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ABSTRACT: 

 

High-resolution land cover maps are in high demand for many environmental applications. Yet, the information they provide is 

uncertain unless the accuracy of these maps is known. Therefore, accuracy assessment should be an integral part of land cover map 

production as a way of ensuring reliable products. The traditional accuracy metrics like Overall Accuracy and Producer’s and User’s 

accuracies - based on the confusion matrix - are useful to understand global accuracy of the map, but they do not provide insight into 

the possible nature or source of the errors. The idea behind this work is to complement traditional accuracy metrics with the analysis 

of error spatial patterns. The aim is to discover errors underlying features which can be later employed to improve the traditional 

accuracy assessment. The designed procedure is applied to the accuracy assessment of the GlobeLand30 global land cover map for the 

Lombardy Region (Northern Italy) by means of comparison with the DUSAF regional land cover map. Traditional accuracy assessment 

quantified the classification accuracies of the map. Indeed, critical errors were pointed out and further analyses on their spatial patterns 

were performed by means of the Moran’s I indicator. Additionally, visual exploration of the spatial patterns was performed. This 

allowed describing possible sources of errors. Both software and analysis strategies were described in detail to facilitate future 

improvement and replication of the procedure. The results of the exploratory experiments are critically discussed in relation to the 

benefits that they potentially introduce into the traditional accuracy assessment procedure. 

 

 

1. INTRODUCTION  

Nowadays, the Land Cover (LC) data is entitled as key 

information to a number of pressing scientific and societal 

concerns connected to the environment. These include - among 

others - natural resources management (see e.g. Pielke, 2005; 

Cui et al., 2014), climate and biodiversity studies (see e.g. Turner 

et al., 2003; Feddema et al., 2005; Bontemps et al., 2013; Oxoli 

et al., 2018), urban planning (see e.g. Esch et al., 2010), etc.   

 

The progress in Earth Observation (EO) techniques and 

platforms have significantly upheld the development of the LC 

maps. Over the last two decades, the improvement of the satellite 

imagery spatial, temporal, and radiometric resolution together 

with the increasing availability of computing power and the 

decreasing costs of these technologies have brought LC maps 

development to an unprecedented level (Tatem et al., 2008). 

Modern LC maps - in fact - provide often with global spatial 

coverage, frequent updates, and pixel resolution up to few meters 

thus enabling outstanding opportunities for analysing and 

modelling phenomena taking place on the Earth surface. 

Examples of the above are a number of high-resolution products 

released by different national and international EO programs. 

These include multi-class and global coverage LC datasets with 

a spatial resolution equal or lower than 30 m such as the 

GlobeLand30 (GL30) with 10 classes (Chen et al. 2015), and the 

Fine Resolution Observation and Monitoring of Global Land 

Cover (FROM-GLC) with 8 classes (Gong et al., 2013). Higher 

resolution (10m) thematic datasets are also available, among 

others the Global Human Settlement Layer (GHS) (Pesaresi et 
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al., 2016) and the Global Urban Footprint (GUF) (Esch et al., 

2013).  

 

On one hand, global LC maps provide users with consistent LC 

information, thus empowering reproducible LC-based 

applications at a global scale. On the other hand, this growing LC 

maps availability proposes additional burdens and concerns 

connected with their quality and - in turn - with the design of 

reliable accuracy assessment procedures. Accuracy assessment is 

key to determine the goodness of a map of representing the 

reality and, therefore, its suitability for any specific application. 

In fact, for applications at a smaller or local scale the accuracy of 

global LC maps does not always meet the users' requirements, 

thus making the use of regional or local land cover maps - where 

available - often preferred. In this context, the accuracy 

assessment of global LC maps by means of comprehensive 

validation procedures still features a pivotal task to provide a 

detailed description of the global LC maps quality as well as to 

promote their use into accuracy-demanding or local applications. 

