
On the use of virtual reality in software visualization: The case of the city
metaphor

Simone Romano

a , ∗ , Nicola Capece

b , Ugo Erra

b , Giuseppe Scanniello

b , Michele Lanza

c

a University of Bari, Bari, Italy
b University of Basilicata, Potenza, Italy
c Software Institute – Università della Svizzera italiana (USI), Lugano, Switzerland

a r t i c l e i n f o

Keywords:

Code city
Software visualization
Virtual reality
Experiment

a b s t r a c t

Background: Researchers have been exploring 3D representations for visualizing software. Among these repre-
sentations, one of the most popular is the city metaphor , which represents a target object-oriented system as a
virtual city. Recently, this metaphor has been also implemented in interactive software visualization tools that
use virtual reality in an immersive 3D environment medium.

Aims: We assessed the city metaphor displayed on a standard computer screen and in an immersive virtual reality
with respect to the support provided in the comprehension of Java software systems.

Method: We conducted a controlled experiment where we asked the participants to fulfill program comprehension
tasks with the support of (i) an integrated development environment (Eclipse) with a plugin for gathering code
metrics and identifying bad smells; and (ii) a visualization tool of the city metaphor displayed on a standard
computer screen and in an immersive virtual reality.

Results: The use of the city metaphor displayed on a standard computer screen and in an immersive virtual reality
significantly improved the correctness of the solutions to program comprehension tasks with respect to Eclipse.
Moreover, when carrying out these tasks, the participants using the city metaphor displayed in an immersive
virtual reality were significantly faster than those visualizing with the city metaphor on a standard computer
screen.

Conclusions: Virtual reality is a viable means for software visualization.

1

o

h

r

v

e

t

o

o

r

p

w

p

a

v

b

t

[

a

s

f

s

o

t

s

i

p

S

h

Author’ s Accepted Manuscript, AAM
. Introduction

Software visualization refers to the visualization of different aspects
f software [1] . It is considered an effective means for program compre-
ension, which is widely used in the context of software maintenance,
everse engineering, and re-engineering [2,3] .

In the last two decades, we have witnessed a proliferation of software
isualization approaches defined to support a broad range of software
ngineering activities. Researchers have been exploring 3D representa-
ions for visualizing software [3] . Among these 3D representations one
f the most popular is the city metaphor [2,4–8] . For example, a target
bject-oriented software system is visualized as a city whose buildings
epresent its classes and whose districts depict its packages. The visual
roperties of the city artifacts represent software metrics. This metaphor
as initially designed to let developers solve high-level program com-
rehension tasks on one system version [5] . Later, the city metaphor was
∗ Corresponding author.
E-mail addresses: simone.romano@uniba.it (S. Romano), nicola.capece@unibas.it

canniello), michele.lanza@usi.ch (M. Lanza).

ttps://doi.org/10.1016/j.infsof.2019.06.007
dapted to analyze the evolution of software systems throughout their
ersions [9] and to identify design issues [10] . The city metaphor has
een recently implemented in interactive software visualization tools
hat use virtual reality in an immersive 3D environment medium (e.g.,

11,12]).
There is a growing need for the assessment of software visualization

pproaches to demonstrate their effectiveness. Unfortunately, only a few
oftware visualization approaches have been empirically validated so
ar (e.g., [2,13]), which might be detrimental to the development of the
oftware visualization field [3] . One of the reasons behind the shortage
f empirical evaluation in that field lies in the considerable acciden-
al complexity of such evaluations [11,13] . In addition, the variety of
oftware visualization approaches makes it difficult to reuse the exper-
mental material and the design of past empirical evaluations.

We present the results of a controlled experiment conducted to com-
are the city metaphor implemented in a 3D visualization tool displayed
 (N. Capece), ugo.erra@unibas.it (U. Erra), giuseppe.scanniello@unibas.it (G.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2019.06.007&domain=pdf
mailto:simone.romano@uniba.it
mailto:nicola.capece@unibas.it
mailto:ugo.erra@unibas.it
mailto:giuseppe.scanniello@unibas.it
mailto:michele.lanza@usi.ch
https://doi.org/10.1016/j.infsof.2019.06.007

S. Romano, N. Capece and U. Erra et al.

o

a

v

s

l

e

h

W

t

f

i

r

t

T

t

r

2

m

j

o

t

L

s

p

T

t

e

r

m

p

S

i

m

t

m

a

F

i

K

p

v

t

t

a

a

T

p

r

m

t

i

f

s

p

e

f

c

i

m

t

t

b

v

s

t

m

r

t

f

i

c

i

r

a

t

n

o

a

s

p

c

m

m

e

c

t

i

i

g

s

a

t

i

e

u

a

p

s

t

f

F

I

n

i
n a standard computer screen and in an immersive virtual reality. We
lso compared these tools with Eclipse, a popular IDE (Integrated De-
elopment Environment) in both academia and industry, which repre-
ents the current state-of-the-practice and therefore is the natural base-
ine for the comparison performed in our experiment. The controlled
xperiment focuses on the support these tools provide in the compre-
ension of Java source code. Our experiment is based on the one by
ettel et al. [2] . With respect to this experiment, we deliberately in-

roduced changes to some parameters. For example, we considered a
urther treatment —an implementation of the city metaphor displayed
n an immersive virtual reality.

In this paper, we make the following contributions:

• A controlled experiment to assess the use of virtual reality in
software visualization with a high number of participants (i.e.,
42). This is valuable because it provides evidence on the benefits
related to the use of an emerging technology (e.g., Oculus Rift,
a head-mounted display) in the software engineering field. The
practitioner could take advantage from this evidence to support
adoption decisions of such a kind of technology.

• From a scientific perspective, our experiment allows collecting
further evidence on the benefits deriving from the use of the city
metaphor for program comprehension, so bringing credibility to
both software visualization and city metaphor.

The paper is organized as follows. In Section 2 , we present work
elated to our research. In Section 3 , we provide background informa-
ion useful to better comprehend the research presented in this paper.
he design of our controlled experiment is shown in Section 4 , while
he obtained results are presented and discussed in Sections 5 and 6 ,
espectively. We conclude the paper in Section 7 .

. Related work

In the software visualization field, there is a high number of
etaphors that use a synthetic natural environment to represent a sub-

ect system [7,14–16] . These metaphors use well-understood elements
f the world to provide insights about a system [1] . In this context,
he city metaphor is one of the most explored [4,17–20] . Wettel and
anza [4] proposed the use of this metaphor to allow a large- and small-
cale understanding of object-oriented software systems. In their pro-
osal, classes are represented as buildings and packages as districts.
he authors named their visualization tool CodeCity. 1 To assess their
ool and the underlying metaphor, the authors conducted a controlled
xperiment with participants from both academia and industry [2] . The
esults suggest that the use of CodeCity leads to a significant improve-
ent in terms of task correctness and significantly reduces task com-
letion time. Our experiment is based on that by Wettel et al. [2] . In
ection 3 , we provide further details on both city metaphor and empir-
cal assessment by Wettel et al.

To date, the city metaphor is the most implemented metaphor in im-
ersive 3D environment media [11–13,21–23] . We can speculate that

his is due to the fact that the city metaphor is very suitable to trans-
it a good sense of habitability and locality to the users [5] , for ex-

mple, when dealing with program comprehension tasks. For example,
ittkau et al. [22] proposed an approach for the exploration and visual-
zation of software systems as cities through Oculus Rift and Microsoft
inect. The authors implemented their approach in ExplorViz. This tool
rovided different gestures for the interaction between the user and the
isualized city. Then they conducted 11 structured interviews to inves-
igate the usability of these gestures. The results indicated that the ges-
ures for translation, rotation, and selection were considered highly us-
ble, while the zooming gesture was not.

Souza et al. [21] proposed a visualization of a target system through
ugmented reality using the city metaphor to represent its evolution.
1 https://wettel.github.io/codecity.html .

p

b

r

93
heir system, called SkyscrapAR, represents packages as districts, sub-
ackages as stacked districts, and classes as buildings positioned in their
espective packages. The authors did not conduct any empirical assess-
ent of SkyscrapAR.

Merino et al. [11] proposed CityVR —an interactive visualization
ool that implements the city metaphor in an immersive virtual real-
ty medium. CityVR targets the software maintainer, who has to per-
orm software comprehension tasks to correct and evolve a software
ystem. The authors present the results of a preliminary qualitative em-
irical evaluation, namely semi-structured interviews with six experi-
nced developers. The most important findings can be summarized as
ollows: (i) developers felt curious, immersed, in control, excited, and
hallenged, (ii) developers spent considerable interaction time navigat-
ng and selecting elements, and (iii) developers were willing to spend
ore time using CityVR to solve software comprehension tasks since

hey perceived that time passed faster than in reality. Our implemen-
ation of code city displayed in an immersive virtual reality is inspired
y CityVR. Our proposal is based on the use of Oculus Rift (costumer
ersion), which provides the feeling of total immersion in the visualized
oftware system.

Merino et al. [24] conducted a controlled experiment with 27 par-
icipants. Each of them experimented: 3D visualizations of the city
etaphor across a standard computer screen, an immersive 3D envi-

onment, or a physical 3D printed model. The participants were asked
o visualize software systems to solve comprehension tasks. The authors
ound that: (i) the participants that visualized code cities using a phys-
cal 3D printed model required the least time to identify outliers (e.g.,

lasses with the highest number of lines of code); (ii) those who visual-
zed code cities using an immersive virtual reality obtained the highest
ecollection; and (iii) when using a standard computer screen to visu-
lize code cities, the participants perceived the least difficulty to iden-
ify outliers.

Later, Merino et al. [13] conducted a controlled experiment with
ine participants where they compared the city metaphor displayed
n a standard computer screen with the same metaphor displayed in
n immersive augmented reality in the context of program comprehen-
ion tasks. To perform this comparison, the authors also considered data
oints from nine participants of a previous experiment [24] . They also
onducted a qualitative investigation where nine participants experi-
ented the space-time cube visualization technique displayed in im-
ersive augmented reality. The main findings that emerged from this

xperiment are: (i) developers who visualized code cities on a standard
omputer screen require the least time to identify outliers and achieve
he highest correctness, although they perceive the most difficulty in
dentifying outliers and (ii) the use of an immersive augmented real-
ty medium allow recollecting many details of systems while offering a
ood level of engagement.

In this paper, we present the results of a controlled experiment to as-
ess the city metaphor displayed on a standard computer screen and in
n immersive virtual reality when carrying out program comprehension
asks. Our research contributes with those by Merino et al. [11,13,24] to
ncrease the body of knowledge on the impact of the medium on the
ffectiveness of 3D software visualizations (the city metaphor, in partic-
lar). However, there are a number of differences between our research
nd those by Merino et al. For example, we conducted a controlled ex-
eriment, while the empirical investigation by Merino et al. [11] con-
isted of semi-structured interviews (similarly, our research differs from
hat by Fittkau et al. [22]). In Table 1 , we summarize the main dif-
erences between our experiment and those by Merino et al. [13,24] .
irst, we considered different treatments (e.g., Eclipse, a state-of-the-art
DE). Second, we involved a higher number of participants (i.e., 42) —the
umber of participants can impact the conclusion validity of an exper-
ment (e.g., due to low statistical power) [25] . Third, to mitigate ex-
erimenter bias [25] , we used the experimental materials of the study
y Wettel et al. [2] . This design choice also allowed us to compare our
esults with those by Wettel et al. —if we confirmed their results, we

https://wettel.github.io/codecity.html

S. Romano, N. Capece and U. Erra et al.

Table 1

Summary of the differences between our experiment and those by Merino et al. [13,24] .

