
Analysis and countermeasures to side-channel
attacks: a hardware design perspective

Davide Zoni
Politecnico di Milano - DEIB

Via Ponzio 34/5, 20133, Milano, Italy
davide.zoni@polimi.it

Abstract—With the Internet-of-Things revolution, the security
assessment against implementation attacks has become a crit-
ical concern not only for hardware accelerators but also for
embedded CPUs executing cryptographic primitives. Starting
from an FPGA implementation of the open-hardware ORPSoC
system-on-chip running a software version of the AES, this
paper explores two implications of the side-channel information
leakage that impact the hardware design of general purpose
computing platforms. First, we explore the mapping between
the side-channel information leakage and the microarchitectural
components that are contributing to it. Second, we discuss the
variations in the observability of the side-channel information
leakage at post-synthesis and post-implementation levels of the
FPGA hardware design flow.

Index Terms—Embedded Systems Security, Side Channel At-
tacks, Hardware Design Flow, Applied Cryptography

I. INTRODUCTION

S ide-channel attacks represent one of the most signifi-
cant threats to the security of embedded systems in the

Internet-of-Things (IoT). Traditionally, cryptographic primi-
tives and protocols have proven to be effective and efficient
means to ensure security features, i.e., confidentiality and
data/endpoint authentication. However, their use in current
embedded scenarios calls for a security-oriented design that
takes into account both i) their mathematical formulation,
and ii) their resistance against attacks led by someone having
physical access to the computing platform. The latter class of
attacks, known as Side-Channel Attacks (SCAs), leverages on
the additional information coming from the measurement of
the activity of the computing platform to infer information on
the data being processed. In this scenario, power consumption
represents the most exploited parameter since it has been
proven to be a rich source of information and since it can
be easily measured [1]. We note that a side effect of such
exploitation can require to revise the traditional low power run-
time strategies for IoT devices [2] that are currently neglicting
security aspects.

The power analysis is the form of side-channel attack
in which the attacker studies the power consumption of a
cryptographic primitive, that is either software- or hardware-
implemented, to retrieve the secret key. In particular, the open
literature classifies the techniques exploiting the side-channel
information leakage on the power consumption in two sets:
simple power analysis (SPA) and differential power analysis
(DPA). The techniques in the first set leverage the changes in

the power consumption caused by key-dependant variations in
the control flow of the computation. In contrast, the techniques
in the second set leverage the changes in the power consump-
tion caused by the different switching activity of the computing
device and which are induced by the processing of different
data values. In the rest of this work we focus on DPA attacks
since are those for which the way the microarchitecture of
the computing device is designed plays a critical role. In fact,
successful SPA attacks leverage the flaws in the control flow of
the algorithm, while DPA attacks are tightly coupled with the
way the data is processed. To this extent, counteracting DPA
imposes to break the link between the power consumption
and the data being processed. Ad-hoc technology libraries [3]
as well as the use of masking schemes [4] have shown
to be effective in tackling DPAs. However, the additional
fabrication effort induced by the former and the area and power
overheads of the latter make them viable solutions to protect
small cryptographic accelerators rather than general purpose
embedded CPUs. To this extent, software-level coutermeasures
to tackle DPAs have been proposed. These work by either
randomizing the data being processed or by continuously
changing the code employed to perform the computation [5].
In particular, the software architect usually takes into account
the sole architectural abstraction of the computing platform,
that, however, can be proven insufficient to prevent side-
channel information leakage, since those latter are intimately
connected to the actual implementation of the computing
device, i.e., the microarchitecture.
Contributions - This work discusses the implications of
the side-channel attacks in the design of general-purpose
computing platforms with two contributions to the state-of-
the-art. First, we explore the mapping between the observed
side-channel information leakage and the microarchitectural
components in the CPU that are contributing to it. Second,
we motivate the variations in the observed side-channel infor-
mation leakage as a function of the abstraction level at which
the analysis is carried out, i.e., either post-synthesis or post-
implementation.
Outline - The rest of this manuscript is organized in three
parts. Section II presents the background on Differential Power
Analysis. The side-channel information leakage analysis is
discussed in Section III, while conclusions are drawn in
Section IV.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/220119195?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II. BACKGROUND