 

In views of the above, this work focuses on the accuracy 

assessment of the GL30 map that is the most frequently updated 

(2000, 2010, and 2015 announced) high-resolution global LC 

multiple-class map currently available. The validation is carried 

out at a regional scale for the Lombardy Region (Northern Italy) 

by means of comparison with higher resolution LC regional 

datasets. The DUSAF (Destinazione d'Uso dei Suoli Agricoli e 

Forestali) land cover vector map at a scale 1:10000 (ERSAF, 

2010) is employed as the reference dataset for the classification 

accuracy. Indeed, it represents the highest resolution LC map 
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available for the study area. Traditional accuracy assessment 

procedures - based on the confusion matrix - are considered 

(Congalton, 2004) and enriched with data exploratory 

experiments for analysing spatial variability and patterns of 

classification errors by means of spatial association statistics. 

The analysis of spatial association to assess the accuracy of 

thematic maps has been proposed in the literature (see e.g. 

Campbell, 1981; Steele et al., 1998). In this work, a procedure to 

investigate also partial disagreements in the map classification 

by exploiting data at different resolutions is proposed. Results 

provide metrics allowing to describe global, intra-class, and 

inter-class classification accuracy. The preliminary outcomes of 

the errors spatial variability analysis outline interesting 

correlations among some classification error features and the 

errors underlying spatial patterns. This makes the introduction of 

this additional analysis component into the confusion matrix 

promising. 

 

The paper proceeds as follows.  In Section 2, the details of the 

LC dataset used in this work are presented. In Section 3, data 

processing strategies are described. Results are reported and 

discussed in Section 4. Conclusions and future directions for the 

work are included in Section 5. 

 

 

2. DATASETS  

The accuracy assessment presented in this work considers two  

LC datasets, namely the GL30 as target raster map and the 

DUSAF vector map as reference or ground truth. The main 

characteristics of these datasets are presented in the following. 

2.1 GlobeLand30 (GL30) 

The GL30 (www.globeland30.org) is an open-access 30 m 

resolution global LC raster data product developed by the 

National Geomatics Center of China. It is comprised of 10 

classes, including Cultivated land, Forest, Grassland, Shrubland, 

Wetland, Water bodies, Tundra, Artificial surfaces, Bareland, 

Permanent snow and ice in the years 2000 and 2010. The 

GlobeLand30 for the Year 2010 is considered in this work. The 

definition of the GL30 classes is reported in Table 1. 

 

Code Class Definition 

10 Cultivated 

Land 

Lands used for agriculture, 

horticulture and gardens, including 

paddy fields, irrigated and dry 

farmland, vegetation and fruit 

gardens, etc. 

20 Forest Lands covered with trees, with 

vegetation cover over 30%, 

including deciduous and coniferous 

forests, and sparse woodland with 

cover 10 - 30%, etc. 

30 Grassland Lands covered by natural grass with 

cover over 10%, etc. 

40 Shrubland Lands covered with shrubs with 

cover over 30%, including 

deciduous and evergreen shrubs, 

and desert steppe with cover over 

10%, etc. 

50 Water 

bodies 

Water bodies in the land area, 

including river, lake, reservoir, fish 

pond, etc. 

60 Wetland Lands covered with wetland plants 

and water bodies, including inland 

marsh, lake marsh, river floodplain 

wetland, forest/shrub wetland, peat 

bogs, mangrove and salt marsh, etc. 

70 Tundra Lands covered by lichen, moss, 

hardy perennial herb and shrubs in 

the polar regions, including shrub 

tundra, herbaceous tundra, wet 

tundra and barren tundra, etc. 

80 Artificial 

surfaces 

Lands modified by human activities, 

including all kinds of habitation, 

industrial and mining area, 

transportation facilities, and interior 

urban green zones and water bodies, 

etc. 

90 Bareland Lands with vegetation cover lower 

than 10%, including desert, sandy 

fields, Gobi, bare rocks, saline and 

alkaline lands, etc. 

100 Permanent 

snow and 

ice 

Lands covered by permanent snow, 

glacier and ice cap. 

