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Abstract. Artificial Intelligence on the edge is a matter of great impor-
tance towards the enhancement of smart devices that rely on operations
with real-time constraints. We present PolimiDL, a framework for the
acceleration of Deep Learning on mobile and embedded systems with
limited resources and heterogeneous architectures. Experimental results
show competitive results with respect to TensorFlow Lite for the execu-
tion of small models.
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1 Introduction

The recent success of Deep Learning (DL) has boosted its application to many
areas, with remarkable results that are influencing people’s lives [20]. Typical
implementations of DL models focus on the maximization of accuracy for a
given task, and architectures to achieve such an objective have become signifi-
cantly deeper and more complex over time [25][10]. Powerful workstations with
Graphics Processing Units (GPUs) were fundamental for the success of DL, mak-
ing their computationally expensive training possible. On the other hand, even
though resources of embedded systems, such as smartphones, tablets, wearable
devices, drones and Field Programmable Gate Arrays (FPGAs), are rapidly im-
proving, they are still not completely suitable for the deployment of big and
complex models. Furthermore, the use of remote cloud services for the execu-
tion of models has its own drawbacks due to the use of the network, such as
cost, availability, latency, and privacy issues [5]. These limitations promote the
interest in compact architectures for accelerating execution, by optimizing com-
putation, storage, memory occupation, and energy consumption. The efficient
execution of DL on the edge can benefit areas such as robotics, autonomous
vehicles, augmented reality, health monitoring and digital assistance, which rely
on smart devices with real-time constraints.

In this work, we present PolimiDL, a framework for accelerated DL inference
on mobile and embedded systems. PolimiDL speeds-up the execution time of
ready-to-use models, by applying multiple optimization methods, and increases
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efficiency of operations without impacting accuracy. Its implementation is very
generic, with neither hardware nor platform specific components, and supports
devices with very heterogeneous architectures. The development of PolimiDL
was started with the goal of deploying DL models on mobile devices, when no
other stable solutions were available. It is currently deployed in PeakLens1 [6], a
real world AI-enhanced augmented reality (AR) mobile app for the identification
of mountain peaks, with +370k installs. Experimental results demonstrate the
effectiveness of PolimiDL to accelerate inference time, achieving competitive
results with respect to TensorFlow Lite on a set of DL models and across multiple
mobile devices.

The contributions of the paper can be summarized as follows:

– We introduce the problem of DL acceleration for devices with limited re-
sources and discuss the design requirements of solutions capable of support-
ing a wide spectrum of device architectures.

– We propose a framework (PolimiDL) for DL acceleration that improves per-
formance on mobile devices and embedded systems without accuracy loss.

– We release a public implementation of the framework in an open repository2.

The rest of the paper is structured as follows: in Section 2, we discuss the
related work; in Section 3, we introduce the requirements; in Section 4, we present
PolimiDL; and in Section 5 we describe the evaluation of the framework; finally
Section 6 concludes and gives an outlook on the future work.

2 Related Work

Compression techniques. Compression techniques target large scale architec-
tures and aim at reducing the number of parameters and floating point oper-
ations (FLOPs), possibly tolerating small accuracy drops in favor of execution
acceleration and optimization of computational resources, storage, memory occu-
pation and energy consumption. Quantization [27] reduces numerical precision
of CNNs to accelerate run-time performance and reduce storage and memory
overhead, with minor accuracy loss. Pruning [8] removes redundant connections,
thus the number of weights, and proved to efficiently compress state of art mod-
els by one order of magnitude. Alternative options include knowledge-distillation
[11] to compress and transfer knowledge from complex models to simpler ones,
and tensor decomposition methods [17] followed by low-rank approximation, for
the reduction and compression of weights. The effectiveness of compression de-
pends on the size and redundancy of the original model and most compression
techniques are applied either after or at training-time. Post-training compres-
sion is easy to apply, but may induce a sensible accuracy loss, especially when no
fine-tuning is performed on the models afterwards. On the other hand, training-
aware compression tends to achieve better results, but requires more time and

1 https://www.peaklens.com
2 https://github.com/darianfrajberg/polimidl
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it is more complex to apply.

