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Abstract
Networks often exhibit community structure and there are many algorithms that have been proposed to detect the communi-
ties. Different sets of communities have different characteristics. Community finding algorithms that are designed to optimize 
a single statistic tend to detect communities with a narrow set of characteristics. In this paper, we present evidence for the 
differences in community characteristics. In addition, we present two new community finding algorithms that allow analysts 
to find community sets that are not only high quality but also germane to the characteristics that are desired.

Keywords  Community finding · Networks · Link analysis

1  Introduction

Networks are used in programs to represent the complex 
relationships that occur in social, biological, computer and 
other networks. These networks often exhibit community 
structure. A community set (commSet) refers to a particular 
set of communities for a network. There is general agree-
ment that high quality communities are ones that have many 
links (or edges) within the communities and fewer of them 
between the communities. While there are many community 
finding algorithms (Porter et al. 2009; Lancichinetti and For-
tunato 2009; Xie et al. 2011), an exact definition of a high 
quality set of communities for a network is elusive.

Existing community finding algorithms typically are 
designed to optimize a specific function. While these algo-
rithms find high quality commSets, this paper presents an 
argument for searching for commSets that are not only of a 
high quality but also have characteristics that are germane 
(i.e. appropriate) to the network and the purposes of the user. 
Considering all of the possible commSets for a given net-
work, some different characteristics will emerge. For a small 
social network, one could place nodes into sets to approxi-
mate bipartite sets, maximimal cliques, min-cut partitions 
or something altogether different.

In this paper, three simple statistics—collectively named 
NEO—are used to map commSets onto a triangular canvas 

that distinguish their characteristics. In addition, objective 
functions using NEO will be used to formulate two algo-
rithms for detecting commSets.

The three statistics of NEO are missing neighbors ( Mmn ), 
extraneous nodes ( Men ) and overlap ( Mol ). A missing neigh-
bor is counted when a node in one community is linked to 
a node in a different community—in Fig. 1, k is a missing 
neighbor of c. An extraneous node is counted for any node 
in a community that is not linked to another node in the same 
community. n is an extraneous node with respect to m. Over-
lap is counted for each additional community that a node is 
assigned to (beyond its first or home community). d is has 
an overlap of 1 since it is in both comm1 and comm2. This 
description is simplified; the actual definitions are presented 
in Sect. 3. For the remainder of this paper, a NEO score will 
be an ordered triplet (e.g. {2, 10, 0}—2 missing neighbors, 
10 extraneous nodes and 0 overlap).

NEO is the foundation that will be used to find germane 
communities:

1.	 It is simple to understand. Given a data set with two 
commSets with NEO scores of {75, 254, 0} and {57, 
241, 20} and the same number of communities, one can 
tell that the first is a set of disjoint and the second is 
overlapping. Further, the first has more missing neigh-
bors than the second—thus the second has communities 
that are more tightly connected. There is often a tradeoff 
with the metrics; allowing a higher value in one can 
result in lower values of the others. *	 Jerry Scripps 
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2.	 NEO will be used to define the commSet space canvas 
(described in Sect. 3.3). In the previous example, plot-
ting the two commSets on the canvas provides a con-
venient visual map for comparing the two commSets.

3.	 Using the two algorithms described later, which use 
objective functions incorporating NEO, analysts can 
tune the algorithms so that they will find good commSets 
with the desired characteristics.

To illustrate, one statistic for purchasing a new computer 
would be the ratio of RAM to price. It does not make sense 
to simply maximize this statistic if one is looking for a 
specific kind of computer (laptop, server, etc.). commSets 
can also have different characteristics. Community find-
ing algorithms tend to find sets of a specific type, i.e. with 
different characteristics. While it is important to find good 
quality communities, priority should also be placed on 
finding the kind of communities that are desired. The moti-
vation for finding communities with specific characteris-
tics is discussed in Sect. 3.3.

The algorithms proposed used two different methods 
to find high quality communities with the desired charac-
teristics. The first, CHI, will be shown to have similarities 
to and many of the advantages of the kmeans clustering 
algorithm. First of all it is efficient. Second, within the 
framework of the commSet space, it has fewer violations 
than any of the other methods tested. Third, like kmeans, 
CHI starts with an input commSet. Unlike kmeans, it is 
flexible in that it has parameters that can be tuned to pro-
duce commSets with many different characteristics.

As stated above, CHI uses a seed or random input 
commSet and then finds a local optimum according to 
the parameters given. While it is effective at finding high 
quality commSets they may not have exactly the desired 
characteristics. The second algorithm, Gamit, is designed 
to find high quality commSets with characteristics very 
close to those desired. Gamit has similarities to the 

agglomerative clustering method. One can use Gamit to 
find a seed commSet for CHI, which will then find the 
local optimum.

Portions of this paper were published in Scripps (2011), 
Scripps and Trefftz (2013). For this journal paper, the initial 
experiments in Sect. 5.2 were added as were many of the 
experiments. Gamit with its derivation and experiments is 
also new. The authors have also posted a Java version of CHI 
and a stand-alone tool for analyzing networks that incorpo-
rates both Gamit and CHI at http://www.cis.gvsu.edu/~scrip​
psj/pubs/softw​are.htm.

After this introduction, related work is presented in 
Sect. 2. Necessary terms, metrics and the commSetSpace 
canvas will be defined in Sect. 3. The algorithms are defined 
in Sect. 4 and experiments are in Sect. 5. The paper ends 
with a section for conclusions.

2 � Related work

Networks are often given characterizations based on statis-
tics (such as clustering coefficient) which describe a growth 
model. In particular, there are models for random, small 
world, and scale-free, among others. We know that networks 
having one of these designations will have certain charac-
teristics that can be helpful in analysis. While there have 
been studies to examine the characteristics of individual 
communities (see Traud et al. 2011), we are not aware of 
any attempt to characterize an entire set of communities.

There have been many community finding algorithms 
proposed; it is not our intention to review each one here. The 
reader is directed to one of the recent reviews (Porter et al. 
2009; Lancichinetti and Fortunato 2009; Xie et al. 2011). 
There are many ways in which the algorithms can be organ-
ized: overlapping vs. disjoint, local vs. global, approach 
(agglomerative, iterative, divisive, etc). They are organized 
here in how they fit into the commSet space, that is, the 
amount of Mmn , Men and Mol their communities produce. It 
should be noted that a simple way to control Mmn and Men 
is to vary k.

Algorithms that find disjoint communities implicitly hold 
Mol to zero. Some then attempt to minimize Mmn . One of the 
first is the algorithm by Girvan and Newman (2002) which 
uses the betweenness metric to remove edges to reveal com-
munities. Starting with a single large community (top cor-
ner of the canvas), it separates the graph into communities, 
moving down the left edge until it has reduce the network 
to singletons (bottom right corner). Any divisive algorithm 
that creates disjoint commSets will follow the same path.