Table 1. GlobeLand30 classes description 

 

The datasets were extracted from the Landsat 7 

(https://landsat.gsfc.nasa.gov/landsat-7) and the HJ-1 

(https://earth.esa.int/web/eoportal/satellite-missions/h/hj-1) 

satellite imagery using the Pixel-Object-Knowledge (POK) 

method (Chen, et al. 2015). On 22 September 2014, Chinese 

government donated GlobeLand30 to United Nations (UN) as a 

contribution towards global sustainable development. Since the 

release of GlobeLand30 in 2014, it has been freely downloaded 

by more than 10,000 users from 130 countries. 

2.2 DUSAF 

DUSAF is the official LC map of the Lombardy Region, 

produced by means of photo-interpretation of high resolution (50 

cm) aerial imagery. Multiple versions of the DUSAF are 

available related to different reference years, namely 1999, 2007, 

2009, 2012, and 2015, which can be freely downloaded from the 

Lombardy Region Geoportal 

(http://www.geoportale.regione.lombardia.it). The data is 

distributed under Italian Open Data License (IODL, 

https://www.dati.gov.it/content/italian-open-data-license-v20). 

The DUSAF 4.0 related to the year 2012 is considered in this 

work. The DUSAF is available in vector format with a declared 

rendered scale of 1:10.000. DUSAF classification consists of a 

five-level hierarchical structure starting with coarse LC classes 

whereas each sub-level represents its parent-level class with a 

higher detail. Table 2 describes the 3rd level of DUSAF 

classification, that was of interest for this paper. Looking at the 

first digit of the class code, one can also understand the 1st level 

classification (1. Artificial areas, 2. Agricultural areas, 3. Forest 

and semi-natural areas, 4. Wetlands, 5. Water bodies).  

  

DUSAF 3rd 

level class code 
Description 

111  Continuous urban fabric 

112  Discontinuous urban fabric 

121  Industrial, commercial, public and private units 

122  Road and rail networks and associated land 

124  Airports and helipads 

131  Mineral extraction sites 

132  Dump sites 

133  Construction sites 

134  Non-used and non-vegetated degraded areas 

141  Green urban areas 
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142  Sport and leisure facilities 

211  Non-irrigated arable land 

213  Rice fields 

221  Vineyards 

222  Fruit trees and berry plantations 

223  Olive groves 

224  Arboriculture of wood 

231  Pastures 

311  Broad-leaved forest 

312  Coniferous forest 

313  Mixed forest 

314  Recent afforestation 

321  Natural grassland at high altitudes 

322  Bushes and shrubland 

324  Transitional woodland / shrub 

331  Beaches, dunes and sand planes 

332  Bare rock and debris accumulation 

333  Sparsely vegetated areas 

335  Glaciers and perpetual snow 

411  Inland marshes and peat bogs 

511  Water courses 

512  Water bodies 

Table 2.  Third level of DUSAF classification legend 

 

 

3. DATA PROCESSING  

Generally speaking, the accuracy assessment of LC raster maps 

requires the involved datasets to be harmonized in terms of 

classification legend, coordinate reference system, projection, 

and resolution. This implies that one among the target map and 

the reference map needs to be resampled at a convenient 

resolution such as the reference map - conventionally with a 

higher resolution - is downsampled at the lower resolution of the 

target map. The downsampling, coupled with reclassification 

and cropping of the two maps on the same area, is considered to 

carry out traditional accuracy assessments, based on the 

confusion matrix. Details of the latter are reported in Section 3.1. 

To better investigate disagreements between the target and the 

reference map, in this work an alternative procedure enabling 

sub-pixel classification errors detection by preserving the 

original higher resolution of the reference map is proposed and 

tested. The processing steps required by this alternative 

procedure are described in Section 3.2. 

3.1 Data Preprocessing 

Regrarding the GL30 preprocessing, the raster map was cropped 

over the Lombardy Region extent and thus aligned the exact 

DUSAF map region. No further preprocessing of GL30 was 

needed to accomplish the accuracy assessment here presented. 

 

The DUSAF vector map required additional preprocessing steps. 