Optimized model architectures. Lightweight architectures with compact lay-
ers pursue the design of an optimized network topology, yielding small, fast and
accurate models, suitable for resource-constrained devices. SqueezeNet [15] is a
first-generation optimized CNN architecture, with modules composed by small
Convolutional kernels; it achieves the same accuracy as AlexNet [18] with 50
times less parameters and can be effectively compressed on disk. MobileNet [12]
is a family of efficient models for mobile vision applications, which perform differ-
ent trade-offs of accuracy, computation and number of parameters. Such models,
released by Google, are based on Depthwise Separable Convolutions [4] and out-
performed most of previous state-of-the-art models. MobileNet v2 [22] further
improves MobileNet, by incorporating inverted residual connections. Recently,
reinforcement learning has been also exploited for the discovery of efficient build-
ing blocks, to support the design phase. Tan et al. [26] proposed MnasNet, an
automated neural architecture search that exploits a multi-objective reward to
address both accuracy and latency measured in real-world mobile devices.

Hardware acceleration (HA). HA is the use of dedicated hardware to comple-
ment general-purpose CPUs and perform computationally intensive work more
efficiently, e.g. by favoring specific operations and data-parallel computation.
Digital Signal Processors (DSPs), GPUs and, more recently, Neural Processing
Units (NPUs) are examples of it. Prominent mobile system on chip (SoC) vendors
have incorporated specialized hardware for accelerated AI inference, focusing on
vector and matrix-based instructions. Nonetheless, such instructions and the ac-
cess to them depend on the proprietary Software Development Kits (SDKs) of
each vendor, which are incompatible and impair the porting of acceleration so-
lutions. Given the need of standardization, Google has recently published the
Android Neural Networks API3 (NNAPI), which defines a layer of abstraction
that provides unified access to DL run-time acceleration. Its support for current
devices is still limited due to its availability from Android 8.1 and requires spe-
cialized vendor drivers, otherwise computation falls back to the CPU. Similarly,
recent versions of OpenGL4 and Vulkan5 were introduced for GPU-based effi-
cient computations, but their support is reduced for older devices and depend
on vendors’ implementation. From iOS 8, Apple devices feature the Metal API6,
designed to maximize performance and let developers access HA. Apple has the
advantage of targeting a limited and relatively homogeneous set of devices, while
having full control over the production, which simplifies integration and support.

Heterogeneous computing scheduling. While HA relies on dedicated phys-
ical components designed to speed-up specific operations, heterogeneous com-

3 https://developer.android.com/ndk/guides/neuralnetworks
4 https://www.opengl.org
5 https://www.khronos.org/vulkan
6 https://developer.apple.com/metal/
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puting scheduling comprises the design of strategies to efficiently coordinate and
distribute the workload among processors of different types [1]. Previous research
works [19][14] have proposed DL scheduling techniques for embedded systems.
Results show a good level of optimization, with accuracy loss up to 5%. However,
for maximum efficiency, these methods require specific drivers (e.g., to support
recent versions of OpenCL) or custom implementations for different architec-
tures with direct access to hardware primitives.

Mobile DL Frameworks. Frameworks for the execution of DL models on mo-
bile and embedded systems pursue optimized deployment on devices with limited
resources, by managing memory allocation efficiently and exploiting the available
hardware resources at best. We built PolimiDL, our own optimized framework
for DL acceleration on mobile devices and embedded systems, when no efficient
off-the-shelf solutions were available; recently, some new tools were released, such
as TensorFlow Lite7, Caffe28, and Core ML9. Training is performed off-board,
with mainstream tools such as TensorFlow, Caffe or MXNet, and the resulting
models is converted into the format of the mobile framework for deployment.
Open Neural Network Exchange Format10 (ONNX) proposes the standardiza-
tion of models definition, to simplify the porting of models trained with different
tools. Furthermore, CoreML already exploits Metal HA on iOS devices, while
NNAPI support for Android frameworks and devices is still not totally stable
nor fully integrated.

Benchmarking. Performance benchmarking measures indicators to compare
run-time architectures. For mobile DL, relevant metrics include accuracy, exe-
cution time, memory overhead, and energy consumption. Shi et al. [24] assessed
the performance of various open-source DL frameworks, by executing different
models over a set of workstations with heterogeneous CPU and GPU hardware.
The work [23], defines guidelines to asses DL models on Android and iOS devices,
and [9] studies the latency-throughput trade-offs with CNNs for edge Computer
Vision. Finally, Ignatov et al. [16] present a publicly available Android mobile
app to benchmark performance on a set of DL Computer Vision tasks. Scores
are calculated by averaging performance results over all the devices and the
corresponding SoCs evaluated.

