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Abstract

We elaborate on the idea of fake particle and study its physical consequences. When

a theory contains fakeons, the true classical limit is determined by the quantization and

a subsequent process of “classicization”. One of the major predictions due to the fake

particles is the violation of microcausality, which survives the classical limit. This fact

gives hope to detect the violation experimentally. A fakeon of spin 2, together with a

scalar field, is able to make quantum gravity renormalizable while preserving unitarity.

We claim that the theory of quantum gravity emerging from this construction is the right

one. By means of the classicization, we work out the corrections to the field equations of

general relativity. We show that the finalized equations have, in simple terms, the form

〈F 〉 = ma, where 〈F 〉 is an average that includes a little bit of “future”.
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1 Introduction

A theory of quantum gravity has been recently formulated [1], by means of a new quanti-

zation prescription that turns certain poles of the free propagators into fake particles, or

“fakeons”, which are not asymptotic states and must be projected away from the physical

spectrum. The action of the theory is interpreted in a radically new way and some of its

physical predictions are quite unexpected, even at the classical level. In particular, the

physical space of configurations is a proper subspace of the whole space of configurations.

The restriction follows from the projection on the space of states that is required to make

sense of the theory at the quantum level. In this paper, we study how these features of

quantum gravity affect the classical limit. In particular, we work out the corrections to

the field equations of general relativity and investigate their major prediction, which is the

violation of microcausality.

The interim classical action is

SQG(g,Φ) = −
1

2κ2

∫ √−g
[

2ΛC + ζR + α

(

RµνR
µν − 1

3
R2

)

− ξ

6
R2

]

+ Sm(g,Φ), (1.1)

where α, ξ, ζ and κ are real positive constants, while ΛC can be positive or negative,

Φ are the matter fields and Sm is the covariantized action of the standard model, or

one of its extensions, equipped with the nonminimal couplings that are compatible with

renormalizability. The reduced Planck mass is M̄Pl =MPl/
√
8π =

√
ζ/κ. Here and below,

the integration measure d4x is understood.

In addition to the matter fields, the theory describes the graviton, a scalar φ of squared

mass m2
φ = ζ/ξ and a spin-2 fakeon χµν of squared mass m2

χ = ζ/α (neglecting a small

correction due to the cosmological constant). These fields can be introduced by means of

auxiliary fields and simple field redefinitions. We obtain an equivalent form of the interim

classical action, which reads [2]

SQG(g, φ, χ,Φ) = SH(g) + Sχ(g, χ) + Sφ(g̃, φ) + Sm(g̃e
κφ,Φ), (1.2)

where g̃µν = gµν + 2χµν and

SH(g) = −
ζ

2κ2

∫ √−gR, Sφ(g, φ) =
3ζ

4

∫ √−g
[

∇µφ∇µφ−
m2

φ

κ2
(

1− eκφ
)2
]

,

Sχ(g, χ) = SH(g̃)− SH(g)− 2

∫

χµν

δSH(g̃)

δgµν
+

ζ2

2ακ2

∫ √
−g(χµνχ

µν − χ2)
∣

∣

g→g̃
. (1.3)

We have written these expressions for ΛC = 0, which is sufficient for most purposes of this

paper. The formulas for ΛC 6= 0 can be found in ref. [2].
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The first thing to point out is that (1.1) and (1.2) do not encode the true classical

theory, which is why we have called them “interim” classical actions. Indeed, they are

still unprojected. However, the projection comes from the quantization, so we must first

quantize the theory and then classicize it back, which means investigate the classical

backlash of the quantization. Only at the end of this procedure, we obtain the action that

describes the classical limit, which we call finalized classical action. The classicization has

to be understood perturbatively, since it is inherited from quantum field theory, which is

formulated perturbatively. The interim classical action and the finalized classical action

coincide in the absence of gravity (for example, in the case of the standard model in flat

space, where the projection is trivial), but do not coincide when quantum gravity is present.

The second major observation is that the fakeons induce violations of microcausality,

which survive the classical limit. This fact opens the possibility to investigate such vio-

lations, and other predictions of the theory, beyond the scattering processes and possibly

beyond the perturbative expansion, by studying the solutions of the projected classical

field equations.

We recall that if the action (1.1) is quantized following the standard procedures (which

means using the Feynman prescription for all the fields), the Stelle theory is obtained [3],

where χµν is a ghost. This option is not acceptable, because there exists no consistent

projection to get rid of a ghost.

Several approaches to the problem of quantum gravity have been proposed in the past

decades, such as string theory [4], loop quantum gravity [5], holography and the AdS/CFT

correspondence [6], lattice gravity [7], asymptotic safety [8]. It is beyond the scope of this

paper to give a comprehensive account of the vast literature on the subject. Nevertheless,

it is useful to make a brief comparison between the properties of our solution and those of

the most popular alternatives, to highlight some key features and emphasize the reasons

why we believe that our proposal is the right one.

The approach we adopt is very conservative and follows the guidelines of high-energy

particle physics. Its basic principles (unitarity, locality and renormalizability) are the same

that worked successfully for the standard model.

Like the standard model, our theory of quantum gravity is a quantum field theory

and admits a perturbative expansion in terms of Feynman diagrams. It can be straight-

forwardly coupled to the standard model, as shown in formulas (1.1) and (1.2). The

calculations are doable and demand an effort that is comparable to the one required by

familiar computations in particle physics (see refs. [2, 9]).

The other approaches we have mentioned have different motivations and goals. Each of
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them has interesting features, but also important drawbacks. For example, string theory

faces criticisms because of its lack of predictivity, originated by the landscape of 10500 or

so false vacua [10]. Moreover, perturbative calculations in string theory are much more

difficult than those of quantum field theory (apart from special cases), since integrals on

Riemann surfaces require mathematics that is not completely understood. To some extent,

loop quantum gravity is even more challenging, from the mathematical point of view. The

AdS/CFT correspondence has a quantum field theorical side, which is however strongly

coupled and requires the application of nonperturbative methods. Lattice gravity, like

lattice gauge theory, is a numerical approach, useful for a variety of purposes, but with

limited power to shed light on conceptual aspects. The asymptotic-safety program is fully

field theoretical, like our approach. Nevertheless, it is not perturbative, since it requires

the existence of an interacting ultraviolet fixed point.

We think that our solution tops the competitors in calculatibity, predictivity and falsifi-

ability. This also means that it is rather rigid. Indeed, it contains only two new parameters

(the masses of φ and χµν), so there is not much room for adjustments in the case of dis-

crepancies with the data.