The most critical one was the selection of the pixel size to 

perform rasterization of the vector dataset. Rasterization is 

integral to perform both confusion matrix-based accuracy 

assessment as well as to the proposed sub-pixel errors detection 

procedure. The reason is better explained in the next sections. 

Rasterization step is a requirement due to the selection of the 

reference map (vector) for this work. The pixel size for 

rasterizing DUSAF was arbitrary set equal to 5 m to take into 

account the following factors. i) the theoretical minimum 

mappable unit that at the DUSAF scale (1:10000) is equal to 2 

m. ii) the alignment of the output reference raster with the target 

map (30 m) being its pixel size an integer multiple of the selected 

one.  iii) the output raster map dimension in memory to ease 

further processing operations with limited computational and 

storage resources. 

 

DUSAF class (level 3) Target GL30 class  

211, 213, 221, 222, 223, 224, 

231 

10 

311, 312, 313, 314 20 

321 30 

322, 324 40 

411 50 

511, 512 60 

111, 112, 121, 122, 124, 131, 

132, 133, 134, 141, 142 

80 

331, 332, 333 90 

335 100 

Table 3. Reclassification rules adopted in the conversion of 

DUSAF classes to GL30 classes 

 

The rasterization of the DUSAF was performed by considering 

the 3rd level of DUSAF classification hierarchy. Information 

about the DUSAF classes considered is reported in the Table 2. 

At this level, the description of the DUSAF classes is enough 

comprehensive to make the link to the classification legend of the 

GL30. Afterwards, DUSAF was reclassified to match the classes 

of GL30 according to reclassification rules reported in Table 3. 

 

The 5 m resolution reclassified map was adopted for the sub-

pixel classification errors analysis. The preprocessing of both 

target and reference map was carried out using the Free and Open 

Source Software (FOSS) GRASS GIS (https://grass.osgeo.org). 

3.2 Data Processing for Sub-pixel Errors Analysis 

In order to investigate spatial patterns of sub-pixel classification 

errors, a specific procedure was developed to enable counting the 

number of reference map pixels actually in disagreement or 

agreement - in terms of classification - with every single pixel of 

the target map. This allowed to exploit the higher resolution of 

the target map to obtain information also on partial 

disagreements and to arrange the results in a tabular format. The 

obtained data is used as input to analyse and map the 

disagreement spatial patterns. To accomplish the goals 

mentioned above, a new raster layer named ID was introduced to 

store information about the position of each GL30 pixel. ID raster 

was an exact copy of the GL30 raster in terms of grid size and 

resolution whereas each pixel value was substituted with a 

unique identifier i, e.g. an integer index (Figure 1a). The 

computation of the sub-pixel disagreements table is illustrated in 

Figure 1. 

 

The ID, GL30 and DUSAF rasters were overlaid in such a way 

that each pixel of the GL30 and the ID (30 m) overlapped to 36 

pixels of the DUSAF (Figure 1a). This number simply derives 

from the selected DUSAF pixel size that is 5 m. The overlay 

statistics were computed using the r.stats module of the GRASS 

GIS (https://grass.osgeo.org/grass70/manuals/r.stats). The 

DUSAF pixels "under" each ID/GL30 pixel were aggregated 

according to the class they belong to, keeping also track of their 

counts per class (Figure 1b). The introduction of the ID raster 

was crucial for the computation of per pixel counts. The GRASS 

GIS r.stats module provides only the possibility to compute 

cumulative pixel counts between classes of two or more raster 

maps at a different resolution. The artefact of introducing the ID 

raster allowed treating each GL30 pixel as a unique class thus 

enabling to compute DUSAF pixel counts at each GL30 pixel. 

The raw r.stats output table was processed using Python to 
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compute per pixel counts (Figure 1b) and to replace them by 

percentages (Figure 1c).  