3 Requirements

Before introducing the architecture and use of PolimiDL, we pinpoint the re-
quirements for its development. When dealing with specific hardware architec-
tures and vendors, maximum performance can be reached by developing ad-hoc
optimised solutions. Nonetheless, such approach may comprise scalability and

7 http://www.tensorflow.org/mobile/tflite
8 http://caffe2.ai/docs/mobile-integration.html
9 http://developer.apple.com/documentation/coreml

10 https://onnx.ai
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maintenance, when targeting many heterogeneous architectures and devices, as
in the case of the Android market nowadays. Moreover, as highlighted in Sec-
tion 2, current acceleration approaches still have limitations: 1. HA primitives
are still not completely standardized and stable, but are tightly dependent on
SoC vendors; 2. cloud-offloading can imply cost, availability, latency and privacy
issues; 3. retraining or modifying the architecture of ready-to-use models can be
extremely time-consuming; 4. post-training compression of already small models
can detriment accuracy. Under the above mentioned drivers, the requirements
at the base of PolimiDL can be summarized as follows:

1. Focus on execution. It should be possible to train a model using tools al-
ready known to the developer. The framework should focus just on execution
concerns, without the need of re-training.

2. Minimum dependencies. It should be possible to execute an optimized
model independently of the Operating System, hardware platform or model
storage format.

3. Easy embedding. It should be possible to embed the framework and op-
timized models into existing applications easily, without the need of ad-hoc
integration procedures.

4. End-to-end optimization. Optimization should be applied as early as pos-
sible and span the model life-cycle (generation, compilation, initialization,
configuration, execution).

5. Offline support. Computation should occur only on-board the embedded
system, without the need of a network connection for work off-loading.

6. No accuracy loss. The acceleration for constrained devices should not
reduce accuracy w.r.t. to the execution on a high performance infrastructure.

4 The PolimiDL Framework

PolimiDL aims at speeding-up the execution time of ready-to-use models by ap-
plying multiple optimizations that increase the efficiency of operations without
modifying the model’s output. Its implementation is highly generic, with neither
hardware nor platform specific components; this enables performance gains on
heterogeneous devices and simplifies maintenance, eliminating the need of target-
ing different platforms by means of different tools. It is written in C++ and can
be compiled for all major platforms, requiring only a very simple interface layer
to interact with the platform-specific code. PolimiDL exploits multi-threaded
execution, based on the STL Concurrency Extensions11, and SIMD instructions,
based on the well-known Eigen Library12. Figure 1 illustrates the general work-
flow of the proposed framework, with its main stages (in red) and data/artifacts
(in green), showing the stage in which each optimization takes place. The pipeline
starts by training a model via some external DL framework, such as TensorFlow
or Caffe2, on a workstation or cloud accelerated learning infrastructure, such as

11 https://isocpp.org/wiki/faq/cpp11-library-concurrency
12 https://eigen.tuxfamily.org
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Fig. 1: PolimiDL’s workflow.

Google Cloud13. The trained model is converted into a PolimiDL compatible for-
mat, while applying generation-time optimizations. Next, the model is compiled
for the target architectures and compile-time optimizations are applied, enabling
SIMD instructions where supported. Once the model is deployed on the target
device, an initialization stage applies initialization-time optimizations to deter-
mine the best memory layout. The first time a model is deployed, the initializa-
tion step can include the profiling of the model, which enables configuration-time
optimizations to determine the best scheduling approach. Finally, the model is
ready to process inputs by applying run-time optimizations, which involve dy-
namic workload scheduling to speed-up inference.

4.1 Generation-time optimizations

Layers fusion. Consecutive in-place layers with identical filter size can be
fused into one single layer, thus reducing the number of iterations over the cells
of an input matrix. Such technique has been applied to fuse multiple combina-
tions of layers, such as Batch Normalization/ReLu6 and Bias/ReLu. Potentially,
Batch Normalization/ReLu6 fusion can be further extended by incorporating a
Pointwise Convolution beforehand, taking into account that such combination
of layers is frequently used for Depthwise Separable Convolutions.