Dealing with quantum gravity, it is generically assumed that we must be prepared to

accept some profoundly new understanding of spacetime at the microscopic level. In our

case, the conceptual upset emerges from the theory itself and is precisely the violation

of microcausality, i.e. the fact that space and time, past, present and future, cause and

effect lose physical meaning at energies larger than the lightest fakeon mass. Our present

knowledge does leave room for this prediction to be accurate. Actually, from the theoretical

and experimental points of view, we lack compelling reasons to believe that causality, no

matter how it is defined, should hold down to arbitrarily small distances.

It should be recalled that causality is not well understood in quantum field theory, to the

extent that a formulation that corresponds to the intuitive notion is missing [11]. The best

we have are off-shell formulations, such as Bogoliubov’s diagrammatic condition [12], which

implies, among other things, that fields commute at spacelike separated points. However,

Bogoliubov’s condition cannot be formulated as a constraint on the S matrix, because it is

not possible to accurately localize spacetime points working with relativistic wave packets

that correspond to on-shell particles. These observations explain why microcausality has

not been treated so far as a fundamental requirement, maybe in anticipation that it was

going to be renounced eventually.

The paper is organized as follows. In section 2 we recall what a fakeon is and elaborate

on the concept. In section 3 we study the main physical implications due to a fakeon at the
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level of scattering processes, such as the violation of microcausality. In section 4 we study

how the violations of microcausality survive the classical limit in a toy higher-derivative

model. In section 5 we classicize quantum gravity. In particular, we work out the finalized

classical action and study its field equations. Section 6 contains the conclusions.

2 Quantization

In this section, we elaborate on the idea of fake particle, or fakeon, introduced in ref. [1].

Unitarity is crucial for the discussion, so we begin by recalling the optical theorem

2ImT = T †T, (2.1)

which follows from the unitarity equation S†S = 1, once the S matrix is written as 1+ iT .

Let V denote the space of physical states. The transition amplitude M(a|b) between an

initial state |a〉 ∈ V of total momentum Pa and a final state |b〉 ∈ V of total momentum

Pb is related to the T matrix element by the identity

〈b|T |a〉 = (2π)4δ(4)(Pa − Pb)M(a|b).

Moreover, iM(a|b) is the sum of the connected, amputated diagrams whose external legs

are determined by |a〉 and |b〉. Taking |b〉 = |a〉 and inserting a complete set of orthonormal

states |n〉 ∈ V , equation (2.1) implies

2Im〈a|T |a〉 =
∑

|n〉∈V

|〈n|T |a〉|2, (2.2)

i.e. the total cross section for production of all final states is proportional to the imaginary

part of the forward scattering amplitude. A version of the optical theorem that holds

diagram by diagram is provided by the so-called cutting equations [13]. A cutting equation

expresses the real part of a diagram (which is equal to minus the imaginary part of its

contribution to the amplitude M) as a sum of “cut diagrams”, where the contributions

of 〈n|T |a〉 and 〈a|T †|n〉 stand to the left and right sides of the cuts, respectively. The

simplest cutting equations are

2Im

[

(−i)〉−〈
]

= 〉−/〈=
∫

dΠf

∣

∣

∣

∣

〉−
∣

∣

∣

∣

2

, (2.3)

2Im
[

(−i)−©−]

=−©/−=

∫

dΠf

∣

∣

∣

∣

−〈
∣

∣

∣

∣

2

, (2.4)
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where the integrals are over the phase spaces Πf of the final states [14].

Now, consider the propagator

G(p,m) =
1

p2 −m2
. (2.5)

If we endow it with the Feynman prescription (p2 → p2 + iǫ), we obtain

G+(p,m, ǫ) =
1

p2 −m2 + iǫ
, (2.6)

which describes a particle of mass m. The identity (2.3) implies Im[−P ] > 0, if the vertices

are assumed to be equal to −i and P is the propagator of the intermediate line on the

left-hand side. Specifically, P = G+ gives

Im

[

− 1

p2 −m2 + iǫ

]

= πδ(p2 −m2). (2.7)

What happens if we multiply (2.6) by a minus sign? If we do not do anything else, we

obtain a ghost, since P = −G+ satisfies Im[−P ] 6 0, which violates the optical theorem.

However, if we also replace +iǫ with −iǫ, the right-hand side of (2.7) does not change,

Im

[

1

p2 −m2 − iǫ

]

= πδ(p2 −m2), (2.8)

and the optical theorem remains valid. The moral of the story is that we can in principle

have both propagators

G±(p,m, ǫ) = ±
1

p2 −m2 ± iǫ ,

since both fulfill the identity (2.3).

Nevertheless, this is not what normally occurs in quantum field theory, at least within

the same loop integral. The reason is that the presence of both G+ and G− originates bad

nonlocal divergences at ǫ 6= 0 [15] and even worse problems for ǫ→ 0.

A place where both propagators do appear in the same diagram are the cutting equa-

tions already mentioned: one side of a cut diagram is built with the propagators G+ and

the other side is built with the propagators G−. For the reasons just recalled, a cut diagram

gives a loop integral that can be badly divergent, because it contains both G+ and G−.

However, the sum of the cut diagrams is well defined, because, by the optical theorem, it

is equal to the real part of an uncut diagram, which in turn is the sum of a diagram built

only with G+ plus a diagram built only with G−.

Is there any hope to have G± coexist consistently in the same loop integral, i.e. an

ordinary, uncut diagram? The first thing to note is that we should not integrate directly on
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Re[p0]

Im[p0]

Figure 1: Splitting the poles located on the real axis. The dots denote the poles of (2.5)

and the circled crosses denote the poles of (2.9)

Minkowski spacetime, to avoid the nonlocal divergences of ref. [15]. The only alternative

is to come from Euclidean space by means of the Wick rotation [16]. It turns out that the

Wick rotation is not analytic. However, this difficulty is not serious enough to prevent us

from moving further.

Multiply (2.5) by ± and, following [1], write the outcome as

± p2 −m2

(p2 −m2)2
.

Then, eliminate the singularity by introducing an infinitesimal width E as follows, to define

the new propagators

G±(p,m, E2) = ±
p2 −m2

(p2 −m2)2 + E4 = ±1
2

[

G+(p,m, E2)−G−(p,m, E2)
]

. (2.9)

A first reason why G±(p,m, E2) does not truly propagate a particle is that it vanishes on

shell at E > 0. Alternatively, the relative sign between G+ and G− in the last expression

suggests that G± propagates a sort of “siamese particle/ghost pair” and that the particle

and the ghost somewhat compensate each other. This is what gives the fake particle.