 

Figure 1. Schematic of the data overlay procedure to compute 

sub-pixel error on a sample target map pixel i=15 

 

By considering the percentage for the DUSAF class identical to 

the GL30 class, the accuracy of the GL30 pixel is obtained. On 

the other way round, the error for a single GL30 pixel can be 

computed as the sum of the percentages of DUSAF classes that 

differs from the class of the considered GL30 pixel. Intra-class 

and inter-class errors can be computed by selecting and 

combining table columns to describe disagreements for a 

specific class or a combination of classes. The computed error 

percentages (or counts) can be mapped as numerical spatial 

variables by tracing back pixel coordinates using the ID raster. 

This feature enables to explore disagreement spatial patterns as 

well as to compute spatial association statistics to describe them. 

Finally, the table with pixel counts (Figure 1b) can be used to 

compute the confusion matrix, so that traditional accuracy 

indexes can be estimated. The confusion matrix was computed 

by summing column wise all the elements of the table for all 

unique GL30 class values.  

The number of entries for the full table - computed as in Figure 

1 - was larger than 26 million that corresponds to the number of 

GL30 pixels covering the Lombardy Region (~ 23868 km²). 

Hence, operations on such a large file (> 10 GB) required a 

careful selection of best software tools to handle these data with 

limited computational and storage resources. This is the case of 

this work where a standard desktop machine was used. Tabular 

data processing in Python is commonly performed using the 

Pandas library (http://pandas.pydata.org). However, to cope with 

large tabular data the Dask library (http://docs.dask.org) was 

adopted which allows extending common interfaces like Pandas 

to larger-than-memory datasets as well as supports 

multithreading computation for data analysis. On the other hand, 

the use of standard commands of GRASS GIS proved to be 

sufficient to perform the processing of the raster maps involved 

in the analysis. 

4. DATA ANALYSIS AND RESULTS  

4.1 Traditional Accuracy Assessment  

The GL30 accuracy with respect to the DUSAF has been already 

published (Bratic, et al. 2018a). In this former work, the approach 

used for computing the confusion matrix was slightly different 

than the one reported here. Namely, in Bratic et al. (2018a) the 

confusion matrix was computed using DUSAF raster map 

downsampled at 30 m.  The exact confusion matrix derivation 

adopted in this work is described in section 3.2. It is equivalent 

to the confusion matrix that would be derived as if both reference 

and classified datasets had 5 m resolution. Nevertheless, the 

different approach did not incur significant changes in results (up 

to 1%). Table 4 includes the confusion matrix normalized by 

column (i.e. divided by the total number of pixels in each GL30 

class). In Table 4, it can be observed that the agreement (diagonal 

values) of class 40 (Shrubland) is the lowest, and that the highest 

confusion (extra-diagonal values) is between class 40 and class 

20 (Forest). This confusion is also evident from traditional 

accuracy indexes, e.g. the Producer’s accuracy (PA) and the 

User’s accuracy (UA) (Congalton, 2004) shown in Table 5. Due 

to the similar physical properties of these two classes, the error 

may be caused by the classification algorithm used for producing 

the map. In order to better investigate and describe errors 

features, spatial patterns of disagreements between class 40 and 

20 is analysed. The next section focuses on this example to test 

the discuss the potential benefit of coupling the traditional 

accuracy assessment accuracy to exploratory and statistical 

spatial patterns analysis. Nevertheless, the same can be applied 

to the analysis of any intra-class and inter-class classification 

accuracy. 

  

Class 
GlobeLand30 

10 20 30 40 50 60 80 90 100 

D
U

S
A

F
 

10 90 11 1 20 35 9 30 1 0 

20 5 79 13 42 16 3 2 7 0 

30 1 3 51 13 4 0 1 7 0 

40 0 3 10 14 0 0 0 5 0 

50 0 0 0 0 35 1 0 0 0 

60 0 0 0 0 8 83 0 0 0 

80 3 2 0 2 1 2 66 0 0 

90 0 1 24 8 1 1 0 79 19 

100 0 0 0 0 0 0 0 0 81 

Table 4. Normalized confusion matrix [%] 

 

Class PA UA 

10 90 82 

20 79 79 

30 51 40 

40 14 23 

50 35 39 

60 83 94 

80 66 82 

90 79 79 

100 81 88 

Table 5. Producer’s and User’s accuracy [%] 