Weights fusion. Layers applying functions with constant terms comprising
multiple weights can be pre-computed and encoded as unique constant weights,
thus reducing the operations at run-time and potentially avoiding temporary

13 https://cloud.google.com/products/ai/



Accelerating Deep Learning inference on mobile systems 7

memory allocation for such layers. Weigh fusion applies, e.g., to the Batch Nor-
malization (BN) layer, in which a subset of the vector weights involved in the
normalization, scale and shift steps (γ,σ2,ε) can be factored into a constant
vector weight (ω) as follows:

BN(xi) = γ ∗
(
xi − µ√
σ2 + ε

)
+ β (1)

ω =
γ√
σ2 + ε

(2)

BN(xi) = ω ∗ (xi − µ) + β (3)

where:

– xi is the input of the layer
– γ, µ, σ2, β are constant vector weights
– ε is a constant value

Weights rearrangement. Layers’ weights, which are multidimensional ma-
trices, are generally stored as linear arrays ordered by a default schema (e.g.,
output channel, row, column and input channel). PolimiDL stores the weights
in different ways based on the layer type. Weights associated to predefined Con-
volutional layer types are stored in an order such that Eigen’s GEMM matrix
operations do not require any memory reshaping at run-time. These optimiza-
tions are executed automatically and transparently to the developer, who need
not know their details.

4.2 Compile-time optimizations

Fixed network architecture. The architecture of a model is fixed at compile-
time, which enables the compiler to perform per-layer optimizations. As an ex-
ample, Convolutional layers can exploit loop-unrolling [13], because the number
of channels and the kernel size are known at compile-time, potentially gener-
ating different machine code for each configuration of layer parameters. This
approach can be seen as a limiting factor, because the model architecture can-
not be updated at run-time or by simply changing a configuration file. However,
it is important to notice that changing the model architecture is not expected
to occur after the model has been deployed. Besides, in PolimiDL a model can
be compiled as a set of Shared Objects (.so) files for the corresponding target
architectures (armeabi-v7a, x86 and arm64-v8a for Android), enabling model
updates by a simple file replacement. Given a fixed model architecture, Polim-
iDL supports the update of layer weights at run-time. When the run-time update
of weights is not required, then the weights can be stored together with the net-
work architecture, by embedding them in the .so files; this avoids the overhead
of loading them from secondary memory, as opposed to TensorFlow Lite, where
architecture and weights are stored as an external file loaded from disk.



8 D. Frajberg et al.

Shared memory allocation & “tick-tock” piping. Efficient memory allo-
cation and management is critical in embedded systems, where the amount of
memory is limited and access time is slower than in workstations. Exploiting
spatial locality [2] to reduce cache misses can decrease inference time and energy
consumption significantly. For this purpose, layers in PolimiDL do not own the
memory they read inputs from, write outputs to, or use to store intermediate
results: memory is injected as a dependency from the layer scheduler. Given this
organization, the memory required by a model can be reduced to just 3 areas:
1. Layer Input 2. Layer Output 3. Temporary data. These areas are properly
sized at run-time, to contain the largest layer in the model. A disadvantage of
this approach is the need to copy the output of a layer back into the input area to
feed it to the next layer. PolimiDL alleviates this inconvenience by inverting the
input and output buffers of subsequent layers. With this schema, data goes back
and forth between the two buffers in a “tick-tock” fashion. Tick-tock buffer swap-
ping is skipped for “in-place” layers, i.e., layers that can use the same buffer area
for both input and output: they do not trigger an input/output buffer flip. ReLu
layer is a clear example, because it performs value-wide operations enabling
in-place modifications. Furthermore, given the fixed model architecture, layer
piping can be computed at compile-time via the template meta-programming
capabilities of C++, without incurring in any run-time costs.