Characteristic Our experiment Merino et al.’s experiment [13] Merino et al.’s experiment [24]

Treatments Eclipse, code city displayed across standard
computer screen and immersive virtual
reality media

Code city displayed across standard computer
screen and immersive augmented reality
media

Code city displayed across standard computer
screen, immersive virtual reality, and
physical 3D printed model media

Participants 42 9 (+ 9 from Merino et al. [24]) 27
Tasks 10 (from Wettel et al. [2]) 6 (from Merino et al. [24]) 9
Investigated Aspects Completion time, correctness,

feelings/emotions, perceived usefulness
(including perceived task difficulty),
playfulness, behavioral intention to use, and
side effects

Completion time, correctness,
feelings/emotions, perceived task difficulty,
and recollection

Completion time, correctness,
feelings/emotions, perceived task difficulty,
and recollection

w

w

e

3

t

m

3

s

d

s

m

b

m

c

m

a

c

c

v

t

i

g

3

e

c

T

a

p

o

C

f

w

m

a

a

l

t

p

s

t

s

t

a

a

r

a

u

R

t

a

t

r

a

b

h

s

b

d

n

o

c

o

t

r

4

W

m

m

m

i

4

(

2 http://graphics.unibas.it/Code2City/index.md.html .
ould increase the evidence on the effectiveness of the city metaphor
hen carrying out comprehension tasks. Fourth, we investigated differ-

nt aspects like playfulness.

. Background and motivations

In this section, we first introduce the city metaphor (Section 3.1) and
hen we discuss the experiment by Wettel et al. [2] together with the
otivations behind ours (Section 3.2).

.1. The city metaphor

The city metaphor relies on the similarities between software con-
tructs and cities. Researchers have instantiated the city metaphor in
ifferent ways (e.g., [2,5,11,26,27]) differing on how the software con-
tructs and their characteristics are visually described through the city
etaphor. For example, the instance by Wettel et al. [2] and the one

y Bacchelli et al. [27] both depict a class as a building, but the for-
er maps the color of the building to the Lines Of Code (LOC) of that

lass, while the latter does not. Nevertheless, the instances of the city
etaphor share the goal of representing a subject software system as
 city. We consider the instance by Wettel et al. [2] , which we simply
all city metaphor from here on. Through the city metaphor, types (i.e.,
lasses and interfaces) are depicted as buildings (parallelepipeds). The
isual properties of each parallelepiped represent software metrics of
he class:

• The height of the building reflects Number Of Methods
(NOM) —the taller the building, the higher the number of meth-
ods.

• The base size of the building corresponds to Number of Attributes
(NOA) —the larger the base, the higher the number of attributes.

• The color of the building is mapped to LOC —dark blue means
few lines of code while light blue means many lines of code.

Blocks represent packages. Classes in the same package are placed
n the same block. The color of the blocks ranges from dark grey to light
rey based on the nesting level of the packages.

.2. Assessing the city metaphor and motivations for our experiment

Wettel and Lanza proposed CodeCity [4] and conducted a controlled
xperiment with participants from academia and industry to empiri-
ally assess it in the execution of program comprehension tasks [2] . In
able 2 , we summarize the main characteristics of that experiment.

The authors involved 45 participants from both industry and
cademia (e.g., students or professors). Each participant was asked to
erform comprehension tasks (see Table 3 for a description of the tasks)
n Java programs (either FindBugs or Azureus).

To comprehend them, the participants were provided with either
odeCity or Eclipse with some Excel spreadsheets —they reported in-

ormation on source code metrics and bad smells of the program on
hich they had to accomplish the tasks. Summarizing, the experiment
94
anipulated two factors: Tool and Object . The experiment design was
 between-subjects. Wettel et al. formalized two null hypotheses: NH1
nd NH2 (Table 2). NH1 aimed to investigate the correctness of the so-
utions the participants provided to comprehension tasks, while NH2
he time to complete these tasks. The results suggested that the partici-
ants, who used CodeCity attained significant better correctness of the
olutions with respect to who used Eclipse (+24%). As for the comple-
ion time, the results indicated that the participants who used CodeCity
pent significantly less time (− 12%).

The software engineering community has been embracing replica-
ions more readily (e.g., [28–31]), where a replication has to be intended
s a repetition of a baseline experiment [32] . Unfortunately, there is no
greement yet on terminology, typology, purposes, operation, and other
eplication issues [29,30,33] . Regarding the lack of shared terminology,
uthors use different definitions for the same kind of replication and
se the same definition to refer to different kinds of replication [34] .
ecently, Gómez et al. [33] proposed a different classification for the

ypes of replications based on: protocol, operationalizations, populations ,
nd experimenters . Based on changes to these four dimensions, the au-
hors established three types of replications: literal , where the aim is to
un as exact a replication of the baseline experiment as possible; oper-

tional , where the aim is to vary some (or all) of the dimensions of the
aseline experiment configuration; and conceptual , where experimenters
ave “nothing more than a clear statement of the empirical fact ”. Our
tudy can be considered an operational replication of the experiment
y Wettel et al. [2] because we introduced several changes in the four
imensions by Gómez et al. [33] . For example, Wettel et al. [2] were
ot involved in the design and the execution of our experiment, but one
f these researchers shared with us the experimental material and dis-
ussed with us the obtained experimental results. A deeper discussion
f the changes introduced to the protocol, the operationalization, and
he population is presented in Section 4.9 , where we also discuss the
ationale behind the changes we introduced.

. Experiment

In the execution of our experiment, we exploited the guidelines by
ohlin et al. [25] and Juristo and Moreno [35] . To present this experi-
ent, we used the template by Jedlitschka et al. [36] . The experimental
aterials are available on the web 2 as well as the raw data. We also
ade available a technical report where we provide details on the tools

mplementing the city metaphor and used in our experiment.

.1. Goals

We formalized and investigated the following Research Questions
RQs):

RQ1. Do city metaphor implementations displayed on a standard com-
puter screen and in an immersive virtual reality lead to better

http://graphics.unibas.it/Code2City/index.md.html

S. Romano, N. Capece and U. Erra et al.

Table 2

Main characteristics of the Wettel et al.’s experiment.

Participants 45 (41 after data-cleaning) from industry and academia
Experimental Objects FindBugs, Azureus
Main Factor Tool —CodeCity vs. Eclipse + Excel
Secondary Factor Object —FindBugs vs. Azureus
Design 2 ×2 factorial —between-subjects
Null Hypotheses NH1. Tool does not significantly impact the correctness of the solutions to program comprehension tasks.

NH2. Tool does not significantly impact the completion time of program comprehension tasks.

Table 3

Task description as reported in the Wettel et al.’s paper [2] .

Task Concern

A1. Locate all the unit tests of the program and identify the convention (or lack thereof) used by the developers to organize the tests. Rationale. Test
classes are typically defined in packages according to a project-specific convention. Before integrating their work in the system, developers need to
understand how the test classes are organized. Software architects design the high-level structure of the system (which may include the convention by
which test classes are organized), while quality assurance engineers monitor the consistency of applying these rules in the system.

Structural
understanding

A2.1. Look for the term T1 in the names of types and their fields and methods, and describe the spread of these types in the system. Rational. Assessing
how domain knowledge is encapsulated in source code is important in several scenarios. To understand a system they are not familiar with,
developers often start by locating familiar domain concepts in the source code. Maintainers use concept location on terms extracted from change
requests to identify where changes need to be performed in the system. Software architects want to maintain a consistent mapping between the static
structure and domain knowledge. Each of these tasks starts with locating a term or set of terms in the system and assess its dispersion.

Concept location

A2.2. Look for the term T2 in the names of types and their fields and methods, and describe the spread of these types in the system. Rationale. Same as
for task A2.1. However, the term T2 was chosen such that it had a different type of spread than T1 .

Concept location

A3. Evaluate the change impact of the class C by considering its caller types. The assessment is done in terms of both intensity (number of potentially
affected types) and dispersion (how these types are distributed in the program). Rationale. Impact analysis allows one to estimate how a change to a
part of the system impacts the rest of the system. Although extensively used in maintenance activities, impact analysis may also be performed by
developers when estimating the effort needed to perform a change. It also gives an idea of the quality of the system: A part of the system which
requires a large effort to change may be a good candidate for refactoring.

Change impact
analysis

A4.1. Find the 3 types with the highest number of methods. Rationale. Classes in object-oriented systems ideally encapsulate one single responsibility.
Since methods are the classs unit of functionality, the number of methods metric is a measure of the amount of functionality of a class. Classes with an
exceptionally large number of methods make good candidates for refactoring (e.g., split class) and, therefore, are of interest to practitioners involved
in either maintenance activities or quality assurance.

Metric-based
analysis

A4.2. Find the 3 types with the highest mean number of lines of code per method. Rationale. It is difficult to prioritize candidates for refactoring from a
list of large classes. In the absence of other criteria, the number and complexity of methods can be used as a measure of the amount of functionality
for solving this problem related to maintenance and quality assurance.

Metric-based
analysis

B1.1. Identify the package with the highest percentage of god classes. Rationale. God classes are classes that tend to incorporate an overly large amount
of intelligence. Their size and complexity often make them a maintainers nightmare. Keeping these potentially problematic classes under control is
important. By maintaining the ratio of god classes in packages to a minimum, the quality assurance engineer keeps this problem manageable. For a
project manager, in the context of the software process, packages represent work units assigned to the developers. Assessing the magnitude of this
problem allows him to take informed decisions in assigning resources.

Focused design
assessment

B1.2. Identify the god class containing the largest number of methods. Rationale. It is difficult to prioritize candidates for refactoring from a list of god
classes. In the absence of other criteria (e.g., the stability of a god class over its evolution), the number of methods can be used as a measure of the
amount of functionality for solving this problem related to maintenance and quality assurance.

Focused design
assessment

B2.1. Identify the dominant class-level design problem in the program. Rationale. God class is only one of the design problems that can affect a class. A
similar design problem is the brain class, which accumulates an excessive amount of intelligence, usually in the form of brain methods (i.e., methods
that tend to centralize the intelligence of their containing class). Finally, data classes are just dumb data holders without complex functionality, but
with other classes strongly relying on them. Gaining a big picture of the design problems in the system would benefit maintainers, quality assurance
engineers, and project managers.

Holistic design
assessment

B2.2. Write an overview of the class-level design problems. Describe your most interesting or unexpected observations. Rationale. The rationale and
targeted user roles are the same as for task B2.1. However, while the previous one gives an overview of design problems in figures, this task provides
qualitative details and has the potential to reveal the types of additional insights obtained with visualization over raw data.

Holistic design
assessment

4

n

W

e

U

p

i

s

4

b

B

t

t

h

a

f

s

s

t

correctness of solutions to program comprehension tasks, com-
pared to an IDE with a plugin for gathering code metrics and
identifying bad smells?