The improved algorithm by Clauset et al. (2006), starts 
with singletons and merges them based on the modular-
ity metric until they are all merged into one community. 
This creates commSets that follow the same disjoint edge 

 

Fig. 1   Example network

http://www.cis.gvsu.edu/%7escrippsj/pubs/software.htm
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in the opposite direction from the divisive algorithms. This 
will be true for any agglomerative approach that starts with 
singletons.

Other disjoint algorithms are not necessarily designed 
to minimize Mmn but appear to detect communities with 
a balance of Mmn and Men . Spectral (Shi and Malik 2000) 
methods cluster the eigenvector components of nodes. As a 
result, it is more likely to group connected node pairs while 
separating unlinked pairs. There are many other disjoint 
algorithms (Lancichinetti and Fortunato 2009) that appear 
to have a similar, balanced approach. It should be noted that 
while we did not come across any disjoint algorithms that 
minimized Men , it is easy to imagine an agglomerative algo-
rithm that starts with singletons and merges them based on 
minimizing Men.

The divisive and agglomerative approaches can also 
be applied to ego-centric communities. In particular, the 
approach by Tang et al. (2010), starts with the neighbor-
hood communities (in the lower left corner of the canvas) 
and merges the communities based on the Jaccard index 
(using overlap) until it reaches a single community. This is 
essentially holding Mmn = 0 while minimizing Mol . It can be 
shown (Scripps 2011) that a commSet that is ego-centric (no 
missing neighbors) can have two communities merged and 
the resulting commSet will also be ego-centric. So similarly 
to the disjoint agglomerative methods, this one creates sets 
that move along an edge of the canvas but the ego-centric 
edge instead of the disjoint one.

There are some algorithms that detect algorithms on the 
bottom edge of the canvas. Simply finding cliques would 
result in commSets placed there. However, the CFinder 
(Palla et al. 2005), algorithm starts with cliques of a cer-
tain size and then merges them. The resulting communities 
often have very low Mol so they are close to the right edge 
of the triangle. We are not aware of any algorithms that start 
with singletons and copy nodes into communities until they 
become neighborhood communities (or the other direction) 
but such an algorithm is not inconceivable. The algorithm by 
Ahn et al. (2010) partitions the links instead of the nodes—
the nodes are then added to the communities to which their 
associated links belong. This algorithm tends to generate 
many communities with a high level of overlap.

3 � Notation and metrics

Nodes in networks can be grouped together into sets and 
are often referred to as communities. Intuitively, they are 
typically grouped in a way that agrees with the link struc-
ture—that is, there should be many links between nodes 
within the same community and fewer between nodes in 
different communities. The commSetSpace is a framework 
that is useful for measuring the quality and characteristics 

of a specific set of communities. It will be defined below, 
after defining the structures and statistics necessary for the 
commSetSpace definition.

3.1 � Notation and structures

Nodes in networks can be placed into disjoint or overlap-
ping communities. Disjoint communities are ones where 
each node is placed in one, and only one, community. 
Overlapping communities allow nodes to be placed in 
one or more communities. The commSetSpace represents 
all possible commSets, which is the same as all possible 
overlapping commSets. This set of all possible commSets, 
has as a subset, the set of all possible disjoint commSets.

As will be seen later, the commSetSpace maintains both 
disjoint (referred to as home communities) and overlap-
ping communities (communities). This is necessary for the 
algorithms that will be described later. We begin with a 
formal description of networks and community structures.

A network G = (V ,E) is a closed systems of nodes V 
which are linked to each other by edges E ⊂ V × V  . Nodes 
can also be grouped into communities, ci = {vj,… vm} , 
through a process called community finding. A node 
vi can be placed in more than one community, but only 
one community is designated as its home community. A 
commSet S = {G,C, h} is a triplet where C = {c1,… , ck} 
is a collection of k communities and h is a home com-
munity function. For describing the algorithm it will be 
convenient to represent the network G by an adjacency 
matrix A = [aij]n×n where aij = 1 if there is a link between 
nodes vi and vj. Furthermore, we shall also represent both 
the communities and home communities by 0/1 matrices. 
For communities, C = [cij]n×k where cij = 1 if vi is in com-
munity j. Likewise, for home communities, H = [hij]n×k.

Figure 2 will be used to illustrate the structures and 
NEO. The two community structures are shown in Table 1. 
Note that the home (disjoint) communities place nodes 
–d in community 1 and nodes e–j in communitya 2. To 
the right of that is the (overlapping) community structure 
which looks the same except that node d is in both com-
munities 1 and 2.

 

Fig. 2   Network to describe the metrics of the commSetSpace
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3.2 � NEO

The statistics chosen for the commSetSpace are considered 
violations, so that a smaller number is better than a larger 
number. The choice of the statistics was driven by a desire 
for high quality communities and for a system that can visu-
ally represent the spectrum of commSet types. Generally, 
we consider high quality communities as those with few 
between-community links, few within-community non-links 
and low overlap.

While the commSetSpace, the algorithms and this whole 
paper, considers only undirected networks, it is important to 
understand that the metrics are calculated for both directions 
of the link. Even though there is an undirected link between 
two arbitrary nodes, vi and vj, there might be a violation in 
the direction of vi to, vj but not from vj to vi.

The commSetSpace is defined by the following statistics 
for the nodes vi, vj,

Definition 1  Missing neighbors are those neighbors of a 
node that do not appear in the node’s home community.

In the example network, the link from a to b is not a miss-
ing neighbor because b is in a’s home community. From b 
to a is also not a missing neighbor as a is in b’s home com-
munity. Consider node d, though. It’s home community is 1 
but it is in both communities 1 and 2. Like the link from a 
to b, the link from b to d is not a missing neighbor because 
both b and d are in the same home community. It is differ-
ent for the link from d to e. Since d’s home community is 
1 and e is not in community 1 that is considered a missing 
neighbor. In the other direction, node d is in community 2 
which is e’s home community so that is not considered a 
missing neighbor.

Mmn(vi, vj) =

(
1 −

K∑
k=1

(hikcjk)

)
⋅ aij

Definition 2  Extraneous nodes are nodes not directly linked 
to a node within its home community.

There are no extraneous nodes in community 1 of the 
example network, because all nodes are linked to all other 
nodes in that community. In community 2, though, there are 
many extraneous nodes. Since there is no link between node 
f and node h, and they are both in the home community of 2, 
node h is an extraneous node with respect to f and f is extrane-
ous with respect to h. Again, consider node d. There is no link 
between f and d, node f’s home community is 2 and d is in 2, 
so d is extraneous with respect to f. However, since d’s home 
community is 1, node f is not extraneous with respect to d.

Definition 3  Overlap is the number of communities that a 
node is placed in besides its home community.

The only overlap in the example network is node d, so 
there is a total overlap of 1.

Using these metrics we can quantitatively judge a 
commSet. Generally, an analyst would probably choose lower 
values for all three of these metrics however, there is a trade-
off. A lower value of one of the metrics will normally result in 
a larger value for one or both of the others. What constitutes 
an ideal commSet cannot be objectively defined but is spe-
cific to a user’s needs. Later, in describing the CHI algorithm, 
weights will be incorporated to prioritize the violations.