Doing (2.9), we basically split the poles of (2.5) into pairs of complex conjugates poles,

as shown in fig. 1. The construction and the Wick rotation of the Euclidean theory

suggest that, when the propagator G± is used inside the Feynman diagrams, the loop

energy p0 must be integrated along the path shown in the same fig. 1, which passes under

the left pair of complex conjugate poles and over the right pair. This is called Lee-Wick
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Re[p0]

Im[p0]

Figure 2: Analyticity fails in extended regions instead of branch cuts

(LW) integration prescription, because it first appeared in the Lee-Wick models [17]. We

comment on the relation between fakeons and Lee-Wick models below.

There exist three types of fakeons. The fakeon with propagator G+(p,m, E2) is called

fakeon plus. The fakeon with propagator G−(p,m, E2) is called fakeon minus. For the

moment, we ignore the third type of fakeon, to be described later on.

To make the arguments more explicit, we consider the bubble diagram as an example.

Integrating the loop energy k0 along the Lee-Wick integration path and the loop space

momentum k on R3, we get

iM(p) = c

∫

LW

dk0

2π

∫

R3

d3k

(2π)3
G±(p− k,m1, E2)G±(k,m2, E2) =

∫

R3

d3k

(2π)3
w(p,k) (2.10)

for some integrand w(p,k), where c collects the coupling constants and the combinatorial

factor. For the arguments that follow, it does not matter whether the propagators are

both G+, or both G−, or one and one.

The integral is always regular. When p is such that w(p,k) is regular for all k, the

functionM(p) is analytic in p. Moreover, when p is real andM(p) is analytic in p,M(p) is

real. Analyticity has potential problems when w(p,k) is singular. The w(p,k) singularities

originate the discontinuity of M, which is also the imaginary part ImM. By the optical

theorem, specifically the identity (2.4), the imaginary part gives the total cross section

of a scattering process, where the external particle of momentum p decays into the two

particles circulating in the loop, of momenta p− k and k. The conditions for having such

a process read

|p0| =
√

(p− k)2 +m2
1 ± iE2 +

√

k2 +m2
2 ± iE2 (2.11)
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Re[p0]

Im[p0]

Euclidean region

Region
above the

fakeon threshold

Re[p0]

Im[p0]

Figure 3: Analyticity versus regionwise analyticity

(all four possibilities occurring) [18]. Note that both frequencies on the right-hand side

come with positive signs. The other possibilities are excluded by the LW integration

prescription.

In the limit E → 0, analyticity fails in branch cuts, whose branch points are the

thresholds of the process. Instead, when E 6= 0 the branch cuts are replaced by extended

regions Ã, obtained by plotting (2.11) for k ∈ R3 with p fixed. Examples of such regions

are shown in fig. 2. Inside those regions the result of the integral (2.10) is not analytic

and not Lorentz invariant.

Since all that matters is the limit E → 0, one might wonder why we pay attention to

the properties of the integral at E > 0. The reason is that if we take the limit too quickly

we miss the new quantization prescription. Indeed, if we work at E = 0, when the regions

Ã shrink to branch cuts, we can circumvent the, say, right branch point by coming from

above or from below, i.e. from the upper or lower side of the complex plane (check the

left picture of fig. 3). The two options correspond to the Feynman prescription and its

conjugate, respectively, which give nothing new. It is like replacing the propagators of

(2.10) with two G+ or two G−, respectively: we have no coexistence of G+ and G− in the

same loop integral.

Before taking the limit E → 0 we have a new possibility, which turns out to be the

only way to mix G± in the same loop integral consistently with unitarity: we go inside a

region Ã (i.e. we choose a p0 that belongs to the portion of the real axis that is contained

in the region), evaluate the integral there and then take the limit E → 0. In such a limit,

analyticity and Lorentz invariance are recovered.

Moreover, the discontinuity ImM ofM disappears, because the operation is symmetric

under reflections with respect to the real axis, so it cannot generate an imaginary part.
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Thanks to this, the fakeon can be projected away from the physical spectrum V . Actually,

this is the only option we have, if we want unitarity (i.e. the optical theorem). The

candidate physical process becomes a fake, with zero probability to occur, and is thrown

away as well. Precisely, the identities (2.4) are satisfied as follows: the left-hand side

and the middle expression vanish thanks to the fakeon prescription, while the right-hand

side vanishes thanks to the fakeon projection, since fakeons are excluded from the set of

physical asymptotic states. This is how the fakeon prescription/projection turns out to

be compatible with unitarity. Instead, no projection can be consistent with the Feynman

prescription, since the right-hand side of (2.3) would vanish by definition, but the left-hand

side would continue to be nontrivial.

A mathematical theorem [16, 19] ensures that the result of the M evaluation inside

the region Ã is equal to the arithmetic average of the two analytic continuations that

circumvent the branch point. This operation is called average continuation.

These properties generalize to all diagrams [19]. In conclusion, we can have the propa-

gators G+ and G− coexist in the form G±, provided we treat them as just explained. Their

poles do not correspond to physical particles, nor ghosts, but fake particles, or fakeons.

The scattering processes involving at least one fakeon are fake processes and their thresh-

olds must be circumvented by means of the average continuation. Then, their probability

to occur vanishes, which makes it possible to project them away and have unitarity.

The average continuation is an unambiguous, nonanalytic operation to circumvent

branch points. It associates an analytic function fAV(z) to an analytic function f(z).

However, in general, fAV(z) is not analytically related to f(z). As a consequence, the

hyperplane P of the complexified external momenta turns out to be divided into disjoint

regions of analyticity and the amplitudes M are separately analytic in each region. We

call this property regionwise analyticity.

The main region is the Euclidean one, which contains the purely imaginary energies.

There, the Wick rotation is analytic, because no average continuation is necessary. The

other regions can be reached unambiguously from the main one by means of the average

continuation. It is worth to emphasize that the relative simplicity of the average continu-

ation makes calculations doable with not much more effort than usual.

If the theory contains only physical particles, then we have analyticity, which means

that it is sufficient to compute a loop diagram in any open subset of P to derive it ev-

erywhere in P by means of the analytic continuation. If the theory contains fakeons, then

we have regionwise analyticity. In particular, it is sufficient to compute a loop diagram in

any open subset of the Euclidean region to derive it everywhere in P by means of the av-
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erage continuation. It is not sufficient to know the amplitude in regions different from the

Euclidean one. Indeed, there are many functions f(z) whose average continuation fAV(z)

vanishes identically (for example, f(z) =
√
z), so in general it is impossible to reconstruct

an f(z) from its average continuation fAV(z).