Given a symmetric cryptographic primitive, the differential
power analysis (DPA) workflow is an instance of a known
plaintext or a known ciphertext attack aiming at retrieving
the secret key. The attacker is assumed to know all the
implementation details of the cryptographic primitive and
can measure the power consumption of the device. We note
that the SCAs allow to independently consider the effect
of each bit of the secret key on the power consumption of
the device, thus severly reducing the security margin. Such
property allows to attack small portions of the secret key and
then assemble each identified portion to retrieve the entire
secret key. Moreover, power-aware DPAs are effective even
in the presence of a mathematically secure implementation
of the target cryptographic primitive, since they leverage on
the link between the power consumption and the data being
processed. The DPA attack workflow is organized in four
steps. First, we choose an intermediate value of the cipher
computation which depends on a small portion of the key,
usually either 1 or 8 bits, and a known, attacker-controllable
quantity, i.e., the plaintext. Second, the power consumption,
i.e., the side-channel, is continuously measured during the
execution of the cipher computation considering a large set
of different, randomly distributed known plaintexts. Third, the
attacker tries to predict the actual power consumption of the
device according to the chosen leakage model [6]. This way,
she can construct a hypothesized power consumption for each
of the values of the attacked portion of the secret key. Last,
each prediction is compared with the measured side-channel
at each considered time instant by means of a statistical test.
The correct value of the secret key portion is revealed as the
prediction depending on it will fit best the measurements.
Leakage modeling - It is critical to decide which target inter-
mediate value should be predicted and which data-dependant
power model to use. Usually such decisions are taken on a
trial-and-error basis. However, two considerations are usually
of help to minimize the design space of the two above-
mentioned design choices. First, the most significant portion of
data dependant power consumption in CMOS devices depends
on the switching power consumption of the microarchitecture.
Second, a reasonable coarse model of the power consumption
of the target operation producing the intermediate value is
sufficient to successfully attack the target [6]. To this extent, it
is common to assume that i) all logic components of the same
kind consume the same amont of power and ii) the switching
power remains proportional to the switching activity. As a
consequence, the Hamming Distance (HD) and the Hamming
Weight (HW) represent the two most popular leakage mod-
els for data dependant power consumption CMOS elements.
Considering a signal in a CMOS circuit, the HD measures the
number of single-bit switches between two values held by the
signal in two consecutive clock cycles. Differently, the HW
measures the number of ones of a signal in a specific clock
cycle as the power to load its fan out. We note that the HW
leakage model is simpler than the HD one since it requires

WB-MuxPC IR

Whisbone Instruction Bus

Main Memory

Instr
Load

RF

LSU

Whisbone Data Bus

ALU

FF

Imm

rA
rB
rW

FF

FF

opB

opA

FF
lsu_addr
lsu_dat

Instruction Fetch (IF) Instruction Decode (IC) Instruction
Execution (EX)

Write Back (WB)

fw
dA

fw
dB

lsu_o FF

Memory
Access (MEM)

Operand-Muxes

Whisbone Shared Intercon

ra
m

_d
at

_o

ra
m

_d
at

_i

FF

FF

Arbiter

Fig. 1. Architectural view of the ORPSoC system-on-chip used for the side-
channel information leakage analysis.

the knowledge of a single value carried on the signal.
Statistical distinguishers - Starting from the first introduction
of the Difference-on-Means (DoMs) statistical test to retrieve
the secret key of a DES cipher, several other techniques have
been proposed to enhance the accuracy and efficiency, i.e.,
reduce the number of required power traces to setup the attack,
of DPAs [7]. This work considers the Welch’s t-test proposed
in [7]. It is an extension of the student t-test, and it represents
the core statistical technique employed to check for statistical
differences between two subsets of power traces of unequal
sample size and variance. Equation (1) defines the t-statistic
of the Welch’s t-test, where µ1, µ2 are the sample means, n1,
n2 the sample sizes and σ1, σ2 the sample standard deviations
of the two populations.

t =
µ1 − µ2√
σ1

2

n1
+ σ2

2

n2

(1)

Given the number of degree of freedom and a confidence
level, it is possible to define, through the use of statistical
tables, a threshold for the t value for which the number of
degree of freedom, d, is defined in Equation (2).

d =
(σ1

2

n1
+ σ2

2

n2
)2

(σ1
4

n1
2(n1−1) +

σ2
4

n2
2(n2−1))

