(OnDataRecv);

// esp_now_register_send_cb(OnDataSent);

}

void OnDataRecv(const uint8_t *mac_addr, const uint8_t *data, int data_len) {

 char macStr[18], macStr1[18];

 snprintf(macStr, sizeof(macStr), "%02x:%02x:%02x:%02x:%02x:%02x",

 mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3], mac_addr[4], mac_addr[5]);

 data_received = *data;

 state_trans++;

 if (state_trans == 1)

 {

 dataID = data_received ;//received data ID

 }

 else if (state_trans == 2)

 {

 rec_start = micros();//arrival time of first user data

 data1 = data_received ;//received first user data

 Serial.print("data1: ");

 Serial.println(data1);

 Serial.print("rec_start: ");

 Serial.println(rec_start);

 }

 else if (state_trans == 3)

 {

 rec_end = micros();//arrival time of second user data

 data2 = data_received ;//received second user data

 Serial.print("data2: ");

 Serial.println(data2);

 Serial.print("rec_end: ");

 Serial.println(rec_end);

 }

}

void loop() {

 if (espnow_hub == 0)//central hub is in receiving state

194

 {

 esp_now_register_recv_cb(OnDataRecv);//register receiving callback function to receive the data

 if (state_trans == 3)//all data are successfully received

 {

 espnow_hub = 1;//go in transmitting state

 }

 }

 else if (espnow_hub == 1)

 {

 esp_now_register_send_cb(OnDataSent);//register sending callback function to transmit the data

 sendData();//send data to node

 espnow_hub = 2;

 state_trans = 0;

 }

 else if (espnow_hub == 2)

 {

 difcounter1 = rec_end - rec_start;

 difcounter2 = trans_end - trans_start;

 Serial.print("difcounter1: ");

 Serial.println(difcounter1);

 Serial.print("difcounter2: ");

 Serial.println(difcounter2);

 difCounter[th] = difcounter1 + difcounter2;

 throughput[th] = 48000000/difCounter[th];

 th++;

 espnow_hub = 0;//go back to receiving state

 }

 delay(1000);

}

Peripheral Node

Code for only one node is given; same code can be used for other nodes.

//ESPNOW node (slave)

#include <esp_now.h>

#include <WiFi.h>

#define CHANNEL 1//defining channel

uint8_t data1, data2;

uint8_t rec_data1, rec_data2;

//char macStrr[18];

uint8_t mac_master[8] = {0x30, 0xAE, 0xA4, 0x11, 0x11, 0x11};//mac address of server

int st ;

esp_now_peer_info_t slave;

int state_node = 0;//state to track star network

int state_rec = 0;//state to track receiving of data from hub

// Init ESP Now with fallback

195

void InitESPNow() {

 WiFi.disconnect();

 if (esp_now_init() == ESP_OK) {

 Serial.println("ESPNow Init Success");

 }

 else {

 Serial.println("ESPNow Init Failed");

 ESP.restart();

 }

 memset(&slave, 0, sizeof(slave));

 for (int i = 0; i < 6; ++i)

 slave.peer_addr[i] = (uint8_t)mac_master[i];

 slave.channel = CHANNEL; // pick a channel

 slave.encrypt = 0; // no encryption

 const esp_now_peer_info_t *peer = &slave;

 const uint8_t *peer_addr = slave.peer_addr;

 esp_err_t addStatus = esp_now_add_peer(peer);

}

// config AP SSID

void configDeviceAP() {

 String Prefix = "Slave:";

 String Mac = WiFi.macAddress();

 String SSID = Prefix + Mac;

 String Password = "123456789";

 bool result = WiFi.softAP(SSID.c_str(), Password.c_str(), CHANNEL, 0);

 if (!result) {

 Serial.println("AP Config failed.");

 } else {

 Serial.println("AP Config Success. Broadcasting with AP: " + String(SSID));

 }

}

void sendData()

{

 if (state_node == 0)//send device ID

 {

 state_node = 1;

 Serial.println("state_node");

196

 Serial.println(state_node);

 const uint8_t *peer_addr = slave.peer_addr;

 esp_err_t result = esp_now_send(peer_addr, &data1, sizeof(data1));

 Serial.print("Send Status: ");

 if (result == ESP_OK)

 {

 Serial.println("Success:");

 } else if (result == ESP_ERR_ESPNOW_NOT_INIT) {

 // How did we get so far!!