In fig. 3 analyticity and regionwise analyticity are compared. The basic difference is

that some branch cuts are replaced by extended regions.

We have anticipated that there exists a third type of fakeon, which is the thick fakeon.

The fakeon plus and the fakeon minus have infinitesimal widths E and the limit E → 0

must be taken as explained above. Instead, the thick fakeon has a finite nonzero width E
and propagator

Gc(p,m, E2) = aG+(p,m, E2)− a∗G−(p,m, E2), (2.12)

where a is a complex coefficient. The squared masses m2 ± iE2 are also complex, with

a nonnegative real part m2. There is no option to quantize the poles of Gc as physical

particles.

The thick fakeons are also called Lee-Wick fakeons, since they are the ones that appear

in the Lee-Wick models [17]. Before moving on, we recall how the quantization of the thick

fakeon works, because it requires supplementary operations. Let us start over, from the

Lee-Wick prescription of fig. 1 for the integrals on the loop energies. That prescription

is not sufficient to define the Lee-Wick models properly, because it leads to violations of

Lorentz invariance and ambiguities [20, 21]. Extra prescriptions were proposed right after

the papers of Lee and Wick [21], but they did not remove the ambiguities completely.

Since the Lee-Wick integration prescription involves complex values of the loop energies,

it is not possible to have Lorentz invariance above the fakeon thresholds at finite E by

integrating on real loop space momenta. It is necessary to deform the integration domain

on the loop space momenta to include complex values for them as well [16, 19]. It can

be shown that it is possible to arrange the deformation so as to squeeze the extended

regions Ã onto branch cuts even if E > 0. At the end, interestingly enough, the amplitude

above the fakeon threshold is still given by the average continuation. Again, the scattering

processes that involve the fakeons have zero probability to occur and can be projected

away, as required by unitarity.

The Lee-Wick prescription and the deformations of the integration domains on the

loop space momenta are the operations that define the nonanalytic Wick rotation of the

Euclidean theory, which is equivalent to the average continuation. What makes the whole

construction work, by removing the difficulties that prevented to find a sound definition of

the Lee-Wick models decades ago, is the concept of fake particle.
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A weakness of the Lee-Wick models is that they are super-renormalizable. Since there

are infinitely many of them, we have no way to decide which is the right one. Having

infinitely many theories with finitely many parameters is not so different from having one

nonrenormalizable theory with infinitely many parameters, like Einstein gravity, after it is

equipped with all the counterterms generated by renormalization. Moreover, nature does

not seem to favor super-renormalizable theories for high-energy physics.

Instead, the theory of quantum gravity (1.1)-(1.2) considered here, defined using the

fakeon prescription (2.9) for the spin-2 massive field χµν , is essentially unique, because

it is strictly renormalizable. More precisely, it contains a finite number of independent

parameters and can be quantized in a finite number of consistent ways. Under many

respects, it is the theory that is most similar to the standard model, to which the matter

sector can be attached with no effort.

2.1 Prescription and projection

Summarizing, the quantization prescription is defined by introducing two infinitesimal

widths ǫ and E in the propagators as follows:

(a) replace p2 with p2 + iǫ everywhere in the denominators, where p denotes the mo-

mentum;

(b) treat the poles you want to convert into fakeons by means of replacements of the

form
1

p2 −m2 + iǫ
→ p2 −m2

(p2 −m2 + iǫ)2 + E4 ; (2.13)

(c) calculate the diagrams in the Euclidean framework, nonanalytically Wick rotate

them as explained above, then make ǫ tend to zero first and E tend to zero last.

Clearly, these rules are meant to be applied in momentum space. It is harder to work

out the quantization rules directly in coordinate space and study the nonanalytic Wick

rotation there. Thus, we might also want to specify that

(d) the amplitudes and the loop integrals must be evaluated in momentum space and

then Fourier transformed to coordinate space.

An equivalent set of quantization rules is obtained by combining (a) with (d) and the

requirement that, in evaluating the loop integrals,

(e) every threshold involving a fakeon must be overcome by means of the average

continuation.

Now, let us quantize the actions (1.1) and (1.2). Formula (1.3) shows that the χµν

quadratic action has the wrong overall sign, so the field χµν must be quantized as a fakeon,
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according to step (b). Instead, φ can be quantized either as a fakeon or a physical particle.

Depending on which option we choose, we have a graviton/fakeon/fakeon (GFF) theory

or a graviton/scalar/fakeon (GSF) theory.

By the optical theorem, the processes that involve the fakeons have zero probabilities

to occur. Then, to have consistency we must project away the fakeons from the physical

spectrum. So doing, the theory is unitary (and renormalizable).

The physical states are obtained by acting on the vacuum |0〉 by means of the creation

operators of the physical particles only, ignoring the creation operators of the fakeons

(which are a†χ and a†φ in the GFF theory, just a†χ in the GSF theory). This defines, after

Cauchy completion, the Fock space V of the physical states, which is a proper subspace

of the total Fock space W . The projection W → V is called fakeon projection. The free

Hamiltonian is bounded from below in V (but obviously not in W ).

It is helpful to make a comparison between the fakeon projection and the gauge projec-

tion, by which we mean the projection involved in the gauge theories, which concerns the

Faddeev-Popov ghosts and the longitudinal and temporal components of the gauge fields.

Consider a gauge-fixed action Sgf. Usually, the gauge-fixing condition is not solved explic-

itly, because if we inserted its solution into Sgf we would obtain a nonlocal action, which

is much more difficult to deal with. It is preferable to keep the Faddeev-Popov ghosts and

the longitudinal and temporal modes of the gauge fields till the very end, work in a local

framework and perform the gauge projection only when strictly needed.

The fakeon projection also introduces nonlocalities (see sections 4 and 5 for details).

The virtue of the interim, unprojected actions (1.1) and (1.2) is that they allow us to work

within local frameworks, pretty much like the gauge-fixed actions. However, there is a

crucial difference between the fakeon projection and the gauge projection. By changing

the gauge fixing it is possible to reach a gauge (the Coulomb gauge), where the gauge

projection acts not only on the initial and final states, but even inside the loop diagrams.