RQ2. Do city metaphor implementations displayed on a standard com-
puter screen and in an immersive virtual reality lead to better
completion time of solutions to program comprehension tasks,
compared to an IDE with a plugin for gathering code metrics and
identifying bad smells?

.2. Experimental units

The participation in the experiment was on a voluntary basis: we
either forced nor paid the participants to take part in our experiment.
e invited, via e-mail, bachelor students (third-year) in Computer Sci-

nce and master students (first-year) in Computer Engineering (at the
niversity of Basilicata, Potenza, Italy) by asking them if they wanted to
articipate in our experiment. Among 70 invited students, 54 students
95
nitially accepted our invitation, of which 42 (34 where undergraduate
tudents, while eight were graduate) took part in the experiment.

.3. Tasks

We asked the participants to fulfill a subset of the ten tasks defined
y Wettel et al. for FindBugs [2,37] . We discarded two of them, A4.2 and
2.2 (Table 3), because these tasks were not included in their final quan-
itative data analysis by Wettel et al. [2] . In particular, they discarded
he task A4.2 because, to carry out this task, the CodeCity’s users had to
ave a deep knowledge of the CodeCity’s customization features as well
s experience with the underlying Smalltalk programming language. As
or the task B2.2, it was conceived to collect qualitative data. That is to
ay that the tasks considered in our quantitative data analysis are the
ame as the quantitative data analysis by Wettel et al. [2] .

The tasks covered various concerns. In Table 3 , we provide the ra-
ionale behind each task as reported in the Wettel et al.’s paper [2] .

S. Romano, N. Capece and U. Erra et al.

Table 4

Some information on the programs used for the
experiment.

Program NOT NOM NOA LOC

Jmol 634 8148 6273 106,305
FindBugs 1744 10,123 4836 92,571

4

(
(

s
p
T

t

i

e

p

i

B

t

o

a

r

p

t

u

u

F
c

n

4

T

I

t

c

w

s

m

r

s

k

u

m

m

s

i

a

m

t

o

b

c

f

t

p

T

A

T

o

t

p

p

u

c

g

w

h

a

s

c

m

a

w

4

p

m

i

p

m

v

t

f

w

p

c

a

t

i

a

d

b

t

t

T

a

u

i
.4. Experimental materials and tools

In our study, we used the following two programs written in Java:
1) Jmol , 3 an open-source viewer for chemical structures in 3D, and
2) FindBugs , 4 an open-source program for finding bugs (i.e., code in-
tances that are likely to be errors) in Java programs. In Table 4 , we
rovide some code metrics for these programs like the NOT (Number Of
ypes), NOM, NOA, and LOC.

Jmol was the program on which the participants carried out the
raining session. We chose this program because it was previously used
n studies on software visualization [9,10] and because it was large
nough and not obvious to justify the use of software visualization. The
articipants were asked to perform program comprehension tasks by us-
ng the procedure they would use in the experiment (Section 4.7). Find-
ugs was the program (or experimental object) on which they performed
he experimental session. The participants did not have any knowledge
n the FindBugs codebase. FindBugs was the same experimental object
s Wettel et al.’s experiment [2] . We reused the experimental mate-
ial (e.g., tasks) these researchers made available in their technical re-
ort [37] . As for Jmol, we created the material by taking as an example
he one Wettel et al. created for FindBugs [2,37] .

The participants were provided with one of the following tools:

• Code2City. An implementation of the city metaphor displayed
on a standard computer screen.

• Code2City VR . An implementation of the city metaphor displayed
displayed in an immersive virtual reality.

• Eclipse. It is an open-source IDE, which can be extended via plu-
gins. In particular, we plugged Metrics & Smells into Eclipse. This
plugin allows Eclipse’s users to compute and display code metrics
and identify bad smells in a Java codebase.

In the following, we provide further details on these tools. In partic-
lar, we provide some implementation details and sketch those features
seful to accomplish the experimental tasks described in Section 4.3 .
urther details on the implementations of Code2City and Code2City VR
an be found in the paper by Capece et al. [12] and in our on-line tech-
ical report.

.4.1. Code2City

The user interacts with Code2City by using mouse and keyboard.
hese devices allow moving inside a 3D scene like in first-person games.
ndeed, the user can fly over the city (bird’s-eye view), climb on top of
he buildings, and look at the city from the highest buildings. The user
an also move and observe the city from the perspective of a pedestrian
ho walks inside the city. Code2City has been developed so that the

ize of the displayed scene is proportional to the size of the user.
To move the user, we used the WASD based video game control

ethod. The W and S keys control forward and backward movements,
espectively. On the other hand, the A and D keys control left and right
trafing , respectively. We opted for the WASD keys because the arrow
eys are not ergonomic together with a right-handed mouse. To move
pwards, the user exploits the space key, while the Ctrl key is used to
ove downwards. The mouse allows rotations with respect to the nor-
al and transverse axes.
3 jmol.sourceforge.net .
4 findbugs.sourceforge.net .

i

(

i

4

96
In addition, Code2City offers also various features useful to under-
tand the subject system. In particular, the user can identify an object of
nterest (building or district) and select it through a viewfinder. When
n object is selected, it changes color becoming yellow and further infor-
ation on the corresponding object is shown. If the object corresponds

o a type, the system shows: type name, number of methods, number
f properties, number of code lines, and the package name to which it
elongs to. If the object corresponds to a package, its full name and the
ontained classes are shown to the user.

Code2City allows searching the types of a subject program by speci-
ying their names. Indeed, the user writes down a search string (by using
he keyboard) that should match either the entire name of the type or a
art. Types that respect the search string are highlighted in red (Fig. 1).
his feature could be used to accomplish the following experiment tasks:
1, A2.1, and A2.2. Code2City also allows searching types by callers.
his feature allows identifying the types, which perform calls to meth-
ds of the type provided by the user. Types that respect the search cri-
erion are also highlighted in red (Fig. 1). This feature could be used to
erform the task A3. On the other hand, the task A4.1 could be accom-
lished by looking for the highest three buildings shown in Code2City.

Code2City supports the identification of possible design problems
sing different colors to distinguish among the following smells: brain
lasses are shown in light green, data classes are shown in heavenly, and
od classes are shown in violet. Fig. 2 shows FindBugs in Code2City as
ell as the brain, data, and god classes it contains. This feature should
elp the accomplishment of the following tasks: B1.1, B1.2, and B2.1.

We did not use CodeCity (i.e., the tool by Wettel et al. [5]) because,
ccording to our experimental goals, we would have needed two ver-
ions of CodeCity: (i) one displaying the city metaphor on a standard
omputer screen; and (ii) one displaying the same metaphor in an im-
ersive virtual reality. Unfortunately, CodeCity was incompatible with

n immersive virtual reality medium (e.g., it was not devised to work
ith Oculus Rift).

.4.2. Code2City VR

Code2City VR implements the same features as Code2City. That is, it
rovides the same support as Code2City when carrying out the experi-
ent tasks. On the other hand, the interaction and visualization modes

n Code2City VR are different from those in Code2City. In fact, the user is
rovided with a controller —Xbox One Wireless Controller —and a head-
ounted display —Oculus Rift —that allows the immersion in the 3D en-

ironment. Fig. 3 shows how a city is shown on Oculus Rift.
The user interacts with the Code2City VR through head movements

hat allow rotations with respect to the normal and transverse axes. Dif-
erently from the mouse, head-mounted display also allows a rotation
ith respect to the longitudinal axis. The user can select the virtual com-
onent (e.g., a building) using the direction in front of his head and a
ontroller button. In this way, the user has the feeling of being really in
 city. The user can change her movement speed by pressing a key but-
on on the controller. Since a physical keyboard is not present, search-
ng types (by name and callers) are supported through the visualization
nd the interaction with a virtual keyboard, which can be activated and
eactivated by a key of the controller. To interact with the virtual key-
oard, the user exploits the controller (i.e., the right stick). To speed up
he writing time for text queries, Code2City VR provides an automatic
ext completion feature.

Code2City and Code2City VR share the same software architecture.
hey also exploit the software component to compute the code metrics
nd to detect smells. Code2City and Code2City VR differ on the medium
sed to display the city metaphor: a standard computer screen vs. an
mmersive virtual reality. This guaranteed that participants that exper-
mented Code2City and Code2City VR dealt with the same information
 e.g., the same smells) when accomplishing the experimental tasks. To
mplement Code2City and Code2City VR , we used Unreal Engine (version
.15.3). We used this game engine because it provides a good trade-off

http://jmol.sourceforge.net/
http://findbugs.sourceforge.net/

S. Romano, N. Capece and U. Erra et al.

Fig. 1. Buildings in red are the types satisfying a given
search criterion. (For interpretation of the references to
colour in this figure legend, the reader is referred to the
web version of this article.)

Fig. 2. Code smells: brain classes (light green), data
classes (heavenly), god classes (violet). (For interpre-
tation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 3. Visualization of the city through Oculus Rift.

b

m

C

p

g

o

C

i

o

etween rendering of the scenes, ease of use, and performance of im-
ersive virtual reality (e.g., 45 frames per seconds on FindBugs).

In this paper, we restricted the description of Code2City and
ode2City VR to the essential because our main goal was not to pro-
ose these solutions, but their effectiveness in the execution of pro-
97
ram comprehension tasks. Further details on the implementation
f both Code2City and Code2City VR can be found in the paper by
apece et al. [12] and in our on-line technical report. For example, the

nterested reader can find details on how we improved the photo-realism
f the scene by adding two lights: ambient light and directional light.

S. Romano, N. Capece and U. Erra et al.

Fig. 4. View reporting the results of a search in
Eclipse.

Fig. 5. View reporting both metric values and bad
smells in Eclipse.

p

w

4

t

s

t

A

w

t

f

b

r

w

t

p

N

t

i

a

b

f

t

S

a

s

s

(

4

e

v

t

s

e

t

t

o

t

a

S

o

a

c

t

4

m

E

a

m

k

s

E

d

W

n

i

p

w

C

b

t

t
We did not use CityVR by Merino et al. [11] , because it does not
rovide the same features as CodeCity [9] . Therefore the use of CityVR
ould have biased the validity of the results from our experiment.

.4.3. Eclipse

Eclipse (Mars) 5 provides functionality to support developers during
heir daily work activities. For example, it allows developers to surf their
ource code, search in source code, run their programs, etc. Thanks to
he search functionality, developers can carry out the tasks from A1 to
3 (Table 3). In particular, developers can search for any kind of soft-
are entities (e.g., methods or classes) or simple text. It is also possible

o customize the search in several ways. For example, when searching
or software entities, developers can specify if the search matches will
e declarations or references (e.g., callers). The results of a search are
eported in a tree view showing the location of each search match as
ell as the total number of matches. Fig. 4 shows how Eclipse reports

he results of a research.
To support the tasks from A4.1 to B2.2, Wettel et al. provided the

articipants in their experiment with some Excel spreadsheets reporting
OM, NOA, and LOC of each Java class. The spreadsheets also reported

he brain, data, and god classes. Instead of providing this information
n spreadsheets, we developed Metrics & Smells , a plugin for Eclipse. It
llows gathering code metrics (NOM, NOA, and LOC) and identifying
ad smells (brain, data, and god classes), afterward, it reports this in-
ormation in a table view . This functionality provides support for the
asks A4.1, B1.1, B1.2, and B2.1. In Fig. 5 , we show how the Metrics &
mells plugin reports both the values for the considered code metrics
nd the presence or the absence of the supported bad smells.