(2)

III. SIDE-CHANNEL INFORMATION LEAKAGE ANALYSIS

This section discusses the impact of the side-channel in-
formation leakage on the hardware design flow. We consider
the OpenRISC System-on-Chip (ORPSoC) Platform [8] as our
reference use-case. The ORPSoC features a single-issue, in-
order OpenRISC 1000 CPU with a 5 stages pipeline, and
a main memory module connected to it via a Wishbone
compliant bus (see Figure 1). Considering a target clock
frequency of 50MHz, the complete SoC was synthesized and
mapped onto a Xilinx Artix 7 XC7A100 device employing the
Vivado 2017.4 toolchain, while the switching activity outputs
were obtained employing Xilinx XSim 2017.4. We employed,
as our case study, the Advanced Encryption Standard (AES)
symmetric block cipher. In particular, we used its variant with

Clock

lbz rK,0x12(rA)

lbz rP,0x02(rA)

xor rK,rP,rK

sb 0x2(rA),rK

T-test

Side-channel information leakage

WB

EX-M EX-M EX-M WB

ID ID ID EX-M

IF IF IF ID

1 2 3

(a) Benchmark-1

Clock

lbz rK,0x0(rK)

xor rTmpA,rK,rRng

xor rTmpB,rP,rRng

xor rRes,rTmpA,rTmpB

T-test

Side-channel information leakage

EX-M EX-M WB

ID ID EX-M WB

IF IF ID EX-M

1 2 3

(b) Benchmark-2

Fig. 2. Two representative examples of the side-channel information leakage due to the data serialization in the microarchitecture. Even the Boolean masking
scheme can produce leakage if it serializes the secret key and the plaintext on the same input of the ALU to compute the bit-wise eXlusive OR (xor). rK and
rP are the register storing byte of the secret key and of the plaintext, respectively. rTmpA and rTmpB registers are used to store the intermediate computation
of the Boolean masking scheme, while the rRng contains a random value. Last, rA contains the base memory address of the plaintext and the secret key.

Clock

lbz r19,1(r3)

lbz r17,2(r3)

T-test

ram_dat_o[1] 0 P1 ⊕ K1 0

T-test

ram_dat_o[1] 0 P1 ⊕ K1 0

Synthesis

Place and route

MEM MEM WB

IF-st IF-st IF-st IF-st

1 2 3

(a) Time shift of the observed side-channel leakage

Clock

lbz r19,1(r3)

lbz r17,2(r3)

T-test

ram_dat_i[3] P3 ⊕ K3 0

T-test

ram_dat_i[3] P3 ⊕ K3 0

Synthesis

Place and route

MEM MEM MEM WB

IF-st IF-st IF-st IF-st

1 2 3

(b) Zero variance (synthesis)

Fig. 3. Side-channel information leakage observability at post-synthesis and post-implementation levels. The additional timing information of the post-
implementation analysis can operate a time-shift to the observed side-channel information leakage (Figure 3a). Moreover, the precision of the tools can limit
the observability of the security vulnerabilities in some scenarios (Figure 3b). The same sequence of two loads is analyzed targeting either the first (Figure 3a)
or the third (Figure 3b) bit of the intermediate.

a 128 bit key, implemented in software, employing a standard-
compliant, memory optimized (S-Box) implementation. We
computed the power traces corresponding to 700 AES exe-
cutions on independent, uniformly drawn, random plaintexts
and the same fixed secret key (K). To assess the side-channel
information leakage, we employed the Welch’s t-test (see
Section II) using the parameters suggested in [7]. We attack
a 1-bit portion of the secret key at a time and we computed
the value of the t statistic point-wise in time. We reject the
null hypothesis if the value of the t-statistic is below 4.5.
This, in turn, means that there is no detectable side-channel
information leakage with this amount of measurements with
a confidence of 99.99%. Our choice of the t-test is mutuated
by the absence of noise in the simulated environment, which
allows to employ such test without implicit assumptions on the
distribution of the noise [9]. For each plaintext (P), we set up
a t-test for each bit of the intermediate value generated after
the computation of the first AddRoundKey, i.e., Pi⊕Ki where
i is the position of the i-th bit in the 128-bit intermediate. It
follows that each t-test is fed with two set of traces obtained
by splitting the 700 collected traces on the actual value of
the considered bit. For the sake of clarity, we will represent
the outcome of the t-test, i.e., yes-no answer, instead of the
t-statistic itself, simply highlighting whether, for a given time
instant, the t-test detects potential side-channel leakage or not