 Serial.println("ESPNOW not Init.");

 } else if (result == ESP_ERR_ESPNOW_ARG) {

 Serial.println("Invalid Argument");

 } else if (result == ESP_ERR_ESPNOW_INTERNAL) {

 Serial.println("Internal Error");

 } else if (result == ESP_ERR_ESPNOW_NO_MEM) {

 Serial.println("ESP_ERR_ESPNOW_NO_MEM");

 } else if (result == ESP_ERR_ESPNOW_NOT_FOUND) {

 Serial.println("Peer not found.");

 } else {

 Serial.println("Not sure what happened");

 }

 delay(100);

 }

 else if (state_node = 1)//send the user data

 {

 state_node = 0;

 Serial.println("state_node");

 Serial.println(state_node);

 data1 = 0;//data1

 data2 = 1;//data2

 const uint8_t *peer_addr = slave.peer_addr;

 esp_err_t result = esp_now_send(peer_addr, &data1, sizeof(data1));

 esp_err_t result1 =esp_now_send(peer_addr, &data2, sizeof(data2));

 Serial.print("Send Status: ");

 if (result == ESP_OK && result1 == ESP_OK)

 {

 Serial.println("Success:");

197

 } else if (result == ESP_ERR_ESPNOW_NOT_INIT && result1 == ESP_ERR_ESPNOW_NOT_INIT) {

 // How did we get so far!!

 Serial.println("ESPNOW not Init.");

 } else if (result == ESP_ERR_ESPNOW_ARG && result1 == ESP_ERR_ESPNOW_ARG) {

 Serial.println("Invalid Argument");

 } else if (result == ESP_ERR_ESPNOW_INTERNAL && result1 == ESP_ERR_ESPNOW_INTERNAL) {

 Serial.println("Internal Error");

 } else if (result == ESP_ERR_ESPNOW_NO_MEM && result1 == ESP_ERR_ESPNOW_NO_MEM) {

 Serial.println("ESP_ERR_ESPNOW_NO_MEM");

 } else if (result == ESP_ERR_ESPNOW_NOT_FOUND && result1 == ESP_ERR_ESPNOW_NOT_FOUND)

{

 Serial.println("Peer not found.");

 } else {

 Serial.println("Not sure what happened");

 }

 delay(100);

 }

}

void OnDataSent(const uint8_t *mac_addr, esp_now_send_status_t status) {

 char macStr[18];

 snprintf(macStr, sizeof(macStr), "%02x:%02x:%02x:%02x:%02x:%02x",

 mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3], mac_addr[4], mac_addr[5]);

 Serial.print("Last Packet Sent to: "); Serial.println(macStr);

 Serial.print("Last Packet Send Status: "); Serial.println(status == ESP_NOW_SEND_SUCCESS ? "Delivery

Success" : "Delivery Fail");

}

void setup() {

 Serial.begin(115200);

 Serial.println("ESPNow Star Connection Node 1");

 //Set device in AP mode to begin with

 WiFi.mode(WIFI_AP_STA);

 // configure device AP mode

 configDeviceAP();

 // This is the mac address of the Slave in AP Mode

 Serial.print("AP MAC: "); Serial.println(WiFi.softAPmacAddress());

198

 // Init ESPNow

 InitESPNow();

}

// callback when data is recv from Master

void OnDataRecv(const uint8_t *mac_addr, const uint8_t *data, int data_len) {

 char macStr[18];

 snprintf(macStr, sizeof(macStr), "%02x:%02x:%02x:%02x:%02x:%02x",

 mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3], mac_addr[4], mac_addr[5]);

if (state_rec == 0)