Thanks to this, the gauge modes disappear from everywhere. It is not possible to achieve

an analogous result by means of the fakeon projection, which does act on the initial and

final states, but cannot reach inside the loop diagrams. The net result is that the fake

particles leave an important remnant, which is the violation of causality at energies larger

than their masses. This is also the reason, why the fakeons must be massive, otherwise

causality would be violated at all energies. We stress that the fakeon projection is the only

projection known at present that is consistent with unitarity even it does not follow from

a gauge or symmetry principle.
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3 Microcausality

Thanks to the average continuation, calculating loop diagrams with the fakeon prescription

does not require much more effort than calculating diagrams with the ordinary prescriptions

[9, 2]. Among the first things to compute, we mention the one-loop self-energy diagrams,

which give the physical masses m̄ and the physical widths Γ.

In the case of the fakeons, if we resum the bubble diagrams B, we get the dressed

propagators

Ḡ± = G± +G±BG± +G±BG±BG± + · · · = 1

G−1
± − B

. (3.1)

After the resummation, we can take E to zero, which gives, around the physical peak

p2 = m̄2,

Ḡ± ∼ ±
Z

p2 − m̄2 + im̄Γ±

= ±ZG+(p, m̄, m̄Γ±),

where Z is the normalization factor. The optical theorem implies

Im[∓ZG+(p, m̄, m̄Γ±)] =
m̄Z(±Γ±)

(p2 − m̄2)2 + m̄2Γ2
±

> 0,

i.e. Γ+ > 0, Γ− < 0. We thus learn that a fakeon plus has a positive width, while a fakeon

minus has a negative width. Moreover, the limits Γ± → 0± give

lim
Γ±→0±

Im[∓ZG+(p, m̄, m̄Γ±)] ∼ πZδ(p2 − m̄2) (3.2)

in both cases. This result shows that if we just watch the decay products of a fakeon, we

have the illusion that a true particle exists, no matter how small its width is and no matter

whether the width is positive or negative.

At the same time, the resummation (3.1) is legitimate only if p2 −m2 is large enough,

which means that it misses the contact terms δ(p2 −m2), δ′(p2 − m2), etc. In total, the

contact terms are

σπZδ(p2 − m̄2) (3.3)

for Γ± → 0±, where σ = 1, 0,−1 in the case of a physical particle, a fakeon and a ghost,

respectively. For example, at the tree level a physical particle gives (2.7), a ghost gives the

opposite of (2.7), while a fakeon gives

Im[−G±(p,m, E2)] = Im[−Gc(p,m, E2)] = 0. (3.4)

This formula tells us what we see if we do not let the fakeons decay, but try to detect them

“on the fly”. The answer is that we see precisely nothing. Only in the case of a physical
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Figure 4: Cross section

particle what we infer from the indirect observation, which is encoded in formula (3.2),

coincides with what we get from the direct observation, which is given by formula (3.3).

In other words, if we restrict our attention to the processes where the fakeon does decay,

the total cross section gives a plot like the one shown in fig. 4, which coincides with the

plot we would see in the case of a physical particle. However, a physical particle can also

be detected before it decays (at least in principle), when it is still “alive”, since it belongs to

the physical spectrum. On the other hand, a fakeon cannot be detected directly, because

the probability to produce it is zero. The only ways to “see” a fakeon are indirect, by means

of its decay products and the interactions it mediates. These facts justify the name, “fake

particle”, or fakeon, for the new entity.

Since χµν is a fakeon minus, its width Γχ is negative. Precisely, the calculation gives

[2]

Γχ = −C
m3

χ

M2
Pl

, C =
1

120
(Ns + 6Nf + 12Nv), (3.5)

in the case of the GFF theory, where Ns, Nf and Nv are the numbers of (physical) scalars,

Dirac fermions (plus one half the number of Weyl fermions) and gauge vectors, respectively.

We are assuming that the masses of the matter fields are much smaller than mχ, otherwise

there are corrections [2]. In the case of the GSF theory, there is also a correction due to

φ, which depends on mφ. The graviton and the fakeons do not contribute to Γχ.

The negative sign of Γχ signals the violation of microcausality at the quantum level.

Consider the Breit-Wigner distribution and its Fourier transform:

i

E − m̄+ iΓ
2

, GBW(t) = sgn(t)θ(Γt) exp

(

−im̄t − Γt

2

)

, (3.6)
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where sgn(t) is the sign of t. Observe that exp (−Γt/2) is always a dumping factor. If J(t)

denotes an external source, the response reads
∫ +∞

−∞

dt′GBW(t− t′)J(t′) = −
∫ ∞

t

dt′e−(im̄+Γ

2
)(t−t′)J(t′) (3.7)

for Γ < 0. This formula shows that when the width is negative it is necessary to know

the values of the source J in the future. However, due to the (dumping or oscillating)

exponential factors that appear on the right-hand side of (3.7), it is sufficient, at the

practical level, to anticipate the source J(t′) just for a little bit of future, such that t′− t .
τ ≡ min(1/m̄, 2/|Γ|).

In other words, time, as well as past, present and future, and the concepts of cause and

effect, lose meaning for intervals smaller than τ . However, as long as τ is short enough, the

possibility of having violations of microcausality in nature is compatible with experiments.

Formula (3.5) shows that the violation of causality cannot be eliminated, since adding

physical matter fields can at most increase |Γχ|, while adding fakeons leaves |Γχ| invariant.

As said, the massive scalar φ can be a physical particle or a fakeon plus. In either case,

its width is positive.

We have no experimental or logical reason to claim that causality should hold up to

infinite energies or zero relative distances. On the contrary, we view the violation of

microcausality as a major prediction of quantum gravity and concentrate on finding ways

to detect its effects. The fakeon mass mχ is a free parameter at the moment. Its actual

value might be smaller, or even much smaller, than the Planck mass MPl. Thanks to this,

it might be possible to detect the first signs of quantum gravity various orders of magnitude

below the Planck scale. Moreover, as we show in the next sections, we might be able to

study the problem noperturbatively, by working out the corrections to the field equations

of general relativity.

To make progress in this direction, it is helpful to study the remnants of the fakeons

in the classical limit. At the tree level, the steps (c) and (e) can be skipped, so the fakeon

has the free propagator

p2 −m2

(p2 −m2)2 + E4 =
1

2

[

1

(p0 + iǫ)2 − p2 −m2
+

1

(p0 − iǫ)2 − p2 −m2

]

= P 1

p2 −m2
. (3.8)

The equalities are meant in the sense of distributions, for ǫ→ 0 and E → 0. We obtain the

Cauchy principal value, which is also the half sum of the retarded and advanced Yukawa

potentials. Here, the violation of microcausality is due to the advanced Green function.