(see T-test in Figure 2 and Figure 3). We collected two energy
measurements per clock cycle, i.e., first and second half of the
clock period. This is in fact the minimum number of samples
to observe any variation in the leakage detection due to the
timing delays introduced in the Place-And-Route (PAR) step.
Microarchitectural components inducing side-channel infor-
mation leakage - To expose the side-channel information
leakage caused by microarchitectural CPU modules, we em-
ployed two different sequences of instructions to implement
the AddRoundKey computation. We note that such instruc-
tion sequences are not limited to the AES primitive but
they are present in the software implementations of several
cryptographic libraries. Benchmark-1 mimics a possible non-
optimized sequence of instructions to perform the key addition.
It loads 1 byte for each one of the two operands from the
main memory, i.e., plaintext and secret key, it then applies the
bitwise eXclusive-OR (xor) and stores the result back to the
main memory. Benchmark-2 implements a Boolean masked
version of the key addition of Benchmark-1. It combines (xor)
the secret key and the plaintext values with two copies of the
same random value held in a third register. Then, the two
obtained results are xor-ed and the final result is stored back
to the main memory.

Figure 2 reports the results for Benchmark-1 and
Benchmark-2 obtained by computing the t-statistic point-wise
in time. In particular the evaluation of the CPU pipeline is

reported and for each clock cycle the possible vulnerabilities
highlighted by the employed t-test are reported (see T-test
waveform in Figure 2). Considering Figure 2a, we note
that the t-test highlights a possible exploitable side-channel
information leakage aligned to the negative edge of the clock
signal in cycle 2 and cycle 3. Such leakage is due to the data-
serialization effect that emerges when two critical data values,
i.e., the plaintext and the secret key, are serialized in one or
multiple microarchitectural data paths in two consecutive clock
cycles. At the beginning of clock cycle 2, the second load
terminates the M stage and the plaintext byte appears at the
input of the Load Store Unit (LSU). Such value overwrites the
previously loaded key byte and thus it generates side-channel
information leakage. The same information leakage due to the
serialization effect also affects clock cycle three. In particular,
the plain byte traverses the flip-flip-based register in the write
back stages, thus overwriting the key byte value stored in the
previous cycle (see WB stage architecture in Figure 1).

Results in Figure 2b demonstrate that the data serialization
effect can induce an exploitable side-channel leakage even in
presence of a software-based side-channel countermeasures
to DPA that are not considering the underlying microarchi-
tecture (Benchmark-2 implements the masked version of the
AddRoundKey function). In particular, the assertion of the
operands to the ALU (to perform the xor instructions) causes
an exploitable side-channel information leakage at cycle 2.
The leakage is due to the data serialization of the key byte
(rK) and of the plain byte (rP) on the same physical input of
the functional units, and thus onto the driver of such signal, in
two consecutive clock cycles. Such transition shows a number
of toggles equal to the Hamming Distance between the plain
and the key bytes, and consequentially fitting the Hamming
Weight power consumption model of the xor combination of
the plain and of the key.
Observability of the side-channel leakage - The clean room
analysis of the side-channel information leakage represents
a standard practice to investigate the mapping between the
security vulnerabilities and the parts of the microarchitecture
that contribute to them. It is therefore important to take into
account the effect of the model of the power consumption
depending on the level of abstraction used for the analysis.
Below we consider the side-channel leakage observability at
post-synthesis and at post-implementation abstraction levels
since they represents the points of the standard hardware
design flow where performance, area, reliability [10] and
timing metrics are measured. The time-shift effect emerges
when the t-test detects a possible information leakage in both
the post-synthesis and the post-implementation analyses. Such
leakage is due to the same set of wires in both analyses,
but the post-implementation one shows it delayed by half
of a clock cycle with respect to the post-synthesis one (see
Figure 3a considering the 1-st bit of the intermediate value).
Such temporal shift is due to the actualization of the delay
value for each signal made during the PAR stage, i.e., net
delays are estimated or not accounted at all by the tool
in the post-synthesis netlist. The zero-variance (synth) (see