While there are other statistics for measuring the quality 
of communities it is not the intention here to show that NEO 
is a better statistic. It is valuable because it allows the com-
munities to be charted according to their characteristics and 
because algorithms that optimize it can be tuned to find sets 
with specific characteristics.

3.3 � commSetSpace canvas

The commSetSpace canvas, as shown in Fig. 3, is a two 
dimensional chart for plotting commSets. It is an equilat-
eral triangle in which each side corresponds to a low or 
zero measurement of one of the metrics. The lower edge 
corresponds to low extraneous values, the left edge corre-
sponds to low missing neighbors and the right edge corre-
sponds to low overlap. Moving away from an edge towards 
the other side of the triangle, the value of the metric gets 
increasingly larger.

Men(vi, vj) =

K∑
k=1

(hikcjk) ⋅ (1 − aij)

Mol(vi) =

K∑
k=1

cik − 1

Table 1   Community structures Node Home Comm

1 2 1 2

a 1 0 1 0
b 1 0 1 0
c 1 0 1 0
d 1 0 1 1
e 0 1 0 1
f 0 1 0 1
g 0 1 0 1
h 0 1 0 1
i 0 1 0 1
j 0 1 0 1
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The top point, where there is zero overlap and zero miss-
ing neighbors would be the commSet defined by one large 
community. The point in the lower left is the set of all neigh-
borhood communities—that is, each node has a home com-
munity consisting of it and its neighbors. The point in the 
lower right is the set of singleton communities.

The commSets that are mapped near to the edges also 
have distinctive characteristics. Disjoint communities—
those with no overlap—are appropriate for partitioning 
nodes. Clique-like communities are those where nearly all 
nodes in a community are connected to nearly all others. 
Ego-centric communities are ones every node has at least 
one community, to which it and all of its neighbors belong.

Here we provide some examples of situations where 
commSets with specific characteristics are desired. Disjoint 
commSets are applicable in cases where nodes cannot be 
physically separated into more than a single community. For 
example, when considering a network of computer equipment 
one might wish to have the devices assigned to a particular 
community for purposes of oversight and maintenance. The 
clique-like communities at the bottom of the canvas occur 
naturally when people form small groups within social net-
works. Finding these communities in a network such as Face-
book would reveal the many groups that form around special 
interests. Terrorism experts may be interested in forming 
ego-centric communities of suspected terrorists with known 
connections. Each suspect would have at least one commu-
nity with all of his known connections with the other nodes 
in the community being possible accomplices.

4 � Method

As stated in the previous section, high quality communities 
should have low values for all three NEO metrics. Towards 
this goal, the following objective function is proposed:

In Sect. 4.3 it will be generalized to allow the user to weight 
the metrics according to the kind of communities desired.

(1) = Mmn +Men +Mol

Using the concept of home and overlapping communties, 
two algorithms will be proposed to optimize the objective 
function. The first, CHI, is an EM-like algorithm that alter-
nates between improving the home and overlapping com-
munities. The second, Gamit, is an agglomerative approach. 
Each has its merits and they work well together as discussed 
in Sect. 4.3.

4.1 � CHI algorithm

The input to the CHI algorithm is an initial commSet 
S = (G,C,H) and the output is the (locally) optimal commSet 
Ŝ = (G, Ĉ, Ĥ) . CHI was designed to optimize the objective 
function  = Mmn +Men +Mol which can be rewritten as:

The approach to optimization is to alternate between improv-
ing H and C. In step 1, the C values are held fixed and the H 
values are changed. Step 2, changes the C values while the 
H values are fixed.

4.1.1 � Step 1

Each node, vi is placed in one and only one home community, 
that is hik = 1 for some k and hix = 0 for x ≠ k . For each node 
vi and each community k, we isolate the terms in  with hik 
in them:

For vi we need to set hik = 1 for exact one k and the rest must 
be zero. With C fixed, to minimize 2 we set:

This process moves each node to the community that mini-
mizes the objective function given the current values of C. 
It should be noted that changing the values of H for vi will 
not effect the decision of home community for any other 
node because we are not changing the value of any terms 
that contain H values other than for vi.

(2)

 =

n∑
i=1

n∑
j=1

(
1 −

K∑
k=1

hikcjk

)
aij

+

n∑
i=1

n∑
j=1

K∑
k=1

hikcjk
(
1 − aij

)

+

n∑
i=1

K∑
k=1

cik − 1

(3)
n∑
j=1

(
1 − hikcjk

)
aij + (1 − aij)hikcjk

hik =

⎧⎪⎨⎪⎩

1 for argmin
k

n∑
j=1

−aijcjk + (1 − aij)cjk

0 otherwise

Fig. 3   commSetSpace canvas
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4.1.2 � Step 2

In the next step we change C while holding H fixed. Recall 
that C allows for overlapping communities so that there is 
not just one cik that can to be set to 1 (but at least one needs 
to be 1). Like before, we isolate the terms with cik:

(4)
n∑
j=1

(
1 − hikcjk

)
aij + (1 − aij)hikcjk + cik

CHI starts with a random or given initial commSet 
S = (G,C,H) and then to loop through step 1 and step 2 until 
no more changes are possible. As stated above, after each 
step either the objective function is reduced or no changes 
are made so that we are guaranteed to find a local minimum. 
The details of CHI can be seen in Algorithm 1. 

We consider each ck in C for vi . Setting cik = 1 can cause 
Formula 4 can be positive or negative. Since negative val-
ues reduce the objective function we set all values of cik = 1 
where it is negative. For the case when none of the values 
of Formula 4 are negative, we set cik = 1 for the minimum 
value:

This process puts node vi into any community that makes 
the objective function smaller given the current values of 
H. Again, changes can be made in C to any node vi without 
affecting the other nodes.

Since the decision to change one node will not affect the 
decisions for the others, the changes can be made to nodes 
in any arbitrary order. It follows that in each step, the total of 
the objective function will either decrease or stay the same 
(if no changes are made).

cik =

⎧
⎪⎪⎨⎪⎪⎩

1 for
n∑
j=1

aijhjk − (1 − aij)hjk − 1 > 0

1 for argmax
k

n∑
j=1

aijhjk − (1 − aij)hjk − 1

0 otherwise

input : Initial commSet S = (G,C,H)
output: Optimum commSet Ŝ = (G, Ĉ, Ĥ)

Ĉ = C;
Ĥ = H;
while no more changes do

foreach vi ∈ G do
ĥix = 0,∀x;
ĥik = 1 for argmink

∑n
j=1 −aij ĉjk + (1− aij)ĉjk;

end
foreach vi ∈ G do

for k ← 1 to |C| do
ĉik = 0;
if

∑n
j=1 aij ĥjk − (1− aij)ĥjk + 1 > 0 then
ĉik = 1;

end
ĉik = 1 for argmink

∑n
j=1 aij ĥjk − (1− aij)ĥjk + 1;

end
end

end

Notice that in the two inner loops in which the values of H 
and C are reassigned, the order in which the program exams 
the nodes is not important. In the first loop, the values of H 
are reassigned using only the network A and the communities 
C. In the second loop, the C are reassigned using only A again 
and H. This means that changing one node’s home commu-
nity will not influence another’s. The same applies to C.