It is worth mentioning that the Metrics & Smells plugin exploits the
ame software component as Code2City and Code2City VR to compute
oftware metrics and detect smells. This is to show the same information
code metric values and bad smells) whatever the tool was.

.5. Hypotheses, parameters, and variables

Each participant performed the program comprehension tasks with
ither Code2City, Code2City VR , or Eclipse. Therefore, the independent
ariable or main factor in the experiment is Tool . It is a nominal variable
hat assumes three values: Code2City, Code2City VR , and Eclipse .

To quantify the correctness of the solutions to program comprehen-
ion tasks, we evaluated the solutions as done by Wettel et al. [2] . For
5 https://www.eclipse.org/downloads/packages/release/mars/2 .

s

e

t

98
ach task, we assigned a score ranging between 0 and 1, where 0 means
hat the participant’s solution to that task is wrong while 1 means that
he solution is correct. We summed the scores each participant achieved
ver the eight tasks to obtain an overall score between 0 and 8. As for
he completion time of the tasks, we measured the time to complete the
ssigned tasks. Therefore, the dependent variables of our experiment are
core and Time .

We tested the same null hypotheses as Wettel et al. [2] did:

NH1. Tool does not significantly impact the correctness of the solutions
to program comprehension tasks.

NH1. Tool does not significantly impact the completion time of pro-
gram comprehension tasks.

The alternative hypothesis for either NH1 or NH2 admits an effect
f Tool on the studied constructs. For example, if NH1 is rejected —the
lternative hypothesis is accepted —we can conclude that Tool signifi-

antly impacts the correctness of the solutions to program comprehension

asks . NH1 and NH2 allowed us to study RQ1 and RQ2, respectively.

.6. Experiment design

The design of our experiment is one factor with more than two treat-

ents [25] , where the treatments are: Code2City, Code2City VR , and
clipse. This design is a kind of between-subjects designs exploited to
void carryover effects that can plague within-subjects designs. The for-
er two treatments are needed to understand if the considered different

inds of visualization of the city metaphor affect the correctness of the
olutions to program comprehension tasks and their completion time.
clipse was chosen because it is widely used in both academia and in-
ustry and it was used (although with some Excel spreadsheets) in the
ettel et al.’s experiment [2] as control treatment.
We randomly assigned each participant to the treatment groups,

amely 18 students for each group. All the 54 participants took part
n the training sessions, while 42 of them participated in the actual ex-
erimental sessions —13 participants were administered with Eclipse,
hile 12 and 17 participants were administered with Code2City and
ode2City VR , respectively. It is worth mentioning that we did not re-
alance the number of participants in the treatment groups after the
raining sessions because each of these sessions were conceived to train
he participants on the tool to be used in the actual experimental ses-
ions. Indeed, re-training a few participants of the group with the high-
st number of participants (Code2City VR) and moving them to the other
wo groups could not guarantee a balance among the treatment groups

https://www.eclipse.org/downloads/packages/release/mars/2

S. Romano, N. Capece and U. Erra et al.

a

p

c

t

n

4

4

t

n

p

p

A

d

i

f

m

g

w

c

d

w

p

s

t

t

S

𝛼

i

4

t

nd possibly it would affect results in an undesirable way. For exam-
le, the following kinds of internal validity threats could be introduced:
ompensatory rivalry or resentful demoralization. We also recall that
he unbalance of the number of participants in the treatment groups is
ot a major issue when performing statistical inferences [25] .

.7. Procedure

The experimental procedure consisted of the following steps:

1. We asked the participants to fill in a pre-questionnaire to gather
demographic information.

2. Given the experiment design, we randomly assigned the par-
ticipants to the treatment groups: Code2City, Code2City VR , or
Eclipse.

3. Depending on the treatment group, we trained the participants
in the use of Code2City, Code2City VR , or Eclipse. We sent the
participants in the Code2City group (i.e., those participants as-
signed to the Code2City treatment) a tutorial on the Code2City’s
features needed to fulfill the experimental tasks (Section 4.3). We
informed them that they had to carefully read the tutorial before
the training session took place (in a laboratory at the Univer-
sity of Basilicata). Before starting the training session, we asked
these participants to follow the tutorial and practice Code2City
on their own without any time limit. Successively, these partici-
pants were involved in a training session, where they were asked
to accomplish tasks similar to those of the experiment, but on a
different program. For each task, they had ten minutes at most
(as in the experimental session). Similarly, each participant in the
Code2City VR and Eclipse groups received a tutorial on the tool to
be used in the experiment, practiced the tool on their own, and
then took part in the training session. The training sessions had
a twofold goal: improving the participants’ ability to use a cer-
tain tool (e.g., Code2City) and practicing the experiment steps.
The training sessions took place the days before the experimen-
tal ones. This is to avoid as much as possible fatigue effects during
the experiment.

4. To accomplish the experiment tasks, we assigned each partici-
pant of the Code2City and Eclipse groups to a computer of the
laboratory (it is the same laboratory as the training sessions),
where they found the tool and the experimental object. We ar-
ranged experimental sessions in which two/three participants at
a time accomplished the tasks. The computer configuration was
the same for any participant, namely: Windows 10 Pro; 16 GB of
RAM; Intel Core i7-3820 (3.6GHz); and NVIDIA Titan XP GPU. In
each session, we avoided any interaction among the participants
by monitoring them. The participants of the Code2City VR group
accomplished the tasks in the same laboratory as the participants
of the Code2City and Eclipse groups, but one at a time. We in-
troduced this difference in the experiment execution because we
had available only one Oculus Rift device. The computer con-
figuration for the Code2City VR group was the same as the other
groups. The participants (regardless of the treatment group) were
informed that they had a maximum of ten minutes per task (as
done by Wettel et al. [2]). Thus, we asked the participants to
write down the time it took to fulfill a task if it required less than
ten minutes. Supervisors (the first or the second author) took care
that the participants correctly wrote down that information.

5. We asked the participants to fill in a Positive and Negative Affect
Schedule (PANAS) questionnaire [38] and a post-questionnaire.
Thanks to the PANAS questionnaire, we measured the positive
and negative affects of the participants just after the use of
Code2City, Code2City VR , or Eclipse (Section 5.3). On the other
hand, we used the post-questionnaire to collect information on
the participants’ perception of the tools they used to perform the
experiment tasks (Section 5.4). To create this questionnaire, we
99
inspired to the one by Ahn et al. [39] . An extended analysis of
both PANAS and post-questionnaire data can be found in the pa-
per by Romano et al. [40] .

.8. Analysis procedure

We first exploited descriptive statistics and box-plots to summarize
he distributions of the values of the dependent variables. To test the
ull hypotheses NH1 and NH2, we ran the one-way ANOVA test. It is a
arametric test for analyzing data from experiments like ours (i.e., ex-
eriments with one factor and more than two treatments) [25] . For any
NOVA test, we ensured to not violate its assumptions: normality of
ata and homogeneity of variance. To check the assumption of normal-
ty, we ran a Shapiro–Wilk test [41] (Shapiro test, from here onwards)
or each group of participants. In case the assumption of normality was
et, we opted for Bartlett’s test [42] to check the assumption of homo-

eneity of variance. That is, homogeneity of variance was verified only
hen the assumption of normality was met. We used Bartlett’s test be-

ause it is recommended when the underlying populations are normally
istributed [43] . In case the ANOVA assumptions would be violated,
e planned to use the Kruskal–Wallis test, which represents the non-
arametric alternative to ANOVA [25] .

We also planned to execute a post-hoc analysis if a null hypothe-
is would be rejected. To this end, we planned to execute Tukey’s HSD
est [44] or Dunn’s test [45] . Tukey’s HSD test is run after an ANOVA test
o determine which groups in the sample are significantly different [46] .
imilarly, Dunn’s test [45] is run after a Kruskal–Wallis test.

We accepted a probability of 5% of committing Type-I error (i.e.,
= 0 . 05). That is, we reject a null hypothesis when the obtained p -value

s less than 0.05.

.9. Summary of the differences

There are some differences between our experiment and that by Wet-
el et al. [2] . These differences, sketched in Table 5 , are:

• Tool. Both Code2City and CodeCity implement the city metaphor
in a 3D visualization tool displayed on a standard computer
screen. Code2City also implements the same functionality as
CodeCity to carry out the experimental tasks. Given our research
questions, we needed the same visualization tool in an immer-
sive virtual reality (Code2City VR). With respect to the experi-
ment by Wettel et al., we decided to extend Eclipse via the Met-
rics & Smells plugin (instead of providing some Excel spread-
sheets with both code metrics and smells of the program to be
comprehended), to increase the realism of the experiment and
then mitigate external validity threats. Finally, by implementing
Code2City, Code2City VR , and the Metrics & Smells plugin, we
could provide the same information to the participants whatever
the treatment group was. This is because different metric anal-
ysis tools can return values of code metrics that differ from one
another [47] . Similarly, the technique implemented in a smell
analysis tool can affect the detected smells [48] .

• Design. In our case, the treatments were three, and thus we con-
ceived an experiment whose design was one factor with more
than two treatments. Furthermore, Wettel et al. did not find any
significant interaction between Tool (i.e., the main factor) and
Object (i.e., the secondary factor): The effect of Tool on the de-
pendent variables was the same for each level of the Object factor
(FindBugs and Azureus). This allowed us to control only one fac-
tor (Tool) in our experiment so simplifying the complexity of the
design, reducing risks of failure, and mitigating conclusion valid-
ity threats.

• Experimental object. Given the above-mentioned considera-
tions, we randomly chose one experimental object used by Wet-
tel et al.. For example, the use of a single experimental object

S. Romano, N. Capece and U. Erra et al.

Table 5

Summary of the differences between our experiment and the Wettel et al.’s one [2] .

Characteristic Our experiment Wettel et al.’s experiment

Tool Code2City, Code2City VR , Eclipse CodeCity, Eclipse + Excel
Design One factor with more than two treatments —between-subjects 2 ×2 factorial —between-subjects
Experimental Objects FindBugs FindBugs, Azureus
Number of Tasks 10 12
Kind of Participants Students Students, Professors, Developers

Table 6

Some descriptive statistics for each tool and each dependent
variable.

Variable Statistic Code2City Code2City VR Eclipse

Score Min 4.8 4.0 1.9
Mean 6.183 5.788 4.754
Median 6.1 5.8 5.0
Max 8.0 7.4 6.4
SD 1.158 1.036 1.071

Time Min 24 21 32
Mean 38.167 27.294 43.385
Median 36 27 45
Max 58 38 52
SD 10.053 5.205 5.994

5

s

f

P

5

d

i

t

w

u

f

o

t

s

w

(

o

f

(
s

2

5

S

i

f

w

0

d

w

s

(

a

l

g

a

E

p

C

t

t

0

p

o

o

i

C

5

c

p

a

q

f

s

f
t

i

A

n

5
t
l
i

allowed us to mitigate possible threats related to data analysis
and number of participants in the groups (statistical power). The
selection of the object in a random fashion allowed to mitigate
researcher bias.

• Number of tasks. Since Wettel et al. did not include the tasks
A4.2 and B2.2 in their quantitative data analysis, we did not pro-
vide the participants with these two tasks. That is, the tasks con-
sidered in the quantitative data analysis by Wettel et al. are the
same we considered in ours.