 {

 rec_data1 = *data;//received data 1

 Serial.print("Last Packet Recv Data: "); Serial.println(rec_data1);

 state_rec = 1;

 }

 else if (state_rec == 1)

 {

 rec_data2 = *data;//received data 2

 Serial.print("Last Packet Recv Data: "); Serial.println(rec_data2);

 state_rec = 0;

 }

 Serial.print("Last Packet Recv from: "); Serial.println(macStr);

 Serial.println("");

}

void loop() {

 if (state_node == 0)

 {

 esp_now_register_recv_cb(OnDataRecv); //register receiving call back function to receive data

 if (Serial.available () > 0)//data arrival from serial monitor

 {

 data1 =Serial.read() - '0';

 esp_now_register_send_cb(OnDataSent);//register send call back function to send data (device ID)

 sendData();

 }

 }

199

 else if (state_node == 1)

 {

 esp_now_register_send_cb(OnDataSent);//register send call back function to send data (user data)

 sendData();

 state_node = 0;//go back to initial state

 }

 delay(5000);

}

200

REFERENCES

[1] T. Simplelink and M. S. P. E. Launchpad, “Development Kit (MSP ‑ EXP432P401R),”

no. March 2015, 2018.

[2] Texas Instruments, “MSP432P401R, MSP432P401M MSP432P401R, MSP432P401M

SimpleLink
TM

 Mixed-Signal Microcontrollers 1 Device Overview,” MSP432P401R,

MSP432P401M datasheet, 2017.

[3] Nordic Semiconductor, “nRF24L01+ Datasheet,” Nord. Semicond., no. March, p. 75,

2008.

[4] “How nRF24L01+ wireless module works & Interface with Arduino,” Arduino Projects,

2016. [Online]. Available: https://lastminuteengineers.com/nrf24l01-arduino-wireless-

communication/.

[5] E. Systems, “ESP32-WROOM-32,” 2018.

[6] J. Tosi, F. Taffoni, M. Santacatterina, R. Sannino, and D. Formica, “Performance

evaluation of Bluetooth low energy: a systematic review,” Sensors, vol. 17, no. 12, p.

2898, 2017.

[7] Belbin, “"Frequently Asked Questions,” pp. 1–2, 2012.

[8] Bluetooth, “Specification of the Bluetooth System Wireless connections made easy-

v4.0,” vol. 0, no. June, 2010.

[9] M. O. Al Kalaa and H. H. Refai, “Selection probability of data channels in Bluetooth Low

Energy,” in Wireless Communications and Mobile Computing Conference (IWCMC),

2015 International, 2015, pp. 148–152.

[10] P. Di Marco, P. Skillermark, A. Larmo, P. Arvidson, and R. Chirikov, “Performance

201

Evaluation of the Data Transfer Modes in Bluetooth 5,” IEEE Commun. Stand. Mag., vol.

1, no. 2, pp. 92–97, 2017.

[11] “ESP32 Bluetooth Architecture,” 2018.

[12] Rohde & Schwarz, “Bluetooth Adaptive Frequency Hopping on a R&S CMW,” Appl.

Note 11.2016_1C108_0e, 2016.

[13] MikroElektronika, “Bluetooth Low Energy - Part 1: Introduction To BLE,” 2016.

[Online]. Available: www.mikroe.com/blog/bluetooth-low-energy-part-1-introduction-ble.

[Accessed: 01-Dec-2018].

[14] Cypress, “PSoC ® Creator
TM

 Com

Features □ GATT Client and Server General Description SIG adopted Profiles and

Services Comprehensive APIs,” pp. 408–943, 2015.

[15] “Your Go-To-Guide for Channel & Transmit Powe on Wi-Fi Networks,” engeniustech,

2015. [Online]. Available: https://www.engeniustech.com/go-guide-channel-transmit-

power-wi-fi-networks-2/. [Accessed: 01-Dec-2018].

[16] “ESP-NOW User Guide,” 2016.