4.1.3 � Similarity to Kmeans

The Kmeans algorithm (Tan et al. 2005) separates n samples 
into k clusters. Each sample xi is a vector of d data values. 
Typically, the Euclidean distance is used to compute the dis-
tance between the samples and the cluster centers cj. The algo-
rithm is designed to minimize the objective or error function:

The algorithm proceeds by alternating between assigning 
samples to the nearest center and recalculating the centers 
until convergence.

E =

n∑
i=1

k∑
j=1

(cj − xi)
2
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The CHI algorithm introduced in this paper has many 
similarities to the Kmeans algorithm. They both are 
designed to minimize an objective function by a converg-
ing, alternating process. In the CHI algorithm, the H values 
are the assignments of the nodes to communities, similar to 
the assignment table used by Kmeans. Each column of the 
H matrix represents the assignments for one of the k com-
munities. The adjacency matrix A corresponds to the data 
samples X = {x1 … xn} , where the neighbors of a node pro-
vide evidence of which nodes should be grouped together.

The C matrix corresponds to the data centers. Each col-
umn vector of n elements lists the nodes that belong to that 
community. While this is not really an average of the nodes 
that are home to that community, it provides evidence to 
which nodes should be considered to be home to that commu-
nity. A node that is home to community k1 but is also assigned 
in C to k3 may later be assigned a home community of k3.

4.1.4 � Complexity

The complexity of the CHI algorithm as described above, 
is bound first by the number of iterations I, necessary for 
convergence. Within that loop we alternate between step 1 
and step 2 for each of the n nodes. Both of the steps involve 
summing data for each of the k communities for each of the 
n possible neighbors. The complexity is thus O(Ikn2).

For the actual implementation, we chose to use the neigh-
bor list format rather than the adjacency matrix. This require 
less memory and speeds up the algorithm. Notice in Algo-
rithm 1, the summaries inside the loop must examine all n 
nodes. With the neighbor list it need only iterate over the 
nodes neighbors. For the home communities we chose a 

vector of n numbers 0… n − 1 representing the community 
to which it belongs. Using these choices, allows the algo-
rithm to be written more efficiently, specifically in O(Ikna), 
where a is the average number of neighbors for a node.

4.2 � Gamit

Gamit is an agglomerative algorithm (see Tan et al. 2005; Jain 
and Dubes 1988), which starts with every node in a commu-
nity by itself. It then merges communities base on minimizing 
the objective function in Eq.  2. Unlike a typical agglomera-
tive algorithm, it merges two sets of communities, the home 
and overlapping communities. Since membership in the home 
communities is unique (a node is placed in one and only one 
community), merging them is straightforward. Rather than 
merge the overlapping communities, it is convenient to simply 
perform a single iteration of step 2 of the CHI algorithm.

4.2.1 � Algorithm

Details for Gamit are in Algorithm 2. The input to Gamit is 
the graph, G = (V ,E) and optionally k, the desired number of 
communities. H is initialized to an n × n matrix with 1s in the 
diagonal (each node in its own community). The main while 
loop merges communities until it is left with k communities. 
The algorithm then finds the two best communities, i and j to 
merge. Then it calls the merge function that combines column 
i and j of Ĥ (or’s the values).

In the second part of the loop, it creates a new, empty 
matrix for C. The remainder of the loop, is the second half of 
the CHI algorithm, adding nodes to the overlapping communi-
ties where appropriate. 

input : Graph G = (V,E), number of communities k

output: Optimum commSet Ŝ = (G, Ĉ, Ĥ)

n = |V |;
Ĥ = empty(n, n);
for i = 1; i < n; i++ do

hii = 1
end
k̂ = n;
while k̂ > k do

i, j = argmini,j
∑n

u=1
∑n

v=1 −auvĥuiĉvj + (1− auv)ĥuiĉvj ;
Ĥ = merge(Ĥ, i, j);
Ĉ = empty(n, k̂);
foreach vi ∈ G do

for k ← 1 to |C| do
ĉik = 0;
if

∑n
j=1 aij ĥjk − (1− aij)ĥjk + 1 > 0 then
ĉik = 1;

end
ĉik = 1 for argmink

∑n
j=1 aij ĥjk − (1− aij)ĥjk + 1;

end
end
k̂ = k̂ − 1;

end
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Note that the algorithm can be modified so that instead of 
stopping at the input k, it can evaluate each step, to find the 
best value of k. In our tests we used the lowest value of NEO 
as an optimum. In Sect. 4.3, another suggestion will be made 
for an optimal number of communities.

4.2.2 � Complexity

Implemented like the agglomerative clustering algorithm, 
Gamit has a complexity of O(n2 log n).

4.3 � Generalization

The algorithm weight Mmn , Men and Mol equally. To make 
the algorithms more general the following objective function

can be used where the lambda values are parameters that 
the user can enter to shape the communities to their specific 
needs. As an example, to find communities with little or 
no overlap and an emphasis on low missing neighbors, one 
could use �1 = 0.9, �2 = 0.1, �3 = 1.0.

Looking at the two algorithms, the � values can be 
inserted where there are expressions involving a and h or c. 
For example, in the CHI algorithm, replace

with

CHI and Gamit behave differently and can be used for differ-
ent purposes. CHI always finds a local minimum for a given 
starting set of communities. Gamit finds a good commSet but 
not usually the local minimum. However, when it is general-
ized according to the suggestions above, it find a good solu-
tion with NEO metrics close to the ones desired (according 

(5) = �1Mmn + �2Men + �3Mol

−aijĉjk + (1 − aij)ĉjk

−aijĉjk𝜆1 + (1 − aij)ĉjk𝜆2

to the input �s)—in other words, it is in the right part of the 
triangle. CHI is not as good at finding the communities with 
the desired properties because it depends on the input com-
munities which could be random. If a user is interested in 
finding the best (lowest NEO) commSet with the properties 
near to the input � s, good results can be obtained by using 
Gamit to find the initial commSet as input to CHI.

5 � Experiments

The central theme of this paper is summarized by two claims:

1.	 Different commSets have different characteristics and in 
comparing commSets, analysts should be concerned not 
only with the quality of the sets but also the characteristics.

2.	 The algorithms Gamit and CHI are effective at finding 
commSets that are both germane (having the desired 
characteristics) and of a sufficiently high quality.

The intention of the experiments section is to demonstrate 
evidence for the two claims.

The rest of this section is separated into a subsection to 
describe the algorithms and data sets, and two other subsec-
tions to show the need for Gamit and CHI and to show the 
effectiveness of the algorithms. The section concludes with 
some tests on larger networks and a discussion of the scal-
ability of the algorithms.