• Kind of participants. Unlike Wettel et al. that only trained the
participants with CodeCity, we trained any participant with the
tool she had to use in the experiment (e.g., a participant admin-
istered with the Code2City treatment had received the training
on Code2City, while a participant administered with Eclipse had
received the training on Eclipse). It allowed us to mitigate threats
to the reliability of treatment implementation, a kind of conclu-
sion validity threat. That is, the implementation of the different
treatments has to be as standard as possible over different partic-
ipants and occasions [25] .

. Results

We present descriptive statistics and exploratory data analysis and
how results from our statistical inference. We conclude with results
rom the analyses conducted on the data gathered from the post- and
ANAS questionnaires.

.1. Descriptive statistics and exploratory analysis

In Table 6 , we provide some descriptive statistics for Score and Time
ependent variables. The distributions for these variables are also graph-
cally summarized by the boxplots in Fig. 6 .a and .b, respectively.

The boxes for Score (Fig. 6 .a) suggest that there is no difference be-
ween who was administered with Code2City and who was administered
ith Code2City VR . These boxes overlap and the descriptive statistic val-
es (Table 6) are similar (e.g., the mean values are 6.183 and 5.788
or Code2City and Code2City VR , respectively). By comparing the boxes
f either Code2City or Code2City VR with that of Eclipse, we can no-
ice that the box of Eclipse is much lower than the others. That is, it
eems that who was administered with Eclipse attained a Score value
orse than who was administered with either Code2City or Code2City VR
100
mean Score values was 4.754 for Eclipse, while 6.183 and 5.788 for the
ther two treatments).

As for Time, we can observe noticeable differences among the boxes
or Code2City, Code2City VR , and Eclipse since they do not overlap
 Table 6 .b). It seems that the participants provided with Code2City VR
pent on less time than others (the mean value for Code2City VR was
7.294 while it was 38.167 for Code2City and 43.385 for Eclipse).

.2. Hypotheses testing (and post-hoc analysis)

In Table 7 , we report the p -values returned by the ANOVA test for
core and Time and the results of the post-hoc analysis. Before apply-
ng the ANOVA test for Score, we verified the required assumptions. As
or the normality assumption, the Shapiro test indicated that the data
ere all normally distributed since the returned p -values were equal to:
.22 for Code2City, 0.202 for Code2City VR , and 0.079 for Eclipse. The
ata had also the same variance (the p -values returned by Bartlett’s test
as 0.923). Summarizing, all the assumptions of the ANOVA test were

atisfied.
As shown in Table 7 , the ANOVA test for Score returned a p -value

 i.e., 0.005) less than 𝛼. This allows us to reject NH1 and accept the
lternative hypothesis: Tool significantly impacts the correctness of the so-

utions to program comprehension tasks . The results of the HSD test sug-
est significant differences between the data distributions of Code2City
nd Eclipse (p -value = 0.035), and between those of Code2City VR and
clipse (p -value = 0.006).

For Time, the assumptions of the ANOVA test were all verified. In
articular, the Shapiro test returned the following p -values: 0.173 for
ode2City, 0.44 for Code2City VR , and 0.67 for Eclipse. As for Bartlett’s
est, it returned a p -value equal to 0.052. The results of the ANOVA
est (Table 7) suggest that Time is significant (i.e., p -value less than
.001). Therefore, we can reject NH2, namely: Tool significantly im-

acts the completion time of program comprehension tasks . We can also
bserve that there are significant differences between the distributions
f Code2City VR and the others (p -value is equal to 0.001 when compar-
ng Code2City VR with Code2City, while less than 0.001 when comparing
ode2City VR with Eclipse).

.3. Results on PANAS – positive and negative affects

As a further analysis, we investigated if the tool used for the program
omprehension tasks had influenced the feelings and emotions of the
articipants. We asked them to fill in the PANAS questionnaire [38] just
fter they had completed the experiment task. PANAS is a self-report
uestionnaire consisting of two scales of ten items each: the positive af-
ect scale measuring positive affects and the negative affect one mea-
uring negative affects. Each item in the questionnaire represents a
eeling/emotion. Thus, a subject is asked to rate (from 1 = “not at all ”
o 5 = “extremely ”) the extent to which she feels each of these feel-
ngs/emotions.

We then computed the Positive Affect Score (PAS) and the Negative
ffect Score (NAS) by summing the scores in the positive affect and
egative affect scales [38] . Both PAS and NAS range in between 10 and
0. A high value of PAS indicates high levels of positive affect, thus
he higher the value the better it is. A high value of NAS indicates high
evels of negative affect, that is the lower the value the better it is. The
nterested reader can find the PANAS questionnaire in [38] .

S. Romano, N. Capece and U. Erra et al.

Fig. 6. Boxplots for Score (a) and Time (b).

Fig. 7. Boxplots for PAS (a) and NAS (b).

Table 7

p -values from the ANOVA and the HSD tests. p -values less than 𝛼 are highlighted with [⋆].

Variable ANOVA Post-hoc

Code2City VR -Code2City Code2City VR -Eclipse Code2City-Eclipse

Score 0.005 ⋆ 0.601 0.035 ⋆ 0.006 ⋆

Time < 0.001 ⋆ 0.001 ⋆ < 0.001 ⋆ 0.171

t

v

t

C

n

t
a

C

t

i

b

o

C

w

S

d

g

(

K

t

t

d

p
f

a

C

f

v

i

N

v

r

d

T

In Fig. 7 , we report the boxplots arranged by Tool that summarize
he PAS and NAS values. We can observe that independently from the
alues of the Tool variable, the distributions for PAS are higher than
he ones for NAS. This seems to indicate that after using Code2City,
ode2City VR , and Eclipse the participants felt more positive affects than
egative affects (Fig. 7 .a vs. Fig. 7 .b).

By looking at the PAS results depicted in Fig. 7 .a, we can observe
hat there is a noticeable difference between the box of Code2City VR
nd the one of Eclipse. In particular, the participants administered with
ode2City VR seem to have PAS values (mean = 31.412, SD = 6.032) higher
han those administered with Eclipse (mean = 24.231, SD = 6.496). A sim-
lar outcome, but less pronounced, can be observed by comparing the
oxes of Code2City VR and Code2City. That is, it seems that the use
f Code2City VR lead to better PAS values with respect to the use of
ode2City (mean = 28.167, SD = 9.713).

To understand if these differences in the PAS values were significant,
e ran a Kruskal–Wallis test. We did not run an ANOVA test (as done for
core and Time) because PAS in an ordinal variable. In case of significant
ifferences, we planned to execute Dunn’s test [45] to determine which
roups in the sample were significantly different (post-hoc analysis).
101
In Table 8 , we report the p -value of the Kruskal–Wallis test for PAS
and NAS) and the results of the post-hoc analysis. The result of the
ruskal–Wallis test justifies a post-hoc analysis since the p -value is less

han 𝛼 = 0 . 05 , namely: Tool significantly influences the positive affects of

he participants. Dunn’s test indicates a significant difference between the
istributions of Code2City VR and Eclipse. Therefore, the results of this
ost-hoc analysis suggest that: The participants provided with Code2City VR

elt significantly better positive affects than those provided with Eclipse.

As far as NAS is concerned, the boxplots for Code2City, Code2City VR ,
nd Eclipse (Fig. 7) overlap one another, although the boxplot for
ode2City is shorter than the others. The mean values of NAS are 11.667

or Code2City, 13.235 for Code2City VR , and 13.538 for Eclipse. The SD
alues are, respectively, equal to: 4.271, 3.784, and 5.425. Summariz-
ng, we can observe no huge difference among the distributions of the
AS values for Code2City, Code2City VR , and Eclipse, although the NAS
alues for Code2City are slightly better.

To test the presence of significant differences in the NAS values, we
an a Kruskal–Wallis test (as done for the PAS values). It did not in-
icate any significant difference in the NAS values (p -value is 0.164).
herefore, we could not perform any post-hoc analysis.

S. Romano, N. Capece and U. Erra et al.

Table 8

p -values from the Kruskal–Wallis and Dunn’s tests [49] a . p -value less than 𝛼 are highli-
ogheted with [⋆].

Variable ANOVA Post-hoc

Code2City VR -Code2City Code2City VR -Eclipse Code2City-Eclipse

PAS 0.021 ⋆ 0.258 0.008 ⋆ 0.307
NAS 0.164 – – –

a The p -values returned by the Dunn’s test are adjusted by means of the Bonferroni
adjustment.

Table 9

Answers to the questions P1, P2, P3, and P4 on the playfulness of Code2City, Code2City VR , and Eclipse.

Qn Tool Answer

1 2 3 4 5 6 7

P1 Code2City 8% (1
12

) 8% (1
12

) 0% (0
12

) 8% (1
12

) 8% (1
12

) 17% (2
12

) 50% (6
12

)

Code2City VR 0% (0
17

) 6% (1
17

) 12% (2
17

) 6% (1
17

) 24% (4
17

) 18% (3
17

) 35% (6
17

)

Eclipse 8% (1
13

) 0% (0
13

) 0% (0
13

) 31% (4
13

) 23% (3
13

) 31% (4
13

) 8% (1
13

)

P2 Code2City 8% (1
12

) 0% (0
12

) 0% (0
12

) 8% (1
12

) 8% (1
12

) 33% (4
12

) 42% (5
12

)

Code2City VR 0% (0
17

) 0% (0
17

) 12% (2
17

) 18% (3
17

) 18% (3
17

) 24% (4
17

) 29% (5
17

)

Eclipse 8% (1
13

) 8% (1
13

) 8% (1
13

) 15% (2
13

) 46% (6
13

) 15% (2
13

) 0% (0
13

)

P3 Code2City 8% (1
12

) 0% (0
12

) 0% (0
12

) 17% (2
12

) 17% (2
12

) 42% (5
12

) 17% (2
12

)

Code2City VR 0% (0
17

) 12% (2
17

) 6% (1
17

) 24% (4
17

) 24% (4
17

) 24% (4
17

) 12% (2
17

)

Eclipse 23% (3
13

) 8% (1
13

) 8% (1
13

) 15% (2
13

) 38% (5
13

) 0% (0
13

) 8% (1
13

)

P4 Code2City 8% (1
12

) 0% (0
12

) 0% (0
12

0% (0
12

) 25% (3
12

) 17% (2
12

) 50% (6
12

)

Code2City VR 6% (1
17

) 0% (0
17

) 0% (0
17

) 6% (1
17

) 18% (3
17

) 18% (3
17

) 53% (9
17

)

Eclipse 0% (0
13

) 8% (1
13

) 0% (0
13

) 15% (2
13

) 31% (4
13

) 46% (6
13

) 0% (0
13

)

5

t

a

a

m

t

t

5

o

r

t

t

a

(

w

a

h

C

C

t

g

p

p

w

s

E

t

u

r

u

u

C

5

c

p

t

u

m

m

a

c

f

C

t

E

9

h

C

p

s

n

r

t

c

a

t

o

.4. Answers to the post-questionnaire

In this section, we report the participants’ answers to some ques-
ions of the post-questionnaire. Most of the questions were formulated
s statements, where the participants had to rate (from 1 = “I strongly dis-
gree ” to 7 = “I strongly agree ”) how much they agreed with such state-
ents. Since the questions were grouped, in the post-questionnaire, by

heme (e.g., playfulness), we present the participants’ answers according
o these themes.