Since different quantization prescriptions may have the same classical limit, it is not

possible to infer the fakeon prescription from the principal value (3.8). Actually, as it
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stands, (3.8) leads to wrong results, if applied to the loop integrals, because it misses steps

(c) and (e), hence it generates the problems of ref. [15] and violates the optical theorem.

We stress again that the loop integrals must be calculated from their Euclidean versions by

performing the nonanalytic Wick rotation of ref.s [16, 19], or crossing the fakeon thresholds

inside the amplitudes by means of the average continuation.

4 Classicization: a toy model

The next goal is to analyze the effects of the fakeons on causality in the classical limit.

In this section, we study the nonrelativistic particle as a toy model to illustrate the main

properties. Consider the higher-derivative Lagrangian

LHD =
m

2
(v2 − τ 2a2)− V (x, t), (4.1)

where x is the coordinate (v = ẋ, a = ẍ) and τ is a real constant. To begin with, let

us take V (x, t) = −xFext(t), where Fext(t) is an external force. The equation of motion

m(a + τ 2ä) = Fext has four independent solutions, unless we restrict the configuration

space. The restriction can be achieved by writing

ma =
1

1 + τ 2 d2

dt2

Fext ≡ G̃Fext (4.2)

and giving a prescription for the Green function G̃ that acts on Fext. The distribution G̃

that follows from the classical fakeon prescription (3.8) is

GF (u, τ) =
sin(|u|/τ)

2τ
, (4.3)

where the subscript F stands for “fakeon”. The projected equation of motion is then

ma(t) =

∫ ∞

−∞

duGF (u, τ)Fext(t− u) ≡ 〈Fext(t)〉 (4.4)

and its degrees of freedom are just the initial position and the initial velocity of the particle.

Since

lim
τ→0

GF (u, τ) = δ(u), (4.5)

the equation becomes ma = Fext in the limit τ → 0, as expected1.

1The quickest way to prove (4.5), pointed out to us by L. Bracci, is to take the derivative of the

distribution sgn(u) cos(u/τ), which tends to zero by the Riemann-Lebesgue theorem.
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The fakeon Green function (4.3) makes the average 〈Fext(t)〉 sensitive to both the

past and the future, which means that the fakeon solutions disappear at the expenses of

microcausality. However, the violation of microcausality is “small”, since its effects are

averaged away by the oscillating behavior of GF for |u| ≫ τ . As in the previous section,

it is sufficient to know just “a little bit of future”, say |u| . τ , to predict the future.

If we introduce an auxiliary coordinate Q and make the redefinition x = q + Q, we

obtain the equivalent Lagrangian

L(q, Q, t) = m

2
q̇2 − m

2
Q̇2 +

m

2τ 2
Q2 − V (q +Q, t). (4.6)

The Q-quadratic part has the wrong sign, as expected. The equations of motion

mq̈ = −∂V
∂q

(q +Q, t), mQ̈ +
m

τ 2
Q =

∂V

∂q
(q +Q, t), (4.7)

can be projected by interpreting Q as a fake coordinate. We assume that the potential V

can be treated perturbatively and solve the Q equation of motion by means of the classical

fakeon prescription, which gives Q(q, t) = −τ 2〈q̈〉. Then we substitute the result back into

(4.7). So doing, we obtain the projected equation of motion for q:

mq̈ = − ∂V (x, t)

∂x

∣

∣

∣

∣

x=〈q〉

, (4.8)

where the average 〈q(t)〉 is defined by the last equality of eq. (4.4) with Fext → q.

We stress that, since the fakeon prescription comes from quantum field theory, which is

formulated perturbatively, the projected classical equations are also understood perturba-

tively. The fakeon solutions of (4.7) drop out, because they are not perturbative solutions

of (4.8). If we want to treat V nonperturbatively, we need to resum the expansion.

The projected Lagrangian Lr(q, t) can be obtained by inserting the solution Q(q, t) =

−τ 2〈q̈〉 back into (4.6), which gives

Lr(q, t) = L(q, Q(q, t), t) =
m

2

(

〈q̇〉2 + 2τ 2〈q̇〉〈...q 〉+ τ 2〈q̈〉2
)

− V (〈q〉, t). (4.9)

Its Lagrange equations are indeed the projected equations of motion (4.8).

Given an arbitrary Lagrangian L(q, q̇, q̈,
...
q, · · · , t), the energy is

E = −L+ q̇
∞
∑

n=1

←−
∂t

n − (−1)n−→∂t n
←−
∂t +

−→
∂t

∂L

∂q(n)
, (4.10)

where ∂t = d/dt, the arrows specify whether the derivatives act to the left or the right,

and q(n) = ∂nt q. The ratio of derivative operators appearing in (4.10) must be simplified by
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means of the polynomial identity (xn − (−1)nyn)/(x+ y) = xn−1 + · · · − (−1)nyn−1. It is

easy to check that the Lagrange equations imply dE/dt = −∂L/∂t, so E is conserved if t

is a cyclic coordinate. Moreover, under arbitrary changes of variables u = u(q, q̇, q̈,
...
q, · · · )

that do not depend explicitly on t, E can at most go into a function of E, so we can use

formula (4.10) with the variables we want. To apply it to L = Lr it is convenient to use

the variable u = 〈q〉 = x, which easily leads to the expression

E ′ =
m

2

(

〈q̇〉2 + 2τ 2〈q̇〉〈...q 〉 − τ 2〈q̈〉2
)

+ V (〈q〉, t). (4.11)

An as example, consider the harmonic oscillator, V = mω2x2/2. The equations of

motion give

(ν2 − ω2 − τ 2ν4)x̃(ν) = 0, (4.12)

where x̃(ν) is the Fourier transform of x(t). If ω > 1/(2τ) the polynomial ν2 − ω2 − τ 2ν4
has two pairs of complex conjugate zeros, which correspond to thick fakeons. Thus, the

projected subspace of configurations is empty. Instead, for ω 6 1/(2τ) the polynomial has

four real zeros, but only two of them give solutions that have regular τ → 0 limits. They

read

x(t) = A cos(Ωt + ϕ0), where Ω =
1

τ
√
2

√

1−
√
1− 4τ 2ω2 (4.13)

and A, ϕ0 are constants. The other two solutions are fakeons minus, as can be seen from

the residues of their propagators, obtained by replacing the right-hand side of (4.12) with

1. Projecting the fakeons away, the final result is a harmonic oscillator with the modified

frequency Ω. The energy (4.11) is

E ′ =
m

2

(

ẋ2 + 2τ 2ẋ
...
x− τ 2ẍ2

)

+ V (x) =
m

2
A2Ω2

√
1− 4τ 2ω2 (4.14)

and is positive definite on the solutions (4.13).