5.1 � Data sets and algorithms

Many data sets were used in the experiments to provide a 
variety of small and medium-large sets as well as link struc-
tures. The sets with their attributes are listed in Table 2. All 

Table 2   Datasets with relevant metrics

Dataset n Edges Degree Clust. coef. Path length Power law References

Avg Max

1 Tina 11 32 5.82 8 0.652 1.322 1.00 Pajek datasets (2018)
2 Ragusa 24 58 4.83 14 0.433 2.007 2.742 Pajek datasets (2018)
3 Karate 34 78 4.59 17 0.588 2.337 2.524 Zachary (1977)
4 Risk 42 81 3.86 6 0.542 4.381 1.203
5 Teen 50 77 3.08 7 0.523 2.44 1.76 West and Sweeting (1995)
6 Lesmis 77 254 6.6 36 0.736 2.607 2.123 Knuth (1993)
7 Copper 112 425 7.59 49 0.19 2.513 1.815 Newman (2006)
8 Football 115 613 10.66 12 0.403 2.486 1.185 Girvan and Newman (2002)
9 Jazz 198 2.7k 27.7 100 0.633 2.224 2.142 Gleiser and Danon (2003)
10 Dating 288 284 1.98 9 0 16.075 1.508 Bearman et al. (2004)
11 SlashDot 82k 504k 12.27 2552 0.0603 3.147 snap (2018)
12 Stanford 281k 1M 8.2 255 0.5976 4.489 snap (2018)
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of the sets are non-directional, unweighted networks. The 
sets tina, ragusa, karate teen, jazz, lesMis, dating and slash-
Dot are social networks extracted from books, music albums, 
studies or historical documents. The Parker Brothers game, 
Risk was transposed using the countries linked by borders. 
football is the network of college teams linked by matches 
and stanford is the web graph from Stanford University.

The table has columns for average clustering coeffi-
cient, average path length and power law coefficient. These 
allow the reader to identify networks as small world (high 
clustering coefficient and low average path length), scale 
free (power law coefficient between 2 and 3) or other. For 
example, football network is small world but not scale free, 
wikiElec is scale free but not small world and lesmis is both 
small world and scale free. In addition to the list of the data 
sets, there are diagrams of the smaller ones in Fig. 2.

In some of the experiments it is necessary to evaluate 
the quality of the commSets. There are some established 
statistics designed to measure the quality but it is not the 
intention of this paper to compare the results using every 
available statistic. While NEO’s merits can be debated, it 
will be used here as a measure of quality. When comparing 
algorithms, modularity (Newman and Girvan 2004), a well 
known statistic, will also be used to provide an additional 
level of confidence for readers.

In the experiments, besides Gamit and CHI, five other 
community finding algorithms are used to support the claims 
above. They were chosen to represent a range of different 
approaches to community finding. The first algorithm is the 
agglomerative (agglom) by (Clauset et al. 2004). The algo-
rithm begins with singleton communities and joins them to 
maximize modularity. The algorithm can be stopped at any 
threshold in the joining process to produce the commSet. 
The threshold chosen was the one that maximized modu-
larity. While there have been improvements made to this 
algorithm they have been mainly to improve the complexity 
leaving the basic approach intact. This is the only algorithm 
that specifically creates disjoint communities.

The second algorithm, CFinder by (Palla et al. 2005), uses 
the clique percolation method. In this approach, k-cliques 
are found and joined if they share k − 1 nodes. Overlap is 
possible when a node is in more than one k-clique. In most 
experiments the best results were used, with k = 3 , 4 or 5. 
There were some networks where CFinder did not find any 
communities.

Another approach (Ahn), by Ahn et al. (2010), partitions 
links hierarchically using edge similarity. Since a node can 
have many links, that node belongs to every community that 
each of its links are assigned to. Link similarity is based on 
the Jaccard index using the neighborhoods on the adjacent 
nodes. Links that are part of a tight community would have 
a high Jaccard index.

The agent-based algorithm SLPA by (Xie et al. 2011) 
is an extension of the label propagation method. It spreads 
labels between nodes according to pairwise rules. The nodes 
can retain a memory of past transactions which allows it to 
place a node in more than one community.

The last algorithm, OSLOM by Lancichinetti et al. (2011) 
uses a local expansion and optimization approach. It grows 
communities by adding neighboring nodes whose probabil-
ity of having internal connections greater than a random 
model. If a node has significant connections to two growing 
communities it can be placed in both.

5.2 � Variability of commSet characteristics

For a given network there are many possible commSets. It 
is not enough to show that their characteristics vary over the 
entire range of commSets. The quality of the commSets can 
also vary and as a general rule, higher quality commSets 
are desired. Recall that high quality commSets are those 
that have many links within the communities and fewer ones 
between. It is defined here as low values of the function 
in Eq. 1 (NEO). NEO was chosen because it satisfies the 
general concept of quality and it does not limit high quality 
commSets to a limited region of the canvas. The experiments 
will show that:

•	 there is a large number of possible commSets for even 
small networks, but only a very small number of high 
quality ones

•	 the high quality commSets are not limited to a concen-
trated area of the commSetSpace

•	 existing algorithms tend to localize their solutions
•	 different data sets tend to have good commSets with var-

ied characteristics

The first step is to show the distribution of quality over the 
range of commSets. Finding communities in a network is 
a difficult task because the search space is so large. For 
example, it can be calculated that the number of differ-
ent commSets for karate (Zachary 1977) using k = 2 , is 
2.9 × 1020 . Attempting to do an exhaustive search is prohibi-
tive for even small networks like karate. However, to show 
the distribution of commSet quality it will be necessary to 
do exhaustive search. A Monte Carlo approach would be 
inappropriate because, as it will be shown, there are very 
few high quality commSets and even if a large number of 
samples were chosen it is likely that it would select only 
mediocre commSets.

5.2.1 � The small number of quality commSets

The experiments here are designed to show the need for 
Gamit and CHI so those algorithms are not used. The 
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experiments also operate on tiny (7–9 nodes) and small 
networks. These networks are used for three reasons. First, 
because some of the experiments are exhaustive and can 
only be done on tiny graphs. Second, because some of the 
algorithms used for comparison had restrictive memory or 
time constraints and which limited the size of the networks. 
Third, the small networks can be visually displayed which 
will be helpful in understanding the results of some of the 
experiments.

To begin, two small networks will be used to visually 
show the distribution of commSet solutions. The set tina 
Hlebec (1993), Pajek datasets (2018) is an 11 node graph 
based on a study of 11 members of student government. The 
total number of possible combination of nodes grouped into 
2 communities is 88,572. The ragusa Pajek datasets (2018) 
set is a 24 node graph based on the ruling families of ragusa 
(now Dubrovnik). There are 8,388,607 possible combina-
tions of 2 communities for the ragusa set Fig. 4. 