Figure 3b) captures those scenarios where the t-test detects
possible side-channel information leakage sources in the post-
implementation analysis and not in the post-synthesis one.
While we cannot directly determine the cause of this leakage
because of the closed source nature of the Vivado Power
Report tool, we noted that the precision of the power model
limits the observability of small power variations since the tool
is not primarily intended for side-channel information leakage
analysis. In particular, the power variations on the power traces
in such time points go to zero due to possible truncation
or rounding effects and thus no leakage can be detected.
Moreover, we note that the alternate case is also possible,
i.e., the leakage is shown in the post-synthesis analysis and it
disappears in the post-implementation one.

IV. CONCLUSION AND FUTURE DIRECTIONS

This paper discusses the impact of the side-channel infor-
mation leakage on the hardware design of general purpose
computing platforms. We employ the OpenRISC SoC, and run
a software version of the AES as representative use-case for
the entire investigation. The SoC has been synthesized and
implemented targeting the Xilinx Artix 7 XC7A100 FPGA
device. Our investigation at both post-synthesis and post-
implementation seems to show that the differences in the
observed side-channel behavior depend on the accuracy of the
considered netlist of the computing platform. Moreover, we
demonstrate the link between the side-channel behavior and
the microarchitectural components that are contributing to it,
even in presence of a Boolean masking countermeasure.

REFERENCES

[1] D. Zoni, A. Barenghi, G. Pelosi, and W. Fornaciari, “A Comprehensive
Side-Channel Information Leakage Analysis of an In-Order RISC CPU
Microarchitecture,” ACM Trans. Des. Autom. Electron. Syst., vol. 23,
no. 5, pp. 57:1–57:30, Aug. 2018.

[2] D. Zoni, L. Cremona, and W. Fornaciari, “All-digital energy-constrained
controller for general-purpose accelerators and cpus,” IEEE Embedded
Systems Letters, pp. 1–1, 2019.

[3] K. Tiri and I. Verbauwhede, “A digital design flow for secure integrated
circuits,” IEEE Trans. on CAD of Integrated Circuits and Systems,
vol. 25, no. 7, pp. 1197–1208, 2006.

[4] O. Reparaz, B. Bilgin, S. Nikova, B. Gierlichs, and I. Verbauwhede,
“Consolidating Masking Schemes,” in Advances in Cryptology–CRYPTO
2015–Part I, 2015, pp. 764–783.

[5] G. Agosta, A. Barenghi, G. Pelosi, and M. Scandale, “The MEET
Approach: Securing Cryptographic Embedded Software Against Side
Channel Attacks,” IEEE Trans. on CAD of Integrated Circuits and
Systems, vol. 34, no. 8, pp. 1320–1333, 2015.

[6] P. C. Kocher, J. Jaffe, B. Jun, and P. Rohatgi, “Introduction to differential
power analysis,” J. Cryptographic Eng., vol. 1, no. 1, pp. 5–27, 2011.

[7] G. C. Becker, J. Cooper, E. DeMulder, G. Goodwill, J. Jaffe, G. Kenwor-
thy, T. Kouzminov, A. Leiserson, M. E. Marson, P. Rohatgi, and S. Saab,
“Test vector leakage assessment (TVLA) methodology in practice,” in
International Cryptographic Module Conference, vol. 1001, 2013.

[8] F. Jullien, J. Bennett, J. Bonn, J. Baxter, M. Gielda, O. Kindgren,
P. Gavin, S. Macke, S. Cook, S. Kristiansson, S. Horne, and
S. Wallentowitz. (2018) OpenRISC Reference Platform Soc ver. 3.
[Online]. Available: https://github.com/openrisc

[9] F.-X. Standaert, “How (not) to Use Welch’s T-test in Side-Channel
Security Evaluations,” Cryptology ePrint Archive, Report 2017/138, To
appear in Proc. of CARDIS 2018, 2017.

[10] D. Zoni and W. Fornaciari, “Sensor-wise methodology to face nbti
stress of noc buffers,” in Proceedings of the Conference on Design,
Automation and Test in Europe, ser. DATE ’13. San Jose, CA, USA:
EDA Consortium, 2013, pp. 1038–1043.