To quantize the theory (4.6) in the case ω 6 1/(2τ), we define the annihilation operators

aξ =

√

mΩ

2

(

ξ +
i

mΩ
Pξ

)

, aη =

√

mΩ̃

2

(

η +
i

mΩ̃
Pη

)

,

where Ω̃ =
√
1− τ 2Ω2/τ , ξ = q cosh θ − Q sinh θ, η = Q cosh θ − q sinh θ, Pξ = p cosh θ +

P sinh θ, Pη = P cosh θ+p sinh θ and θ is such that tanh θ = Ω2/Ω̃2. The commutation rules

[p, q] = [P,Q] = −i lead to [aξ, a
†
ξ] = [aη, a

†
η] = 1, [aξ, a

†
η] = [aη, a

†
ξ] = [aη, aξ] = [a†η, a

†
ξ] = 0.

The Hamiltonian is

H = Ω

(

a†ξaξ +
1

2

)

− Ω̃

(

a†ηaη +
1

2

)

.
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We see that a†η are the creation operators of the fakeons minus. The physical subspace V is

obtained by projecting them away. Specifically, the vacuum |0〉 satisfies aξ|0〉 = aη|0〉 = 0.

The space V is made of the states |v〉 such that aη|v〉 = 0. It is generated by (a†ξ)
n|0〉 and

contains the wave functions of the form

ψ(q, Q) = ψ(ξ) exp

(

−mΩ̃η2

2

)

.

The reduced Hamiltonian reads HV = Ωa†ξaξ + (1/2)(Ω − Ω̃) and is bounded from below

in V . Note that HV must be shifted by a constant to have a regular limit τ → 0.

5 The classicization of quantum gravity

In this section we study the fakeon projection in the classical limit of quantum gravity.

For simplicity, we work at ΛC = 0, the generalization to ΛC 6= 0 being straightforward.

The field equations derived from the interim classical action (1.2) read

Rµν − 1

2
gµνR =

κ2

ζ

[

e3κφfT µν
m
(g̃eκφ,Φ) + fT µν

φ (g̃, φ) + T µν
χ (g, χ)

]

,

− 1√−g̃ ∂µ
(

√

−g̃g̃µν∂νφ
)

−
m2

φ

κ

(

eκφ − 1
)

eκφ =
κe3κφ

3ζ
T µν
m

(g̃eκφ,Φ)g̃µν , (5.1)

1√−g
δSχ(g, χ)

δχµν

= e3κφfT µν
m
(g̃eκφ,Φ) + fT µν

φ (g̃, φ),

where T µν
A (g) = −(2/√−g)(δSA(g)/δgµν) are the energy-momentum tensors (A = m, φ,

χ) and f =
√

det g̃ρσ/ det gαβ.

The projection onto the right subspace of configurations works as follows. Solve the

third equations of (5.1) for χµν by means of the half sum of the retarded and advanced

Green functions. Then insert the solution 〈χµν〉 into the other two equations. So doing,

χ becomes a classical fakeon and the first two lines of (5.1) with χµν → 〈χµν〉 become the

projected equations of the GSF theory. They are also the field equations of the finalized

classical action

SGSF
QG (g, φ,Φ) = SH(g) + Sχ(g, 〈χ〉) + Sφ(ḡ, φ) + Sm(ḡe

κφ,Φ), (5.2)

where ḡµν = gµν + 2〈χµν〉.
If we want to treat φ as a fakeon as well (GFF theory), we solve the second and third

equations of (5.1) for φ and χµν by means of the half sums of the retarded and advanced
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Green functions and insert the solutions 〈φ〉, 〈χµν〉 into the first equation. The finalized

classical action is then

SGFF
QG (g,Φ) = SH(g) + Sχ(g, 〈χ〉) + Sφ(ḡ, 〈φ〉) + Sm(ḡe

κ〈φ〉,Φ). (5.3)

We can make these operations more explicit by expanding around flat space. The field

equations of the action (1.1) can be written in the form

(

ζ + α∇2
)

Gµν +
α− ξ
3

(

∇µ∇ν − gµν∇2
)

G = κ2Tµν , (5.4)

where Gµν is the Einstein tensor and G = gµνGµν denotes its trace, while

κ2Tµν ≡ κ2Tmµν +
α

2
gµνR

ρσRρσ − 2αRµρνσR
ρσ +

2α + ξ

3
R

(

Rµν −
1

4
gµνR

)

. (5.5)

Now, write gµν = ηµν + 2κhµν , where ηµν is the flat-space metric, and decompose Gµν

as G0
µν + (κ2Jµν/ζ), where G0

µν denotes its linear part in hµν . We understand that the

indices of ηµν , ∂µ, hµν and G0
µν are raised and lowered by means of ηµν . Split the left-hand

side of the field equation (5.4) into its linear part plus the rest. Precisely, recalling that

∂µG0
µν = 0, write

(

ζ + α∇2
)

Gµν +
α− ξ
3

(

∇µ∇ν − gµν∇2
)

G ≡ Q ρσ
µν G0

ρσ + κ2Uµν , (5.6)

where Uµν collects the corrections that are at least quadratic in hµν and

Q ρσ
µν ≡ (ζ + α∂2)I ρσ

µν − α− ξ
3

∂2πµνπ
ρσ. (5.7)

Here, ∂2 = ∂µ∂µ and I ρσ
µν is the identity operator for transverse symmetric tensors with

two indices, while πµν is the spin-1 projector:

I ρσ
µν =

1

2
(πρ

µπ
σ
ν + πσ

µπ
ρ
ν), πµν = ηµν −

∂µ∂ν
∂2

.

The operators I ρσ
µν and Q ρσ

µν satisfy obvious symmetry properties and are transverse:

∂µI ρσ
µν = ∂µQ ρσ

µν = 0. Clearly, I αβ
µν I

ρσ
αβ = I ρσ

µν . The inverse of Q ρσ
µν is

P ρσ
µν =

1

ζ + α∂2

(

I ρσ
µν +

α− ξ
3

∂2

ζ + ξ∂2
πµνπ

ρσ

)

,

i.e. P αβ
µν Q

ρσ
αβ = Q αβ

µν P
ρσ

αβ = I ρσ
µν .
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The projected equations of the GFF theory can be obtained by using (5.6) in (5.4) and

inverting Q ρσ
µν . This gives

G0
µν = κ2P ρσ

µν (Tρσ − Uρσ).