.4.1. Playfulness

In Table 9 , we report how the participants answered to the questions
n the playfulness of Code2City, Code2City VR , and Eclipse.

The answers to the question P1 —When interacting with Tool, I did not

ealize the time elapsed —indicate that most of the participants adminis-
ered with Code2City and Code2City VR did not realize the passage of
ime. In particular, 75% and 76% of the participants in the Code2City
nd Code2City VR groups agreed with the statement of the question P1
 i.e., they gave an answer from 5 to 7). The participants administered
ith Eclipse seems to agree less with this statement (62% of them gave
n answer from 5 to 7).

As for the question P2 —I had fun when fulfilling the program compre-

ension tasks with Tool —it seems that those who used Code2City and
ode2City VR had more fun than who used Eclipse: 83% and 71% of the
ode2City’s and Code2City VR ’s users, respectively, gave a score from 5
o 7, while 62% of the Eclipse’s users gave a score from 5 to 7 (no one
ave the maximum score).

The use of Code2City and Code2City VR to fulfill the tasks made the
articipants happier (question P3 —Using Tool to fulfill the program com-

rehension tasks made me happy). In particular, 75% and 59% of those
ho used Code2City and Code2City VR , respectively, agreed with the

tatement of the question P3, while 46% of those administered with
clipse agreed with this statement.

The answers to the question P4 —Using Tool stimulated my curiosity

o explore the program —suggest that Code2City and Code2City VR stim-
lated more the curiosity of their users to explore the program with
102
espect to Eclipse. 92% and 88% of the Code2City’s and Code2City VR ’s
sers, respectively, positively rated this question. 77% of the Eclipse’s
sers positively rated this question but no one gave the maximum score.

Summing up, it seems that the playfulness of Code2City and
ode2City VR is mostly comparable, while that of Eclipse is worse.

.4.2. Perceived usefulness

In Table 10 , we summarize the answers to the questions on the per-
eived usefulness of Code2City, Code2City VR , and Eclipse.

Based on the answers to PU1 —Using Tool enabled me to accomplish the

rogram comprehension tasks quickly —the Code2City VR ’s users believed
o accomplish the tasks faster than the Code2City’s users and Eclipse’s
sers. In particular, all the Code2City VR ’s users agreed with the state-
ent of the question PU1 and 47% of them fully agreed; they gave the
aximum score. As for the Code2City’s users and Eclipse’s users, 75%

nd 92% agreed with this statement. They gave a score from 5 to 7.
The answers to the question PU2 —Using Tool to fulfill the program

omprehension tasks increased my productivity —did not highlight huge dif-
erences between the tools. The participants provided with Code2City,
ode2City VR , or Eclipse agreed that the tool assigned to them increased
heir productivity. The participants in the Code2City, Code2City VR , and
clipse groups who provided a score from 5 to 7 were 92%, 100%, and
2%, respectively.

As for the question PU3 —Using Tool to fulfill the program compre-

ension tasks improved their correctness —the answers indicate that the
ode2City VR ’s users were convinced to improve the correctness of the
rogram comprehension tasks because they used Code2City VR (all the
cores were from 5 to 7). This pattern is noticeable neither for Code2City
or Eclipse. Only 67% and 77% of the Code2City’s and Eclipse’s users,
espectively, provided a score from 5 to 7.

The participants provided with Code2City and Code2City VR believed
hat the tasks were easier (question PU4 —Using Tool made the program

omprehension tasks easy). 83% and 100% of those who used Code2City
nd Code2City VR , respectively, agreed with the statement of the ques-
ion P4. 77% of the Eclipse’s users agreed with this statement and only
ne participant gave the maximum score (i.e., fully agree).

S. Romano, N. Capece and U. Erra et al.

Table 10

Answers to the questions PU1, PU2, PU3, and PU4 on the perceived usefulness of Code2City, Code2City VR ,
and Eclipse.

Qn Tool Answer

1 2 3 4 5 6 7

PU1 Code2City 0% (0
12

) 0% (0
12

) 0% (0
12

) 25% (3
12

) 17% (2
12

) 25% (3
12

) 33% (4
12

)

Code2City VR 0% (0
17

) 0% (0
17

) 0% (0
17

) 0% (0
17

) 24% (4
17

) 29% (5
17

) 47% (8
17

)

Eclipse 0% (0
13

) 8% (1
13

) 0% (0
13

) 0% (0
13

) 8% (1
13

) 62% (8
13

) 23% (3
13

)

PU2 Code2City 0% (0
12

) 0% (0
12

) 0% (0
12

) 8% (1
12

) 25% (3
12

) 42% (5
12

) 25% (3
12

)

Code2City VR 0% (0
17

) 0% (0
17

) 0% (0
17

) 0% (0
17

) 24% (4
17

) 47% (8
17

) 29% (5
17

)

Eclipse 0% (0
13

) 8% (1
13

) 0% (0
13

) 0% (0
13

) 15% (2
13

) 62% (8
13

) 15% (2
13

)

PU3 Code2City 8% (1
12

) 0% (0
12

) 0% (0
12

) 25% (3
12

) 25% (3
12

) 33% (4
12

) 8% (1
12

)

Code2City VR 0% (0
17

) 0% (0
17

) 0% (0
17

) 0% (0
17

) 24% (4
17

) 53% (9
17

) 24% (4
17

)

Eclipse 0% (0
13

) 8% (1
13

) 0% (0
13

) 15% (2
13

) 31% (4
13

) 38% (5
13

) 8% (1
13

)

PU4 Code2City 0% (0
12

) 0% (0
12

) 0% (0
12

) 17% (2
12

) 8% (1
12

) 42% (5
12

) 33% (4
12

)

Code2City VR 0% (0
17

) 0% (0
17

) 0% (0
17

) 0% (0
17

) 24% (4
17

) 35% (6
17

) 41% (7
17

)

Eclipse 0% (0
13

) 8% (1
13

) 0% (0
13

) 15% (2
13

) 23% (3
13

) 46% (6
13

) 8% (1
13

)

Table 11

Answers to the questions B1 and B2 on the behavioral intention to use Code2City, Code2City VR , and
Eclipse.

Qn Tool Answer

1 2 3 4 5 6 7

B1 Code2City 8% (1
12

) 0% (0
12

) 17% (2
12

) 17% (2
12

) 25% (3
12

) 8% (1
12

) 25% (3
12

)

Code2City VR 0% (0
17

) 0% (0
17

) 12% (2
17

) 24% (4
17

) 12% (2
17

) 35% (6
17

) 18% (3
17

)

Eclipse 0% (0
13

) 0% (0
13

) 23% (3
13

) 23% (3
13

) 31% (4
13

) 15% (2
13

) 8% (1
13

)

B2 Code2City 8% (1
12

) 8% (1
12

) 0% (0
12

) 25% (3
12

) 0% (0
12

) 17% (2
12

) 42% (5
12

)

Code2City VR 0% (0
17

) 6% (1
17

) 18% (3
17

) 6% (1
17

) 12% (2
17

) 29% (5
17

) 29% (5
17

)

m

t

t

5

i

b

l

6

a

E

f

r

t

f

c

7

t

5

w

s

f

a

6

a

v

6

s

g

p

(

i

c

s

t

i

i

h

p

c

t

E

m

a

c

C

n

t

o

m

p

i

6

t
Summarizing, both Code2City and Code2City VR are perceived as
ore useful than Eclipse when carrying out program comprehension

asks. The perceived usefulness of Code2City VR is slightly better than
hat of Code2City.

.4.3. Behavioral intention to use

In Table 11 , we report the answers to the questions on the behavioral
ntention to use Code2City, Code2City VR , and Eclipse.

The answers to the question B1 —I would like to use Tool on a regular

asis in the future —indicate that most of the Code2City VR ’s users would
ike to use Code2City VR on a regular basis in the future. In particular,
5% of them agreed with the statement of the question B1; they gave
 score from 5 to 7. This outcome is less noticeable for Code2City and
clipse. 58% and 54% of the Code2City’s and Eclipse’s users gave a score
rom 5 to 7.

According to the answers to the question B2 —I would like to use Tool

ather than an IDE to carry out program comprehension tasks —the par-
icipants administered with Code2City and Code2City VR were mostly
avorable to use these tools, rather than an IDE, to carry out program
omprehension tasks. In particular, 58% of the Code2City’s users and
1% of the Code2City VR ’s ones agreed with the statement of the ques-
ion B2.

.4.4. Side effects of Code2City VR

In Fig. 8 , we summarize the side effects observed by the participants
hen using Code2City VR (a few participants observed more than one

ide effect). Only 3 participants (out of 17) did not experience side ef-
ects. Most of them started to have headache, nausea, or visual annoy-
nce after using Code2City VR .

. Discussion

We discuss the results according to the defined research questions
nd the implications of the obtained results and possible threats to their
alidity.
103
.1. Answering the research questions

RQ1. Both boxplots and descriptive statistics for the Score variable
uggest that there is a difference in the correctness of solutions to pro-
ram comprehension tasks when participants use the city metaphor im-
lementations (i.e., Code2City and Code2City VR), rather than Eclipse
with the Metrics & Smells plugin), to fulfill such tasks. This difference
s significant (as suggested by the testing of NH1) and in favour of the
ity metaphor implementations, which are comparable (based on the re-
ults of the post-hoc analysis). We can postulate that the difference be-
ween the city metaphor implementations and Eclipse is due to how the
nformation needed to accomplish the tasks is provided. In Eclipse the
nformation is shown through views (tables or tree views). This could
ave penalized the correctness of comprehension tasks of the partici-
ants administered with Eclipse. According to the observed results, we
an positively answer RQ1: the city metaphor implementations lead to bet-

er correctness of solutions to program comprehension tasks with respect to

clipse. This outcome is coherent with that of the Wettel et al.’s experi-
ent [2] .

RQ2. For the Time variable, the results of our data analysis indicate
 significant difference in the completion time when the participants
arried out the program comprehension tasks by means of Code2City,
ode2City VR , or Eclipse. The participants finding Code2City VR spent sig-
ificantly less time to accomplish the assigned tasks (although many of
hem experienced some side effects) with respect to who used Code2City
r Eclipse. Therefore, we answer RQ2 as follows: the city metaphor imple-

entation (and Code2City VR , in particular) lead to better completion time of

rogram comprehension tasks with respect to Eclipse . Again, this outcome
s consistent with the results by Wettel et al. [2] .

.2. Overall discussion

The city metaphor seems to support the execution of comprehension
asks better than Eclipse. Both Code2City and Code2City VR seem to aid

S. Romano, N. Capece and U. Erra et al.

Fig. 8. Answers to the question SE1 on the side effects
of Code2City VR .

t

E

s

m

a
(

p

w

n

t

a

e

C

C

p

a

C

s

r

o

e

d

a

v

e

o

W

o

t

6

d

w

s

u

f

r

t

t

s

t

c

c

g

r

a

i

t

s

w

w

g

n

g

C

6

w

D

p

e

E

he participants in carrying out program compression tasks better than
clipse. In addition, the city metaphor implementation displayed on a
tandard computer screen and in immersive virtual reality is perceived
ore useful than Eclipse.