4.3 Initialization-time optimizations

Memory pre-allocation. Pre-allocating memory buffers to contain the layers
of a complete model without memory reuse may be feasible for server computa-
tion, but is certainly not the best option for embedded systems with hardware
constraints. We have shown how the proposed framework reduces this memory
requirements via shared buffers and the “tick-tock” piping. PolimiDL further
reduces memory requirements by fusing the 3 buffers (input, output and tem-
porary) into a single one. During initialization, each layer is queried about its
memory requirements: input size, output size and temporary data, which can
differ based on hardware capabilities, e.g., number of threads, or input size, in
the case of Fully Convolutional Networks. A single buffer is allocated and sized to
contain data of the most demanding layer. The upper and lower end of the buffer
are used as input/output areas respectively, following the “tick-tock” strategy,
while the area in between is used for the temporary data. This approach further
reduces memory requirements as a single memory cell can store input, output
or temporary data in different layers.

Small tasks for low memory consumption. While some layers require little
or no temporary memory to work efficiently, others have a space-time trade-off.
As an example, Convolutional layers can exploit SIMD instructions if their 3D
input is unrolled into 2D matrices, where each row is the linearized input to the
kernel. While unrolling the entire input and exploiting Eigen’s SIMD and cache
optimization capabilities may reduce the computation time significantly, it also
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increases the memory requirements of the layer by increasing the size of the tem-
porary buffer. In these cases, PolimiDL does not perform a full input unroll, but
divides the operation into smaller tasks, which can be executed independently.
In this way, the temporary memory required by the tasks has a fixed size.

4.4 Configuration time optimizations

Scheduling optimization. PolimiDL features a task scheduler, explained in
detail in Section 4.5, which enables layers to divide the workload into tasks
executed by different threads. The optimal size for a scheduled task may vary
depending on the specific layer, the underlying architecture, or even on the input
size for Fully Convolutional Neural Networks. Task sizes can be considered as
parameters, which can be: 1. set to a default value, which may not be optimal
2. inferred by executing a profiling routine during initialization, which may in-
crease the initialization time 3. inferred once for all on the specific device, stored
and loaded at subsequent initialization steps. The profiling for each layer is per-
formed by assessing the execution time of different task sizes. A full exploration
of the task size space is not possible, given the high time and computation re-
quirements. The sizes used during the assessment are generated by a power law
heuristics. Task sizes may be bounded to a maximum value, dictated by the
available temporary memory. It is important to notice that the available tempo-
rary memory may be more than the one requested at initialization time. This is
because the buffer is initialized to contain the largest layer and, as a consequence,
layers with smaller footprint can exploit the extra temporary memory.

4.5 Run-time optimizations

Dynamic workload scheduling. Static and even distribution of workload
among available cores does not represent the most suitable solution, due to the
unpredictable nature of mobile resources availability, more evident in asymmetric
architectures such as ARM big.LITTLE [3]. A static scheduling strategy can
under-utilize resources, wasting processing power. Conversely, dynamic multi-
threaded scheduling of tasks can adapt well to different contexts and allows
cores to be better exploited. Tasks are forwarded to a fixed size thread-pool (by
default the number of workers is set to max(1,#cores−1)). In PolimiDL, during
the development of a layer, it is possible to opt-out from dynamic scheduling
or to enable it just when profiling shows a significant improvement. Dynamic
scheduling should not be applied blindly, as computational intensive layers, such
as Convolutions, perform better when dynamically scheduled, while others, such
as ReLu, may perform worse due to memory bottlenecks. Therefore, dynamic
scheduling is disallowed by default for layers that would be harmed by it.

4.6 Layers coverage

Table 1 summarizes the layers supported by PolimiDL and their features14.

14 Given the open source release of PolimiDL, the supported layers may be subject to
modifications and further extensions.
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Table 1: Layers supported by PolimiDL.

Layer name In place Temporary memory Schedulable

Convolution No Yes Yes

Depthwise Convolution No Yes Yes
Pointwise Convolution

(out channels ≤ in channels) Yes Yes Yes
Pointwise Convolution

(out channels > in channels) No No Yes

Max Pooling No Yes No

Average Pooling No Yes Yes

Batch Normalization Yes No Yes

Bias Yes No No

ReLu Yes No No

ReLu6 Yes No No

Softmax Yes No No

Fully Connected layers can be supported by introducing a standard Convo-
lution in which the corresponding kernel size is equal to the expected layer input
size. Given an expected input size of 1x1xN, such operation can be managed
efficiently by using a 1x1xNxM Pointwise Convolution, where N represents the
input channels and M the output classes.