[17] E. G. Villegas, E. Lopez-Aguilera, R. Vidal, and J. Paradells, “Effect of adjacent-channel

interference in IEEE 802.11 WLANs,” in Cognitive Radio Oriented Wireless Networks

and Communications, 2007. CrownCom 2007. 2nd International Conference on, 2007, pp.

118–125.

[18] I. S. Association, “802.11-2012-IEEE Standard for Information technology–

Telecommunications and information exchange between systems Local and metropolitan

area networks–Specific requirements Part 11: Wireless LAN Medium Access Control

(MAC) and Physical Layer (PHY) Specific,” Retrived from http//standards. ieee.

202

org/about/get/802/802.11. html, 2012.

[19] B. Mitchell, “How many Devices Can Connect to One Wireless Router?” [Online].

Available: https://www.lifewire.com/how-many-devices-can-share-a-wifi-network-

818298.

[20] C. C. Studio, “Code Composer - Getting Started Guide,” October, no. October, 2006.

[21] B. Finch and W. Goh MSP, “Application Report MSP430
TM

 Advanced Power

Optimizations: ULP Advisor
TM

 Software and EnergyTrace
TM

 Technology,” no. June, pp.

1–29, 2014.

[22] S. Chakkor, E. A. Cheikh, M. Baghouri, and A. Hajraoui, “Comparative performance

analysis of wireless communication protocols for intelligent sensors and their

applications,” arXiv Prepr. arXiv1409.6884, 2014.

[23] H. Saha, S. Mandal, S. Mitra, S. Banerjee, and U. Saha, “Comparative Performance

Analysis between nRF24L01+ and XBEE ZB Module Based Wireless Ad-hoc Networks,”

Int. J. Comput. Netw. Inf. Secur., vol. 9, no. 7, p. 36, 2017.

[24] J.-S. Lee, Y.-W. Su, and C.-C. Shen, “A comparative study of wireless protocols:

Bluetooth, UWB, ZigBee, and Wi-Fi,” in Industrial Electronics Society, 2007. IECON

2007. 33rd Annual Conference of the IEEE, 2007, pp. 46–51.

[25] M. T. Arefin, M. H. Ali, and A. K. M. F. Haque, “A Comparative Analysis of Short Range

Wireless Protocols For Wireless Sensor Network.”

[26] Z. Chen, C. Hu, J. Liao, and S. Liu, “Protocol architecture for wireless body area network

based on nRF24L01,” Proc. IEEE Int. Conf. Autom. Logist. ICAL 2008, no. September,

pp. 3050–3054, 2008.

[27] S. S. Sonavane and B. P. Patil, “Experimentation for Packet Loss on MSP430 and

203

nRF24L01 Based Wireless Sensor Network,” vol. 01, no. 01, pp. 25–29, 2009.

[28] Y. Wang, C. Hu, Z. Feng, and Y. Ren, “Wireless transmission module comparison,” 2014

IEEE Int. Conf. Inf. Autom. ICIA 2014, no. July, pp. 902–907, 2014.

[29] A. Maier, A. Sharp, and Y. Vagapov, “Comparative analysis and practical implementation

of the ESP32 microcontroller module for the internet of things,” 2017 Internet Technol.

Appl. ITA 2017 - Proc. 7th Int. Conf., pp. 143–148, 2017.

[30] Espressif Systems, “Read the Docs Template Documentation,” 2017.

[31] N. Zhu and I. O’Connor, “Energy Performance of High Data Rate and Low Power

Transceiver based Wireless Body Area Networks.,” in SENSORNETS, 2013, pp. 141–144.

[32] N. Kolban, “ESP32 BLE Arduino Library,” 2017. [Online]. Available:

https://github.com/nkolban/ESP32_BLE_Arduino.

	Grand Valley State University
	ScholarWorks@GVSU
	2-2019

	A Comparative study of Wireless Star Networks Implemented with Current Wireless Protocols
	Sizen Neupane
	Recommended Citation

	Thesis Title Page