Using the technique described in Kurmas et al. (2014), 
an exhaustive search of all possible 2-commSets were 
evaluated on the two graphs. For each commSet the num-
ber of NEO violations were computed. The results have 

Fig. 4   Images of the small net-
works used in the experiments

Fig. 5   Histogram of commSets for tina

Fig. 6   Histogram of commSets for ragusa
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been plotted as histograms in Figs. 5 and 6. The total NEO 
violations are measured on the horizontal axis with the 
counts on the vertical axis. In both plots, NEO appears to 
follow a well behaved distribution.  

It should be noted that NEO is the sum of 3 statistics 
and each of the statistics may have its own distribution. 
While the sum might appear to be normal it is probably 
more complex than that. Figure 7 shows histograms of the 
NEO statistics for five different networks. The networks 
include tina and ragusa plus three synthetic networks that 
represent extremes. The first row is a 16 node clique, the 
second row is for a 16 node ring network (each node is 

connected to the 2 nearest ones) and row three is a 16 
node star. The fourth and fifth rows show the charts for 
tina and ragusa.

For each network, there is a chart for the total NEO, 
another for Mmn , another for Men and finally one for modu-
larity. The chart for Mol is not shown as it does not depend 
on the network and always looks like a binomial distri-
bution. Even though the analysis uses NEO, modularity 
charts were added to show that it too, appears to behave 
somewhat like a distribution. Notice that the distributions 
look jagged for the clique and star. Men for clique is a sin-
gle bar—it will always be zero since every node is attached 
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Fig. 7   Distribution of violations for the clique (row 1), cycle (row 2), star (row 3), kapfer (row 4) and padgett (row 5) networks
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to every other. The total NEO in these extreme networks is 
not a normal distribution but there clearly are many more 
mediocre commSets and very few high quality ones.

As Fig. 7 demonstrates, the commSet distribution for 
graphs will not always follow a well defined distributions. 
The next experiment will provide evidence that many graphs 
will have very few commSets on the low NEO end of the dis-
tribution. The experiment was run to calculate the commSet 
distribution for every possible graph of n nodes. This sort 
of analysis is not possible for even small values of n such as 
34 (size of karate set). The number of graphs grows expo-
nentially with n as does the number of possible commSets. 
Using n = 7, 8 and 9 was feasible for the equipment available 
while still yielding some interesting results.

The experiment used the graphing program (McKay 
and Piperno 2013) to generate the graphs. For each graph, 
the NEO score for all possible commSets were calculated. 
The experiment determines whether a graph has less than 

x% of the commSets within the lowest 10% of the range of 
NEO scores. For example (using x = 0.01 , supposing that 
the range of NEO scores for a commSet went from 101 to 
200, this experiment determines whether less than 1% of 
the commSets have NEO scores in the range of 101–110. 
Results are tallied for all of the graphs ( n = 7, 8 and 9, to 
display what percent of them have less x% of the commSets 
within the lowest 10% of scores. The experiment was done 
for only k = 2 but it is assumed that other values of k would 
lead to similar results.

Table 3 summarizes the results. For n = 7 , only about 
45% of the graphs have less than 1% of the commSets in 
the first 10% and only about 19% have less than 0.5%. As n 
increases so do the percentages. With larger n there should 
be many more commSets and the distributions should be 
better defined. When searching for near optimum solutions 
then, we can expect there to be many, many good and fair 
solutions, but only a tiny few near-optimum solutions.

5.2.2 � Variety in quality commSets

The intention now is to show that these few near-optimum 
solutions can have different characteristics. The commSet-
Space canvas provides a convenient way to describe the 
characteristics of commSets. After finding a community, 

Table 3   Percent of graphs that 
have less than x% of commSets 
in the top 10% of commSet 
distribution

Nodes x = 1% x = 0.5%

7 45.4 18.6
8 81.6 54.3
9 91.3 73.8

Fig. 8   Top commSets for a selection of graphs
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one can calculate the NEO metrics and place a dot on the 
canvas to convey the characteristics of the set. Then at a 
glance, one can tell if it is disjoint, ego-centric, clique-like 
or somewhere in between.

In the first experiment, all of the best (lowest NEO score) 
commSets for a given 7 node graph are plotted on the canvas 
to show the diversity of the sets. The NEO scores ranged 
from 9 ± 3 to 38 ± 2 . The sets with a NEO score of less 
than the minimum plus 3 were chosen. Of the 135,072 pos-
sible commSets, this represented less than 0.3% in all cases. 
Rather than show the results for all 1044 graphs, a pseudo 
random selection of graphs were chosen.

In Fig. 8, the commSets have been plotted according to 
their NEO metrics for the graphs 100, 200, etc. The graphs 
are ordered by the sequence that they are extracted from 
Nauty. While for some graphs the best solutions are located 
in a somewhat narrow region of the chart, in all cases they 
are spread out within that region.

It is not claimed here that these results conclusively prove 
that for all networks good commSets can be found with dif-
fering characteristics. However, doing the experiment on a 
large graph is not feasible due to the exponentially large 
number of possible sets. Even with small networks like Tina 
and Ragusa it is prohibitive.

5.2.3 � Algorithms are localized and data sets are not

There are many different community finding algorithms that 
optimize different criteria. It can be claimed that they would 
tend to find the same kind of community. To test this claim, 
five different algorithms were tested on a number of differ-
ent network data sets and the results plotted on the canvas. 
Results of this experiment are shown in Fig. 9. The agglom 

and SLPA algorithms appear to consistently find commSets 
at the top right of the triangle where there is zero or little 
overlap and low values of Mmn . Ahn is also fairly consistent 
with results in the lower left portion of the triangle where 
the communities are like cliques or neighborhoods. CFinder 
and Oslom are less consistent, finding communities along 
the right edge. These commSets have low overlap and range 
from a very small number of communities with low Mmn 
down to singletons.

These results show that a particular algorithm will find 
commSets with specific characteristics or a range of char-
acteristics but that the decision is part of the algorithm and 
not adjustable by the analyst.

The results of the previous experiments are organized by 
data set in Fig. 10. A canvas is shown for each data set with 
dots being plotted for the commSets that each of the differ-
ent algorithms found. Notice that the plots for karate, risk 
and teen have many commSets near the top of the canvas. 
In Fig. 4, one can see that these networks appear to have a 
small number of non-overlapping communities. Thus it is 
not surprising that the commSets would be found near the 
top where Mmn and Mol are low. lesMis, copper, football and 
jazz are more dense and thus one would expect that the high 
quality commSets would have more communities of smaller 
number of nodes and possibly more overlap. Accordingly the 
solutions for these networks are more spread out towards the 
corner with singletons. The dating network is very sparse 
and very localized clustering (only between pairs of nodes). 
For this network, the algorithms either found a few (15–25) 
large communities or many (more than 280) communities of 
singletons or two-node cliques.