4.7 Limits to generalization

The applicability of PolimiDL to a specific model is subject to the support of
the required layers and to the availability of a converter from the source DL
framework format. PolimiDL currently supports conversion from the Tensor-
Flow format. Furthermore, features such as batch inference, model quantization
and the inclusion of additional layers may require adaptations of the architec-
ture design; for example, residual skip connections would require more complex
buffers piping. Shared object libraries with self-contained weights declared as
variables can be used for small models, common in embedded systems; but they
may suffer from compilation constraints when big models, such as VGG-16 [25],
are involved. Finally, PolimiDL currently runs on CPU only and does not sup-
port GPU processing, due to the still limited and non-standard access to it,
which would require multiple implementations.

5 Evaluation

5.1 Experimental setup

The evaluation benchmarks inference execution time of DL models on heteroge-
neous embedded systems, comparing PolimiDL with the state-of-the-art solution
for edge inference: TensorFlow Lite15. Measurements are collected by means of an
Android benchmark application, implemented by extending TensorFlow Lite’s

15 The latest stable version at the time of writing is tensorflow-lite:1.13.1
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sample application16 to support multiple experiments. The use of multiple de-
vices and models is critical for performance evaluation, given the non-linear
correlation between hardware features and tasks characteristics [16].

The evaluation process is conducted as follows:

– Initialization and pre-processing times are not considered in the overall pro-
cessing time.

– One warm up inference run is executed before the actual measurements.
– 50 consecutive inference iterations are executed and averaged to reduce vari-

ance.
– Three complete evaluation sessions with all models and devices are averaged,

to further reduce variance.
– Models are run on mobile devices having above 80% of battery charge and

pausing for 5 minutes between executions.

Models. Evaluation exploits hardware with limited resources and models with a
small-size architecture achieving a good trade-off between accuracy and latency.
Three models with diverse characteristics, listed in Table 2, are evaluated.

Table 2: Models used for evaluation.

Model Task Mult-Adds Parameters Input size

PeakLens original Semantic segmentation 2G 429K 320x240x3

PeakLens optimized Semantic segmentation 198M 21K 320x240x3

MobileNet Object classification 569M 4.24M 224x224x3

PeakLens original [7] is a Fully Convolutional Neural Network model [21] for
the extraction of mountain skylines, which exhibits a good balance between ac-
curacy, memory consumption, and latency; it is exploited in the implementation
of PeakLens, a real-world AR application for mountain peak recognition on mo-
bile phones. The model was trained with image patches for binary classification,
by adapting the LeNet architecture as shown in Table 3, and can be applied to
pixel-wise classification of full images.

Table 3: PeakLens original model.

Layer Type Input Shape Filter Shape Stride

Conv 29 x 29 x 3 6 x 6 x 3 x 20 1

Pool (max) 24 x 24 x 20 2 x 2 2

Conv 12 x 12 x 20 5 x 5 x 20 x 50 1

Pool (max) 8 x 8 x 50 2 x 2 2

Conv 4 x 4 x 50 4 x 4 x 50 x 500 1

ReLU 1 x 1 x 500 - 1

Conv 1 x 1 x 500 1 x 1 x 500 x 2 1

PeakLens optimized is a modified version of the PeakLens model replacing
standard Convolutions with Depthwise Separable Convolutions, inspired by Mo-
bileNet [12]. The optimized version improves accuracy and performance and

16 https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/examples/android/app
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reduces the number of parameters by one order of magnitude. The architecture
is shown in Table 4: each Depthwise Separable Convolution block consists of a
sequence of Depthwise Convolution, Relu, Pointwise Convolution, and Relu.

Table 4: PeakLens optimized model.

Layer Type Input Shape Filter Shape Stride

Conv 29 x 29 x 3 3 x 3 x 3 x 32 1

ReLU 27 x 27 x 32 - 1

Depthwise Separable Conv 27 x 27 x 32 3 x 3 x 32 x 32 2

Depthwise Separable Conv 13 x 13 x 32 3 x 3 x 32 x 64 1

Depthwise Separable Conv 11 x 11 x 64 3 x 3 x 64 x 64 2

Depthwise Separable Conv 5 x 5 x 64 3 x 3 x 64 x 128 1

Conv 3 x 3 x 128 3 x 3 x 128 x 2 1

MobileNet [12] is a well-known state-of-the-art CNN architecture for efficient
inference on mobile devices, developed by Google for diverse tasks, such as im-
age classification and object detection. Multiple versions of MobileNet trained
on ImageNet are publicly available17, among which the biggest version has been
chosen for evaluation (MobileNet v1 1.0 224).