 

Accuracy for the whole map is estimated by Overall Accuracy 

(OA) index (Congalton, 2004), and it is equal to 79%. The result 

for the map accuracy is satisfactory, but exploiting Grassland, 
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Shrubland or Wetland class exclusively is not recommended due 

to their low PA and UA. The results for the Lombardy Region 

are aligned to the ones reported in previous accuracy 

assessments of GL30 over larger regions (Bratic et al., 2018a; 

Brovelli et al., 2015; Chen et al., 2015) 

4.2 Error Spatial Patterns Investigation 

As a first experiment, a map of the global error of each GL30 

pixel is created from the error full table computed in Section 3.2. 

Results provide visual insight into the general spatial patterns of 

agreements (pixel accuracy = 1), disagreements (pixel accuracy 

= 0), and partial disagreement (0 < pixel accuracy < 1) as shown 

in Figure 2. From the global error map (Figure 2c) is it possible 

to appreciate the global error spatial pattern that highlights a 

disagreement around peculiar map features such as rivers as well 

as forest areas (Figures 2a,b). A strong positive spatial 

association affecting the global error emerged with the presence 

of clusters of similar values (i.e. full/partial disagreements and 

full agreements) across the map (Figure 2c). To quantify this 

visually detected spatial patterns, the global Moran’s I index 

(Moran, 1950) is introduced. This index allows for assessing at 

which degree similar values of a spatial variable - i.e. the pixel 

error - are also neighbours in space. The neighbouring 

relationship among pixels is here defined by means of a K-

nearest neighbour spatial weights matrix (Getis, 2009) with K=8. 

The global Moran’s I value ranges from -1 to 1. A negative value 

depicts negative association, a value close to 0 indicates 

randomness or no association, whereas a positive value denotes 

positive association. Both the spatial weight matrix as well as the 

global Moran’s I index were computed exploiting functionalities 

of the PySAL Python library (https://pysal.org). The global 

Moran’s I value computed for the global error map is 0.80 that 

confirms the marked positive spatial association visually 

detected on the global error map (Figure 2c). 

 

 

Figure 2. Portions of a) GlobLand30 and b) DUSAF raster map 

and c) global error map within the Lombardy Region 

 

In principles, also local spatial association can be analysed by 

using the global error of each GL30 pixel and the same spatial 

weight matrix adopted above. Local Indicators of Spatial 

Association (LISA) such as the local version of the Moran’s I 

(Anselin, 1995) allows to describe spatial association at each 

location of the dataset, i.e. pixels in this case study. Outcome of 

LISA can be mapped to assess whether a pixel belong to a cluster 

(positive spatial association), an outlier (negative spatial 

association), or is not affected by significant spatial association 

(random). The local Moran’s I map was computed for the global 

the global error of each GL30 pixel. However, the obtained 

results were not adding substantial information on the errors 

spatial patterns. A marked positive spatial association emerged 

as a result of diffuse clustering affecting the error along the whole 

region. This was also described by the global Moran’s I value.  

The clusters pattern actually retraced the pattern of the full 

disagreement pixels. In views of the above, the LISA maps were 

not further considered for this case study.  

 

Focusing on the lowest detected classification accuracy, i.e. the 

one of class 40, the analysis was repeated by using the errors 

between the highest and the lowest confusions for this class 

which are class 20 (Figure 3a) and class 80 (Figure 3b) 

respectively. Once again, it was possible to observe a marked 

cluster activity of the error across the maps which is stronger for 

the error between classes 40 and 20. The global Moran’s I values 

are equal to 0.82 for classes 40 and 20 whereas equal to 0.62 for 

classes 40 and 80. This confirms the outcome of the visual 

assessment and provides credit to the outputs of the traditional 

accuracy assessment. 

 

 

Figure 3. Example of inter-class error pattern maps   

 

Finally, the visual exploration of the error maps pointed out 

additional local features in the disagreements as reported in 

Figure 4. By looking at the partial disagreements, it was 

encountered across the map that many patches of full 

disagreement pixels were surrounded by none partial 

disagreement pixels (Figure 4a). 