Using the transversality of κ2(Tµν − Uµν) = Q ρσ
µν G0

ρσ and inserting the classical fakeon

prescription (3.8), we obtain

G0
µν =

1

M̄2
Pl

〈

Tµν − Uµν +
rφχ
3

(

ηµν∂
2 − ∂µ∂ν

)

〈T − U〉φ
〉

χ
, (5.8)

where T = ηµνTµν , U = ηµνUµν , rφχ = (m2
φ −m2

χ)/(m
2
φm

2
χ) and the average 〈· · · 〉F associ-

ated with the fakeon F of mass mF is defined as

〈O〉F ≡
m2

F

2

[

1

m2
F + ∂2

∣

∣

∣

∣

ret

+
1

m2
F + ∂2

∣

∣

∣

∣

adv

]

O. (5.9)

In covariant form, the field equations of the GFF theory read

Rµν −
1

2
gµνR =

1

M̄2
Pl

TGFF
µν , (5.10)

where

TGFF
µν =

〈

Tµν − Uµν +
rφχ
3

(

ηµν∂
2 − ∂µ∂ν

)

〈T − U〉φ
〉

χ
+ Jµν .

Note that although TGFF
µν is not manifestly covariant, it can be put in fully covariant form,

because equations (5.10) are equivalent to the field equations of (5.3), which are covariant.

Since (5.10) is a perturbative version of the field equations of (5.3), the covariantization can

be achieved iteratively, starting by replacing ∂2 with its covariant version in the definition

(5.9) of the fakeon average.

Now we consider the GSF theory. Tracing (5.8) with the flat-space metric and using

the definition (5.9), we obtain

rφχ
M̄2

Pl

〈〈T − U〉φ〉χ =
1

M̄2
Plm

2
χ

〈T − U〉χ −
1

m2
φ

G0,

where G0 = G0
µνη

µν . Inserting this formula back into (5.8), we also get

G0
µν +

1

3m2
φ

(

ηµν∂
2 − ∂µ∂ν

)

G0 =
1

M̄2
Pl

(

〈Tµν − Uµν〉χ +
1

3m2
χ

(

ηµν∂
2 − ∂µ∂ν

)

〈T − U〉χ
)

.

Then, calling

Kµν =
M̄2

Pl

3m2
φ

[(

gµν∇2 −∇µ∇ν

)

G−
(

ηµν∂
2 − ∂µ∂ν

)

G0
]

,
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we find the projected field equations of the GSF theory, which read

Gµν +
1

3m2
φ

(

gµν∇2 −∇µ∇ν

)

G =
1

M̄2
Pl

TGSF
µν , (5.11)

where

TGSF
µν = 〈Tµν − Uµν〉χ +

1

3m2
χ

(

ηµν∂
2 − ∂µ∂ν

)

〈T − U〉χ + Jµν +Kµν .

Again, the tensor TGSF
µν can be iteratively covariantized to put (5.11) in a fully covariant

form.

The left-hand side of equation (5.11) coincides with the left-hand side of (5.4), divided

by ζ , in the limit α → 0, i.e. mχ → ∞. Moreover, the right-hand side of (5.11) contains

only the average 〈· · · 〉χ. These facts show that the field χµν is integrated out. It is easy

to prove that the surviving degrees of freedom are the graviton and the massive scalar φ,

and that their poles have positive residues.

Instead, the left-hand side of equation (5.10) coincides with the left-hand side of (5.4),

divided by ζ , in the limit where both mχ and mφ are sent to infinity. The right-hand side

of (5.10) contains both the averages 〈· · · 〉χ and 〈· · · 〉φ, which means that both χµν and φ

are integrated out.

The projected equations (5.10) and (5.11) are the classical field equations of quantum

gravity. They are written so that the initial conditions, or the boundary conditions, are

those dictated by their left-hand sides. They are perturbative in κ (but not in α and ξ).

The cosmological constant can be reinstated by replacing Tµν with Tµν + gµν(ΛC/κ
2).

The averages 〈· · · 〉χ and 〈· · · 〉φ that appear on the right-hand sides of the equations are

the main remnants of the classicization. They show that the violations of microcausality

and their intrinsic nonlocalities survive the classical limit of quantum gravity.

By searching for exact solutions of physical interest and comparing them with the

solutions of the Einstein equations, we may identify complex systems and nonperturbative

configurations where the effects of the violations of microcausality get amplified enough to

become detectable. The masses mχ and mφ might be sufficiently small to let us uncover

the first signs of quantum gravity without having to reach the Planck scale.

6 Conclusions

In this paper we have studied the properties of the fakeons and their role in quantum

gravity. When fakeons are present, the quantization process includes an additional step,
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since the starting local action is just an interim one. The finalized classical action emerges

from the classicization of the quantum theory.

A fakeon χµν of spin 2 and a scalar field φ are able to make quantum gravity renormal-

izable while preserving unitarity. Depending on whether φ is physical or fake, we have two

possibilities, the GSF and GFF theories. We worked out the finalized classical actions in

the two cases, which are (5.2) and (5.3), respectively. The classical field equations derived

from them are (5.11) and (5.10). Among the other things, the results make clear that the

violations of microcausality survive the classical limit.

The corrections to general relativity become important at energies comparable with

the masses mχ and mφ of χµν and φ. The values of such masses in nature could be much

smaller than the Planck mass and still be compatible with every experimental observations

made so far. Yet, those values might still be too large to detect new effects in scattering

processes and other elementary or perturbative phenomena. For this reason, it may be

interesting to study the classicized actions derived here, because they give us the chance to

investigate collective, nonperturbative effects. A possibility is to study how the solutions

of the field equations of general relativity get modified and search for situations where

the violations of microcausality get amplified enough to become detectable. This kind of

investigation might also help us put experimental bounds on the values of mχ and mφ.

It is not easy to detect the violations of causality directly, since when we solve a

self-consistent system (no external sources being involved), we know in advance what

the interactions will be in the future (as functions of the fields), which makes it hard

to discriminate what is expected from what is unexpected. However, the corrections to

general relativity predicted by the equations (5.10) and (5.11) might help us detect the

violations indirectly or test other nontrivial predictions of quantum gravity, maybe from

the observations of black holes or by studying the consequences on cosmology.
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