Devices. Six distinct Android devices with heterogeneous architectures are used,
Table 5 lists the devices and their characteristics.

Table 5: Devices used for evaluation.

Device
Android
Version

Chipset CPU
RAM
(GB)

Asus
ZenFone 2

ZE500CL (Z00D)
5.0

Z2560
Intel Atom

2-cores 1.6 GHz
(4 threads)

2

Google
Pixel

9.0
MSM8996
Qualcomm

Snapdragon 821

2-cores 2.15 Ghz Kryo +
2-cores 1.6 Ghz Kryo

(4 threads)
4

LG
G5 SE

7.0
MSM8976
Qualcomm

Snapdragon 652

4-cores 1.8 GHz Cortex-A72 +
4-cores 1.2 GHz Cortex-A53

(8 threads)
3

LG
Nexus 5X

8.1
MSM8992
Qualcomm

Snapdragon 808

4-cores 1.44 GHz Cortex-A53 +
2-cores 1.82 GHz Cortex-A57

(6 threads)
2

Motorola
Nexus 6

7.0
Qualcomm

Snapdragon 805
4-cores 2.7 GHz Krait

(4 threads)
3

One Plus
6T

9.0
SDM845

Qualcomm
Snapdragon 845

4x 2.8 GHz Kryo 385 +
4x 1.8 GHz Kryo 385

(8 threads)
6

17 https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet v1.md



Accelerating Deep Learning inference on mobile systems 13

Configurations. Multiple configurations are tested to analyze the impact of
the scheduler thread pool size. #threads is the number of usable threads, which
depends on the device (see Table 5). The evaluated configurations comprise:

– min(4,#threads): the thread-pool has a maximum of 4 workers, which is
TensorFlow Lite’s default configuration.

– max(1,#threads-1): the thread-pool employs all available threads but one.
– #threads: the thread-pool comprises all threads, for maximum parallelism.

5.2 Experimental results.

We report the experimental results obtained with TensorFlow Lite and PolimiDL
for each combination of model, device, and configuration.

Table 6 reports the results for PeakLens original model. PolimiDL outper-
forms TensorFlow Lite in almost all cases (highlighted in green), with reductions
of up to 57.32% (Motorola Nexus 6); TensorFlow Lite performs better (high-
lighted in red) just in one device (LG Nexus 5X) with a single configuration.
Overall, PolimiDL consistently reduces average execution time by above 30%.

Table 6: Experimental results of PeakLens original model.

TensorFlow Lite (ms) PolimiDL (ms)

Device
Min

(4,Threads)

Max

(1,Threads-1)

All

Threads

Min

(4,Threads)

Max

(1,Threads-1)

All

Threads

Asus
ZenFone 2

1352.67 1672.67 1353.00
936.00

(-30.80%)
1138.00

(-31.96%)
936.67

(-30.77%)

Google
Pixel

207.67 255.33 210.33
145.00

(-30.18%)
171.00

(-33.03%)
145.00

(-31.06%)

LG
G5 SE

418.67 290.00 272.67
273.00

(-34.79%)
209.00

(-27.93%)
200.33

(-26.53%)

LG
Nexus 5X

423.67 370.33 336.33
432.33

(+2.05%)
342.33

(-7.56%)
282.33

(-16.06%)

Motorola
Nexus 6

336.67 505.33 337.67
169.00

(-49.80%)
215.67

(-57.32%)
168.33

(-50.15%)

One Plus
6T

176.00 144.33 145.33
104.00

(-40.91%)
91.00

(-36.95%)
89.00

(-38.76%)

Average (-30.74%) (-32.46%) (-32.22%)

Table 7 reports the results for PeakLens optimized. This model is smaller,
yet more accurate than the original one. PolimiDL outperforms TensorFlow Lite
and reduces inference time significantly. This is due to the design of memory
management, which exploits well spatial locality and reduces cache misses. The
performance gain is highly consistent: execution times are reduced on average
of more than 62% in all the configurations. Improvement is particularly sensible
for low-end devices, such as ZenFone 2, where the reduction is greater than 77%.