The participants in our controlled experiment also found Code2City
nd Code2City VR more pleasant/enjoyable than Eclipse. Code2City VR
more than Code2City) positively affects the feelings and emotions of the
articipants. Indeed, the difference between Code2City VR and Eclipse
as statistically significant, while between Code2City and Eclipse was
ot as well as between Code2City VR and Code2City. We can speculate
hat this outcome could be due to the novelty of the used technology
nd that, in general, the city metaphor could lead to better feelings and
motions independently from the used medium.

The participants seem to find Code2City VR more useful than
ode2City. The results did not show a huge difference between
ode2City VR and Code2City from a qualitative perspective, namely
layfulness, behavioral intention to use, and positive and negative
ffects. The obtained quantitative results suggest that the use of
ode2City VR (with respect to Code2City) allows the participants to
pend less time to accomplish program comprehension tasks. To summa-
ize, providing users with tools implementing city metaphor, regardless
f the time to accomplish a comprehension task, might be considered
quivalent. However, we have to mention that the use of a virtual reality
isplay might induce side effects such as headache, nausea, and visual
nnoyance. That is, a word of warning is needed when using immersive
irtual reality in software visualization even because our participants
xperienced such a kind of side effects (Section 5.4.4). The outcomes of
ur experiment seem to suggest future research on this point.

Our results strengthen the validity of the results of the experiment by
ettel et al. [2] : the use of the city metaphor leads to better correctness

f solutions to program comprehension tasks in less time as compared
o the use of Eclipse.

.3. Implications and future extensions

We focus on the researcher and the practitioner perspectives for the
iscussion of the implications and future extensions for our research.

The use of virtual reality seems to be a viable means in soft-
are visualization. Our results confirm the outcomes from past re-

earch [11,24] and then our body of knowledge is increased on the
sefulness of virtual reality in the software visualization field. There-
ore, future research is justified in this respect. Our experiment and past
104
esearch have then practical implications from both the researcher and
he practitioner perspectives.

As compared to Eclipse, the use of Code2City VR positively affects
he feelings and emotions of the developers and the correctness of the
olutions to program comprehension tasks. This finding is relevant for
he developer interested in the adoption of virtual reality to perform
omprehension tasks. The researcher could be interested in studying the
orrelation between feelings and emotions and the correctness of pro-
ram comprehension tasks. In addition, it could be interesting from a
esearcher perspective to verify if the benefits from the use of virtual re-
lity (delineated just before) are still valid in a long run. In other words,
t could be possible that the novelty of the used technology could lead
o the observed quantitative (e.g., less time to accomplish a comprehen-
ion task) and qualitative benefits (e.g., happiness and positive affects
hile accomplishing a comprehension task) and they could decrease
ith time.

Code2City VR is designed to be easily adapted to object-oriented pro-
ramming languages different from Java. Although our results can-
ot be generalized to programs written in different programming lan-
uages, the researcher could be interested in studying the application of
ode2City VR in the context of programs written in other languages.

.4. Threats to validity

We discuss the threats that could affect the validity of our results
ith respect to internal, external, construct, and conclusion validity.
espite our efforts to avoid or to mitigate as many threats to validity as
ossible, some were still unavoidable.

Internal validity concerns uncontrolled factors that may alter the
ffect of the treatments on the dependent variables:

• Selection. Allowing volunteers to take part in an experiment (as
it is in our case) may influence the results since volunteers might
be more motivated than the whole population [25] .

• Resentful demoralization. A participant receiving a less desir-
able treatment might not behave as good as she generally does.
For example, a participant receiving the Eclipse treatment could
be less motivated. To mitigate this kind of threat, we randomly as-
signed the participants to the treatment groups and, in addition,
the participants were not informed about these groups. Despite
our efforts to mitigate this kind of threat, it is still possible that
the assignment to the Eclipse group could be viewed negatively.

xternal validity regards the ability to generalize the results:

S. Romano, N. Capece and U. Erra et al.

C

t

C

a

7

E

b

s

p

r

T

b

o

t

t

i

e

l

g

a

f

r

C

A

t

f

A

t

• Interaction of selection and treatment. Students took part in
our experiment, thus generalizing the obtained results to the pop-
ulation of professional developers poses a threat to external va-
lidity. However, involving students in software engineering ex-
periments has a number of advantages (e.g., having preliminary
empirical evidence) [50] . Moreover, we trained the participants
in performing the program comprehension tasks with the pro-
vided tools in order to make them expert users of these tools.
We believe the use of students in our experiment is appropriate
as the literature suggests [50,51] . In addition, the observed out-
comes confirm with stronger evidence those by Wettel et al. [2] .

onstruct validity concerns the relation between theory and observa-
ion:

• Mono-method bias. Using a single method to measure a given
construct might lead to misleading results in the case there was
a measurement bias. To mitigate this threat, we used the same
dependent variables as the experiment by Wettel et al. [2] .

• Hypothesis guessing. The participants in our experiment might
guess the experiment goals and thus behave on the basis of their
guesses, although we did not inform them about the goals of our
investigation.

• Evaluation apprehension. Some participants might be afraid of
being evaluated. For example, their apprehension to be evalu-
ated might lead them to perform poorly. Since participation in
the experiment was on voluntary basis, the effect of the evalu-
ation apprehension should be marginal on the observed results.
In addition, the participants were aware that their data would be
treated anonymously.

onclusion validity regards the ability to draw the correct conclusion
bout relations between treatments and outcomes:

• Reliability of measures. The participants were asked the write
down the time needed to carry out the program comprehension
tasks. This might affect the validity of the results if they did not
report this information truthfully. To mitigate this kind of threat,
supervisors took care that the participants correctly wrote down
Table A.1

Some descriptive statistics for each tool and each de

Task Statistic Score

Code2City Code2City VR Eclip

A1 Mean 0.333 0.353 0.15
Median 0 0 0
SD 0.492 0.493 0.37

A2.1 Mean 0.883 0.518 0.46
Median 0.9 0.6 0.6
SD 0.134 0.425 0.41

A2.2 Mean 1 1 0.92
Median 1 1 1
SD 0 0 0.27

A3 Mean 0.758 0.688 0.21
Median 0.95 1 0
SD 0.342 0.433 0.27

A4.1 Mean 0.875 1 1
Median 1 1 1
SD 0.294 0 0

B1.1 Mean 0.417 0.347 0.23
Median 0 0 0
SD 0.515 0.485 0.43

B1.2 Mean 0.917 1 0.92
Median 1 1 1
SD 0.289 0 0.27

B2.1 Mean 1 0.882 0.84
Median 1 1 1
SD 0 0.332 0.24

105
the time to carry out program comprehension tasks that required
less than ten minutes (see Section 4.7).

. Conclusion

We presented the results of a controlled experiment to compare
clipse (equipped with a plugin to gather code metrics and to identify
ad smells) and the city metaphor displayed on a standard computer
creen and in an immersive virtual reality with respect to the support
rovided in the comprehension of Java software systems. We summa-
ize the most important take-away results of our experiment as follows.
he use of city metaphor implementations leads to an improvement in
oth correctness and completion time of program comprehension tasks,
ver the Eclipse. This outcome is coherent with that of a previous inves-
igation and increases the generalizability of the results. We observed
hat developers that use the implementation of the city metaphor in an
mmersive virtual reality spent significantly less time to complete the
xperimental task. The use of the immersive virtual reality medium also
eads to higher satisfaction of the participants. These two outcomes sug-
est that virtual reality might represent a viable tool in software visu-
lization. Although we cannot draw definitive conclusions, the results
rom our experiment seem to justify future research on the use of virtual
eality in software visualization.

onflicts of interest

We do not have conflicts of interest to declare.

cknowledgment

Lanza gratefully acknowledges the financial support of the Swiss Na-
ional Science Foundation for the project “Exploratory Visual Analytics
or Interaction Graphs ” (SNF NRP Project No. 407540_167173).

ppendix A. Results by task

In Table A.1 , we report, for each task, some descriptive statistics for
he dependent variables Score and Time.
pendent variable grouped by task.

Time

se Code2City Code2City VR Eclipse

4 5.75 3.882 5.846
5 4 6

6 2.989 1.616 2.911

2 6.75 4.647 6.385
7 5 6

1 1.913 1.367 2.694

3 5.083 3.059 3.769
4.5 3 3

7 2.968 1.638 2.279

5 6.833 6.412 8.615
6 6 9

9 1.586 1.734 1.66

4.5 2.706 4.077
4 3 4
1.977 0.772 1.605

1 5.083 4.765 8.077
5 5 9

9 0.996 1.48 2.216

3 2.583 1.118 2.769
2 1 2

7 2.575 0.332 2.386

6 1.667 0.941 4
1 1 3
1.614 0.243 2

https://doi.org/10.13039/501100001711

S. Romano, N. Capece and U. Erra et al.

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

eferences

[1] A.R. Teyseyre , M.R. Campo , An overview of 3D software visualization., IEEE Trans.
Vis. Comput. Graph. 15 (1) (2009) 87–105 .

[2] R. Wettel, M. Lanza, R. Robbes, Software systems as cities: a controlled experiment,
in: Proceedings of the International Conference on Software Engineering, ACM, New
York, NY, USA, 2011, pp. 551–560, doi: 10.1145/1985793.1985868 .

[3] R. Koschke , Software visualization in software maintenance, reverse engineering,
and re-engineering: a research survey, J. Softw. Maint. 15 (2) (2003) 87–109 .

[4] R. Wettel , M. Lanza , Visualizing software systems as cities, in: Proceedings of Inter-
national Workshop on Visualizing Software for Understanding and Analysis, 2007,
pp. 92–99 .

[5] R. Wettel, M. Lanza, Program comprehension through software habitability, in: Pro-
ceedings of International Conference on Program Comprehension, 2007, pp. 231–
240, doi: 10.1109/ICPC.2007.30 .

[6] A. Marcus , L. Feng , J.I. Maletic , 3D representations for software visualization, in:
Proceedings of the International Symposium on Software Visualization, ACM, New
York, NY, USA, 2003, pp. 27–ff.

[7] T. Panas , R. Berrigan , J. Grundy , A 3D metaphor for software production visualiza-
tion, in: Proceedings of International Conference on Information Visualization, IEEE
Computer Society, 2003, pp. 314–319 .

[8] T. Panas , T. Epperly , D.J. Quinlan , A. Sæbjørnsen , R.W. Vuduc , Communicating
software architecture using a unified single-view visualization, in: Proceedings of
International Conference on Engineering of Complex Computer Systems, 2007,
pp. 217–228 .

[9] R. Wettel , M. Lanza , Visual exploration of large-scale system evolution, in: Proceed-
ings of Working Conference on Reverse Engineering, IEEE Computer Society, 2008,
pp. 219–228 .

10] R. Wettel , M. Lanza , Visually localizing design problems with disharmony maps,
in: Proceedings of International Symposium on Software Visualization, ACM, 2008,
pp. 155–164 .

11] L. Merino, M. Ghafari, C. Anslow, O. Nierstrasz, CityVR: Gameful software visual-
ization, in: Proceedings of International Conference on Software Maintenance and
Evolution, 00, 2017, pp. 633–637, doi: 10.1109/ICSME.2017.70 .