 

Partial disagreements are expected along transitions between LC 

classes as well as within areas with heterogeneous LC 

characteristics such as where pixels of the target map overlaps 

multiple pixels of the reference map that partially belongs to the 

same class (Figures 4d,e,f). In principle, these patterns represent 

reasonable errors that are due to the generally lower 

representation quality of the target map with respect to the 

reference one. The fact that none of the partial disagreement 

pixels surrounds a full disagreement pixels patch (Figure 4a) may 

indicate instead relevant missing objects or underlying issues in 

the reference map reclassification. An example is reported in 

Figures 4a,b,c which addresses the case of an urban park. 

According to the GL30 classification legend (Table 1), urban 

parks should be classified as Artificial Surface (class 80). The 

DUSAF reclassification was performed accordingly (Figure 4b). 

The sharp transition between full agreement and full 

disagreements spotted on the global error map (Figure 4a) is 
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showing that the urban park is classified as Grassland instead as 

Artificial surface on the GL30. 

 

 

Figure 4. Example of visual exploration experiment on error 

maps 

 

This ambiguity introduces an artificial error that cannot be 

directly traced back to the quality of the target map. The visual 

data exploration here proposed helps the analyst to better 

understand the dimension of the above undesired situation in 

performing accuracy assessment procedures. 

4.3 Results Discussion 

The traditional accuracy assessment analysis provided with 

robust indicators to describe the global accuracy of the GL30 

map for the Lombardy Region. However, these indicators do not 

provide insight into the spatial distribution of errors. The visual 

inspection of the errors spatial patterns as well as their analysis 

by means of spatial association statistics introduced this 

capability into the accuracy assessment workflow. Results from 

the spatial association analysis - such as the Moran’s I - allowed 

to uncover underlying patterns features providing alternative 

metrics to describe and quantify them by qualitatively linking 

the clustering of errors to the classification accuracies (Steele et 

al., 1998), as for the example described in Figure 3.  

 

Despite the significant computational requirements, the sub-

pixel disagreement table (Section 3.2) provides with a flexible 

and comprehensive input dataset to detailed accuracy 

assessments enabling - at the same time - local and global error 

patterns analysis. This can be considered the most valuable 

outcome of the presented work and it represents the starting point 

for future improvement of the proposed analysis.  

 

Finally, the enabled possibility to nimbly display and explore 

classification errors on a map assists the analyst to critically 

review the accuracy assessment procedure that may result in 

more reliable judgment of the actual quality of the LC map. 

 

 

5. CONCLUSIONS AND FUTURE WORK 

This paper presented an experimental accuracy assessment 

procedure. The procedure was designed to take advantage of 

traditional accuracy assessment techniques and couple them with 

exploratory experiments on the data. The procedure was 

employed to perform the accuracy assessment of the GL30 global 

LC map for the Lombardy Region by means of comparison with 

the DUSAF regional LC map. Traditional procedures provided 

robust estimates of the global accuracy of the GL30 map. 

Exploratory experiments addressed the investigation of the errors 

spatial patterns by outlining interesting features of maps 

disagreement that may be later adopted to improve the 

quantitative accuracy assessment.  

 

The experimental procedure required original and intensive data 

processing which was here addressed with the exclusive use of 

FOSS. The maturity, completeness, and reliability of such 

technology for spatial data management and analysis was 

verified during this work. FOSS provide the analysis with a 

potential to be empowered, replicated, and improved combined 

with sustainability in technology costs (Brovelli et al., 2017). 

Therefore, the use of FOSS technology is key to the future of this 

work as well as to the possible integration of the analysis pipeline 

e.g. into a GIS software module.  

 

In views of the above, the future directions for the work will 

mainly focus on a critical review of the proposed accuracy 

assessment procedure in order to systematically integrate 

outcomes of the exploratory analysis on errors spatial pattern into 

the traditional accuracy assessment. 
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