Finally, Table 8 reports the results for MobileNet. Performance of the two
frameworks are quite comparable, but PolimiDL reduces overall execution time.
The most significant gains are achieved on the ZenFone 2 and Nexus 6 devices.
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Table 7: Experimental results of PeakLens Optimized model.

TensorFlow Lite (ms) PolimiDL (ms)

Device
Min

(4,Threads)

Max

(1,Threads-1)

All

Threads

Min

(4,Threads)

Max

(1,Threads-1)

All

Threads

Asus
ZenFone 2

740.67 807.67 743.33
166.00

(-77.59%)
179.33

(-77.80%)
167.67

(-77.44%)

Google
Pixel

82.00 95.00 82.67
30.00

(-63.41%)
35.33

(-62.81%)
31.00

(-62.50%)

LG
G5 SE

185.67 138.33 138.00
94.33

(-49.19%)
68.00

(-50.84%)
70.67

(-48.79%)

LG
Nexus 5X

204.33 193.00 181.00
84.67

(-58.56%)
80.33

(-58.38%)
77.00

(-57.46%)

Motorola
Nexus 6

140.33 225.67 135.67
52.33

(-62.71%)
66.00

(-70.75%)
49.00

(-63.88%)

One Plus
6T

66.67 68.67 66.33
22.00

(-67.00%)
22.67

(-66.99%)
22.33

(-66.33%)

Average (-63.08%) (-64.59%) (-62.73%)

TensorFlow Lite performs slightly better (not over 5%) on certain settings in-
volving devices with big.LITTLE architecture (LG G5 SE and LG Nexus 5X).
Despite the fact that PolimiDL features dynamic scheduling, it is the Operating
System the ultimate responsible of the allocation of tasks to workers and low
frequency cores seem to be prioritized for this model and devices. Nonetheless,
the average execution time, when using all threads but one, is reduced by ≈16%.

Table 8: Experimental results of MobileNet model.

TensorFlow Lite (ms) PolimiDL (ms)

Device
Min

(4,Threads)

Max

(1,Threads-1)

All

Threads

Min

(4,Threads)

Max

(1,Threads-1)

All

Threads

Asus
ZenFone 2

734.00 775.33 733.33
371.00

(-49.46%)
377.33

(-51.33%)
374.33

(-48.95%)

Google
Pixel

75.67 82.33 77.00
74.00

(-2.20%)
82.67

(+0.40%)
73.67

(-4.33%)

LG
G5 SE

263.67 274.67 275.67
276.67

(+4.93%)
259.00

(-5.70%)
256.33

(-7.01%)

LG
Nexus 5X

217.33 225.00 223.33
222.33

(+2.30%)
234.33

(+4.15%)
226.00

(+1.19%)

Motorola
Nexus 6

224.33 298.33 227.67
203.67

(-9.21%)
176.00

(-41.01%)
163.33

(-28.26%)

One Plus
6T

56.67 56.67 57.67
49.67

(-12.35%)
51.67

(-8.82%)
53.00

(-8.09%)

Average (-11.00%) (-17.05%) (-15.91%)

The activation of NNAPI has been assessed in TensorFlow Lite for the sup-
ported devices, but results are not reported due to unstable performance. NNAPI
reduces execution time on the Google Pixel, but doubles it on the LG Nexus 5X.

In conclusion, experimental results demonstrate the potential of PolimiDL
by showing competitive results with respect to the well-known TensorFlow Lite
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platform. Results are particularly improved when dealing with small models
and low-power devices; this finding corroborates the potential of the proposed
framework for supporting the implementation of augmented reality applications
for mass market mobile phones, which is the use exemplified by PeakLens app.

6 Conclusion and future work

In this paper we presented PolimiDL, an open source framework for accelerating
DL inference on mobile and embedded systems, which has proved competitive
with respect to TensorFlow Lite on small models. Implementation is generic and
aims at supporting devices with limited power and heterogeneous architectures.
Future work will concentrate on adding support for more layers, quantization,
and conversion from more DL frameworks. Moreover, experimentation will be
extended by evaluating additional models, configurations, metrics (e.g. energy
consumption and memory accesses) and devices (e.g. Raspberries and drones).
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