Fig. 9   NEO placement for dif-
ferent algorithms
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5.3 � Effectiveness of Gamit and CHI

The second group of experiments will show the effective-
ness of Gamit and CHI. In particular, it will be shown that:

•	 the � parameter allows the user to find germane 
commSets—those with specific characteristics

•	 Gamit and CHI can be tuned to find solutions that are 
similar to solutions found by the other algorithms in both 
characteristics and quality

•	 CHI is efficient

5.3.1 � Finding germane communities

By setting the � parameters the analyst can encourage both 
Gamit and CHI to focus on commSets with particular char-
acteristics. The experiments will show that while the algo-
rithms often do find commSets with the desired character-
istics there are some characteristics that are ellusive. With 
most sets, the algorithms have trouble with the area of the 
triangle in the middle, stretching to the edge with missing 
neighbors.

Recall that Gamit is an agglomerative method which 
merges communities based on optimizing Function 5. CHI, 
is an iterative method like KMeans, which starts with a 

Fig. 10   NEO placement for dif-
ferent data sets

Fig. 11   � Values for experiment to find specific commSets
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randomly chosen commSet. CHI typically finds commSets 
with very low NEO values but can drift from the characteris-
tics specified by the � values. Gamit finds commSets that are 
very close to the characteristics desired but often has higher 
NEO values. Analysts could effectively use a combination of 
the two algorithms; use Gamit to find a set with the desired 
characteristics and then apply CHI to improve the results, 
lowering the NEO values.

For the experiments in Fig. 12 we used Gamit only so 
that the results would more accurately reflect the desired 
characteristics as specified the the � values. For this experi-
ment we ran Gamit on eight different data sets using 7 dif-
ferent � values. The � values chosen—shown in the table of 
Fig. 11—represent the extreme positions of the triangle. It 
should suffice to show that if the algorithm can consistently 
find commSets with the characteristics of these extreme 
points, it can find the sets with any desired characteristics.

The results of the experiments can be seen in Fig. 12. 
As can be seen in all 8 data sets Gamit nearly always finds 
commSets with the desired characteristics. The major dif-
ficulty happens with � = (1, 1, 1)—the set in the center 
of the triangle. The result from Gamit had characteristics 
quite different from the � parameters for the sets risk, teen, 
jazz and dating. During the process of the algorithm, when 

communities are merged, early decisions could effect the 
results later. We suspect that the data sets that stray from the 
center position have some structural qualities that lead to these 
situations. Of course, if one is unhappy with the results of the 
algorithm, the � values can be modified and new communi-
ties generated. With a few exceptions, our experiments show 
that Gamit is effective in finding communities with specific 
characteristics.

5.3.2 � Comparison to other algorithms on real datasets

We ran a number of experiments on the data sets to com-
pare Gamit and CHI1 to the other algorithms selected for 
this paper. To compare the algorithms we used two metrics, 
NEO and modularity. One would expect CHI to do well at 
reducing NEO since it is specifically designed to do just that. 
We include modularity—a popular metric—as an additional 
comparison.

To do a fair comparison between gCHI and the other 
algorithms, it is important to insure that gCHI is finding 

Fig. 12   Gamit placements for 
different networks using differ-
ent � values

1  For the remainder of this section, we will refer to the combination 
of Gamit and CHI just as gCHI.



	 Social Network Analysis and Mining  (2018) 8:44 

1 3

 44   Page 16 of 19

the commSets with similar characteristics of the set found 
by the other algorithm being compared. This was done by 
running the other algorithms first and then, using the NEO 
values to assign � ’s that would guide CHI to find a set with 
similar NEO values.

The results are summarized in Table 4. The rows are 
grouped by the algorithms agglom, CFinder, Ahn, SLPA 
and Oslom. Within each algorithm all of the data sets are 
listed. Since CFinder does not always find a set of communi-
ties, only the data sets that had found communities are listed. 
The second two columns show the NEO values for both the 

Table 4   Comparison of Gamit 
and CHI (gCHI) to other 
algorithms

Data set NEO Mod

Alg gCHI Alg gCHI

Agglom
 Karate 320 295 ∙ 0.381 0.200
 Risk 258 200 ∙ 0.633 0.620
 Teen 302 150 ∙ 0.736 0.714
 LesMis 1578 576 ∙ 0.135 0.371 ∙

 Copper 2466 1648 ∙ 0.292 0.146
 Football 2064 1303 ∙ 0.566 0.567 ∙

 Jazz 9780 9713 ∙ 0.439 0.229
 Dating 4748 660 ∙ 0.878 0.736

CFinder
 Karate 232 216 ∙ 0.063 0.334 ∙

 LesMis 908 490 ∙ 0.068 0.389 ∙

 Copper 1212 1040 ∙ 0.009 0.164 ∙

 Football 616 1004 0.489 0.576 ∙

 Jazz 24594 7117 ∙ 0.016 0.230 ∙

Ahn
 Karate 278 151 ∙ 0.010 0.036 ∙

 Risk 271 88 ∙ 0.057 0.499 ∙

 Teen 244 65 ∙ 0.070 0.582 ∙

 LesMis 735 255 ∙ 0.039 0.452 ∙

 Copper 1718 851 ∙ 0.009 0.017 ∙

 Football 2135 1216 ∙ 0.008 0.035 ∙

 Jazz 9484 5171 ∙ 0.002 0.011 ∙

 Dating 1128 581 ∙ 0.114 0.184 ∙

SLPA
 Karate 468 295 ∙ 0.244 0.200
 Risk 226 202 ∙ 0.627 0.609
 Teen 278 146 ∙ 0.741 0.702
 LesMis 2000 576 ∙ 0.163 0.371 ∙

 Copper 11582 1637 ∙ 0.000 0.147 ∙

 Football 966 1303 0.592 0.567
 Jazz 9398 9713 0.441 0.229
 Dating 3188 660 ∙ 0.856 0.736

Oslom
 Karate 447 117 ∙ 0.176 0.302 ∙

 Risk 542 94 ∙ 0.395 0.600 ∙

 Teen 263 62 ∙ 0.612 0.635 ∙

 LesMis 1796 302 ∙ 0.083 0.467 ∙

 Copper 850 1088 − 0.016 0.227 ∙

 Football 598 738 0.580 0.603 ∙

 Jazz 4257 4113 ∙ 0.364 0.331
 Dating 584 452 ∙ 0.015 0.648 ∙
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algorithm listed to left and gCHI. Columns 5 and 6 show 
the modularity for the two algorithms. Column 4 contains a 
bullet if gCHI has lower NEO score than the other algorithm 
and column 7 contains a bullet if CHI has a higher modu-
larity. Recall that NEO is a measure of violations so lower 
values are better but for modularity higher values signify a 
better commSet.

Considering NEO, it is not surprising that gCHI does 
better than all of the other algorithms on all data sets 
except for 5 exceptions. In many cases the differences 
are dramatic. Looking at modularity the results are more 
mixed. gCHI has better results on all data sets for both 
CFinder and Ahn and all but one set for Oslom. SLPA 
and agglom have higher modularity scores than gCHI in 6 
out of the 8 data sets. Respecting agglom, this is not sur-
prising since it specifically optimizes modularity. While 
SLPA does not specifically optimize modularity it’s mes-
sage passing algorithm puts the emphasis on keeping 
linked nodes together which would result in higher scores 
for modularity. Even though these algorithms had higher 
modularity than gCHI in many circumstances the differ-
ences are not very large.

5.3.3 � Comparison to other algorithms on benchmark, 
(ground truth) networks

Real networks often have a natural community structure 
that is compatible with the link structure. Consider faculty 
at a university; academic department communities form 
naturally because individuals are more likely to be linked 
to others in their department than outside of it. Since there 
are not many real data sets available with these ground truth 

communities we used the LFR benchmark (Lancichinetti 
et al. 2008). This allows networks to be generated with dif-
ferent characteristics. For our experiments we generated net-
works of 1000 nodes, with average and maximum degrees of 
10 and 50 respectively, minimum and maximum community 
sizes of 20 and 50. We set the number of nodes to have over-
lap at On = 100 with the overlap ( Om ) set to 0, 2, 4, and 6.

For the experiments, the networks were generated and 
then for each algorithm, communities were detected and 
then compared to the ground truth communities using the 
extended normalized mutual information (NMI) proposed in 
Lancichinetti and Fortunato (2009). This metric compares 
the similarity of two sets and ranges between 0 and 1 with 
1 being a perfect match. For Gamit and CHI lambda val-
ues were set to � = (1, 1, 1) and � = (1, 0.1, 1) with the best 
results reported.

The result of the experiments can be seen in both 
Table 5 and Fig. 13. SLPA and Oslom were the best at 
recovering the ground truth communities with CFinder, 
Gamit and CHI having slightly lower values of NMI. It 
should be noted that as the amount overlap increases all 
algorithms do worse at detecting the communities. This 
is probably because the additional overlap obscures the 
ground truth community structure. In the face of this, algo-
rithms that use the link structure to find communties will 
have a greater variance in the communities that are found. 
That being the case, Gamit and CHI will find communities 
with the characteristics desired by the analyst according to 
the lambda values submitted.

5.3.4 � Scalability

In Sect. 4 it was shown that the complexity for CHI is 
O(Ikna) and for Gamit is O(n2 log n) . In practice the algo-
rithm typically converges in 3–10 loops so we can con-
sider I to be a constant. Also, a—the average number of 
neighbors—is often fairly small in most sparse networks. 
This means that CHI is really bounded by kn. Obviously 
CHI scales much better than Gamit. There may be a more 
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Fig. 13   Comparison of algorithms using NMI to ground truth com-
munities of benchmark networks

Table 5   Comparison of CHI to other algorithms on benchmark net-
works (NMI and seconds)

Alg. om = 0 om = 2 om = 4 om = 6 Time

Ahn 0.9793 0.8674 0.6802 0.5979 0.4
cFinder 0.4931 0.4129 0.2481 0.0953 0.7
Oslom 1 0.8779 0.7052 0.5944 1.8
Spla 1 0.8507 0.6929 0.6555 2.7
Gamit 0.9853 0.8463 0.6762 0.5643 12.8
Chi 0.9393 0.8273 0.6486 0.5565 0.02
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efficient way to implement Gamit but at this point it is left 
as future work.

To demonstrate the scalability the running times (in 
seconds) were recorded on the benchmark tests described 
above. The numbers can be seen in Table 5 in the last col-
umn. While Gamit is typically more accurate than CHI in 
finding communities that reflect the given lambda values, 
it is also much less efficient. It is several times slower than 
the other algorithms. On the other hand CHI by itself is 
much more efficient than the other algorithms.

For another demonstration of the scalibility of CHI, 
tests were run on two larger networks: slashDot and stan-
ford. Due to their size, we chose to run just CHI without 
Gamit, which still produced good results. It suffices to 
compare to the results to agglom since problems were 
encountered using the other algorithms. The results are 
listed in Table 6. For both sets, we set � to values that 
would find commSets like agglom. Not surprisingly, CHI 
had better NEO results than agglom. For modularity it was 
lower than agglom but not terribly far below, especially for 
stanford. CHI ran faster than agglom for both sets.

6 � Conclusions

This paper used the commSetSpace canvas to reason 
through the characteristics that different commSets might 
take on. For example, communities belonging to a set 
with a small number of communities and zero overlap will 
have different characteristics than, say, a set with many 
overlapping communities. Each may have advantages for 
different analyses.

It was shown that while there are a very large number 
of possible commSets for any given network, there are 
relatively few that have low values of the NEO statis-
tic. In the cases we studied, the few sets with low NEO 
could have different characteristics. It is important then, 
that analysts are able to find good sets (those with good 
statistics) as well as sets with the desired characteristics.

Through experiments, it was shown that specific 
algorithms tend to find sets with specific characteristics 
(or a specific range of characteristics). It is important, 
when using an algorithm to know the type of commu-
nities it produces. Running the algorithms on data sets 
singly showed that a specific data set might have good 

commSets with a specific range of characteristics. So 
while an analyst may wish to find a commSet with spe-
cific characteristic requirements, the data set may not 
have good sets with those requirements.

Two algorithms are presented to find communties with 
different characteristics. CHI is a fast, EM-like algorithm 
that finds a local minimum for a seed set of communi-
ties. It step-wise improves the solution to optimize the 
objection function in Eq. (2). If a seed is not provided it 
will start with a random commSet. The other algorithm, 
Gamit, is an agglomerative algorithm that merges com-
munities based again on the Eq. (2). With both algorithms 
the analyst can tune the solution using the � parameters.

The central theme of this paper is the importance of 
finding commSets of high quality and the right character-
istics. The algorithms can be used in series, using Gamit 
to find a commSet that is close to the desired character-
istics and then using CHI to improve the quality of the 
results. Since CHI scales much better than Gamit, with 
large networks, using CHI by itself will be much faster. 
The experiments showed that the algorithms are effective 
when compared to other proposed algorithms.

6.1 � Final thoughts

Although the efficiency of CHI was demonstrated in the 
experiments it is also possible to speed up the algorithm 
through parallelization. From one iteration to the next, 
changing the community or home community assignments 
for one node do not impact those of another, so the process 
can be done in parallel.

For those wishing to test or make use of the algorithms, 
the Java version of CHI has been posted to http://www.
cis.gvsu.edu/~scrip​psj/pubs/softw​are.htm. Also, a tool 
for analyzing small networks, Netzer, is also posted on 
the same page. Netzer is a GUI tool, written specifically 
for small networks only because of the visualization. The 
community finding portion of Netzer uses both CHI and 
Gamit.

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat​iveco​
mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 

Table 6   Comparison of CHI 
to agglomerative for large sets 
(metrics and time)

NEO Mod Seconds

Data set Alg CHI Alg CHI Alg CHI
SlashDot 1441M 4M 0.324 0.165 900 157
Stanford 3911M 1457M 0.894 0.823 1947 1434

http://www.cis.gvsu.edu/%7escrippsj/pubs/software.htm
http://www.cis.gvsu.edu/%7escrippsj/pubs/software.htm
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Creative Commons license, and indicate if changes were made.
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