12] N. Capece , U. Erra , S. Romano , G. Scanniello , Visualising a software system as a
city through virtual reality, in: AVR (2), in: Lecture Notes in Computer Science, vol.
10325, Springer, 2017, pp. 319–327 .

13] L. Merino , A. Bergel , O. Nierstrasz , Overcoming issues of 3D software visualization
through immersive augmented reality, in: Proceedings of Working Conference on
Software Visualization, 2018, pp. 54–64 .

14] U. Erra , G. Scanniello , M. Caulo , Software systems as archipelagos of atolls, in:
Proceedings of the International Conference on Information Visualisation, 2015,
pp. 171–176 .

15] M. Misiak, A. Schreiber, A. Fuhrmann, S. Zur, D. Seider, L. Nafeie, Islandviz:
a tool for visualizing modular software systems in virtual reality, in: Proceed-
ings of IEEE Working Conference on Software Visualization, 2018, pp. 112–116,
doi: 10.1109/VISSOFT.2018.00020 .

16] M. Misiak, D. Seider, S. Zur, A. Fuhrmann, A. Schreiber, Immersive explo-
ration of osgi-based software systems in virtual reality, in: Proceedings of IEEE
Conference on Virtual Reality and 3D User Interfaces, 2018, pp. 637–638,
doi: 10.1109/VR.2018.8446057 .

17] C. Knight, M. Munro, Virtual but visible software, in: Proceedings of International
Conference on Information Visualisation, London, England, UK, July 19–21, 2000,
2000, pp. 198–205, doi: 10.1109/IV.2000.859756 .

18] S.M. Charters , C. Knight , N. Thomas , M. Munro , Visualisation for informed decision
making; from code to components, in: Proceedings of the International Conference
on Software Engineering and Knowledge Engineering, ACM, 2002, pp. 765–772 .

[19] T. Panas, R. Berrigan, J.C. Grundy, A 3D metaphor for software production visual-
ization, in: Proceedings of International Conference on Information Visualization,
2003, pp. 314–319, doi: 10.1109/IV.2003.1217996 .

[20] J.I. Maletic, J. Leigh, A. Marcus, G. Dunlap, Visualizing object-oriented software in
virtual reality, in: Proceedings of International Workshop on Program Comprehen-
sion, 2001, pp. 26–35, doi: 10.1109/WPC.2001.921711 .

[21] R. Souza , B. Silva , T. Mendes , M. Manoel , SkyscrapAR: an augmented reality visu-
alization for software evolution, in: Brazilian Workshop on Software Visualization,
2012, pp. 17–24 .

[22] F. Fittkau, A. Krause, W. Hasselbring, Exploring software cities in virtual reality, in:
Proceedings of Working Conference on Software Visualization, 2015, pp. 130–134,
doi: 10.1109/VISSOFT.2015.7332423 .
106
[23] M. Rudel , J. Ganser , R. Koschke , A controlled experiment on spatial orientation
in VR-based software cities, in: Proceedings of Working Conference on Software
Visualization, 2018, pp. 21–31 .

[24] L. Merino, J. Fuchs, M. Blumenschein, C. Anslow, M. Ghafari, O. Nierstrasz,
M. Behrisch, D.A. Keim, On the impact of the medium in the effectiveness of 3D
software visualizations, in: Proceedings of International Working Conference on Soft-
ware Visualization, 00, 2017, pp. 11–21, doi: 10.1109/VISSOFT.2017.17 .

25] C. Wohlin , P. Runeson , M. Hst , M.C. Ohlsson , B. Regnell , A. Wessln , Experimentation
in Software Engineering, Springer Publishing Company, Incorporated, 2012 .

[26] G. Balogh, Á. Beszédes, Codemetropolis – code visualisation in minecraft, in: Pro-
ceedings of International Working Conference on Source Code Analysis and Manip-
ulation, IEEE CS Press, 2013, pp. 136–141, doi: 10.1109/SCAM.2013.6648194 .

27] A. Bacchelli , F. Rigotti , L. Hattori , M. Lanza , Manhattan-3D city visualizations in
eclipse, ECLIPSE IT 2011 (2011) 307 .

28] F.Q.B. da Silva , M. Suassuna , A.C.C. França , A.M. Grubb , T.B. Gouveia , C.V.F. Mon-
teiro , I.E. dos Santos , Replication of empirical studies in software engineering re-
search: a systematic mapping study, Empir. Softw. Eng. 19 (3) (2014) 501–557 .

29] F. Shull , J.C. Carver , S. Vegas , N.J. Juzgado , The role of replications in empirical
software engineering, Empir. Softw. Eng. 13 (2) (2008) 211–218 .

30] B. Kitchenham , The role of replications in rmpirical software engineering – a word
of warning, Empir. Softw. Eng. 13 (2) (2008) 219–221 .

31] J.C. Carver , N.J. Juzgado , M.T. Baldassarre , S. Vegas , Replications of software engi-
neering experiments, Empir. Softw. Eng. 19 (2) (2014) 267–276 .

32] V. Basili , F. Shull , F. Lanubile , Building knowledge through families of experiments,
IEEE Trans. Soft. Eng. 25 (4) (1999) 456–473 .

33] O.S. Gómez , N.J. Juzgado , S. Vegas , Understanding replication of experiments in
software engineering: a classification, Information & Software Technology 56 (8)
(2014) 1033–1048 .

34] M.T. Baldassarre , J. Carver , O. Dieste , N. Juristo , Replication types: towards a shared
taxonomy, in: Proceedings of International Conference on Evaluation and Assess-
ment in Software Engineering, ACM, 2014, pp. 18:1–18:4 .

35] N. Juristo , A. Moreno , Basics of Software Engineering Experimentation, Kluwer Aca-
demic Publishers, 2001 .

[36] A. Jedlitschka, M. Ciolkowski, D. Pfahl, Guide to Advanced Empir-
ical Software Engineering, Springer London, London, pp. 201–228.
doi: 10.1007/978-1-84800-044-5_8 .

[37] R. Wettel , M. Lanza , R. Robbes , Empirical validation of CodeCity: a controlled ex-
periment, Technical Report 2010/05, University of Lugano, 2010 .

[38] D. Watson , L.A. Clark , A. Tellegen , Development and validation of brief measures
of positive and negative affect: the panas scales, J. Pers. Soc. Psychol. 54 (6) (1988)
1063–1070 .

[39] A. Tony, R. Seewon, H. Ingoo, The impact of web quality and playfulness
on user acceptance of online retailing, Inf. Manage. 44 (3) (2007) 263–275,
doi: 10.1016/j.im.2006.12.008 .

[40] S. Romano, N. Capece, U. Erra, G. Scanniello, M. Lanza, The city metaphor in soft-
ware visualization: feelings, emotions, and thinking, Multimed. Tools Appl. (2019),
doi: 10.1007/s11042-019-07748-1 .

[41] S.S. Shapiro , M.B. Wilk , An analysis of variance test for normality (complete sam-
ples), Biometrika 52 (3/4) (1965) 591–611 .

[42] M.S. Bartlett, Properties of sufficiency and statistical tests, Proc. R. Soc. Lond. A 160
(901) (1937) 268–282, doi: 10.1098/rspa.1937.0109 .

[43] H. Arsham, M. Lovric, Bartlett’s Test, Springer Berlin Heidelberg, Berlin, Heidelberg,
pp. 87–88. doi: 10.1007/978-3-642-04898-2_132 .

[44] J.W. Tukey , Comparing individual means in the analysis of variance, Biometrics 5
(2) (1949) 99–114 .

[45] O.J. Dunn , Multiple comparisons using rank sums, Technometrics 6 (3) (1964)
241–252 .

[46] H. Abdi, L.J. Williams, Encyclopedia of Research Design, Sage, Thousand Oaks.
doi: 10.4135/9781412961288.n181 .

[47] R. Lincke, J. Lundberg, W. Löwe, Comparing software metrics tools, in: Proceedings
of the 2008 International Symposium on Software Testing and Analysis, in: ISSTA
’08, ACM, New York, NY, USA, 2008, pp. 131–142, doi: 10.1145/1390630.1390648 .

[48] F.A. Fontana, E. Mariani, A. Mornioli, R. Sormani, A. Tonello, An experience report
on using code smells detection tools, in: Proceedings of the 2011 IEEE Fourth Inter-
national Conference on Software Testing, Verification and Validation Workshops,
in: ICSTW ’11, IEEE Computer Society, Washington, DC, USA, 2011, pp. 450–457,
doi: 10.1109/ICSTW.2011.12 .

[49] O. Dunn, Multiple comparisons among means, J. Am. Stat. Assoc. 56 (293) (1961)
52–64, doi: 10.2307/2282330 .

[50] J. Carver , L. Jaccheri , S. Morasca , F. Shull , Issues in using students in empirical stud-
ies in software engineering education, in: Proceedings of International Symposium
on Software Metrics, in: METRICS ’03, IEEE, Washington, DC, USA, 2003, p. 239 .

[51] M. Höst, B. Regnell, C. Wohlin, Using students as subjects —a comparative study of
students and professionals in lead-time impact assessment, Empir. Softw. Eng. 5 (3)
(2000) 201–214, doi: 10.1023/A:1026586415054 .

http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0001
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0001
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0001
https://doi.org/10.1145/1985793.1985868
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0003
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0003
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0004
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0004
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0004
https://doi.org/10.1109/ICPC.2007.30
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0006
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0006
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0006
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0006
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0007
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0007
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0007
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0007
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0008
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0008
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0008
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0008
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0008
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0008
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0009
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0009
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0009
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0010
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0010
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0010
https://doi.org/10.1109/ICSME.2017.70
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0012
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0012
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0012
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0012
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0012
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0013
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0013
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0013
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0013
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0014
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0014
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0014
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0014
https://doi.org/10.1109/VISSOFT.2018.00020
https://doi.org/10.1109/VR.2018.8446057
https://doi.org/10.1109/IV.2000.859756
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0018
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0018
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0018
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0018
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0018
https://doi.org/10.1109/IV.2003.1217996
https://doi.org/10.1109/WPC.2001.921711
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0021
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0021
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0021
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0021
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0021
https://doi.org/10.1109/VISSOFT.2015.7332423
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0023
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0023
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0023
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0023
https://doi.org/10.1109/VISSOFT.2017.17
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0025
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0025
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0025
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0025
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0025
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0025
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0025
https://doi.org/10.1109/SCAM.2013.6648194
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0027
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0027
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0027
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0027
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0027
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0028
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0028
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0028
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0028
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0028
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0028
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0028
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0028
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0029
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0029
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0029
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0029
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0029
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0030
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0030
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0031
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0031
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0031
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0031
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0031
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0032
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0032
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0032
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0032
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0033
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0033
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0033
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0033
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0034
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0034
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0034
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0034
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0034
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0035
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0035
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0035
http://doi.org/10.1007/978-1-84800-044-5_8
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0036
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0036
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0036
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0036
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0037
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0037
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0037
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0037
https://doi.org/10.1016/j.im.2006.12.008
https://doi.org/10.1007/s11042-019-07748-1
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0040
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0040
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0040
https://doi.org/10.1098/rspa.1937.0109
http://doi.org/10.1007/978-3-642-04898-2_132
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0042
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0042
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0043
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0043
http://doi.org/10.4135/9781412961288.n181
https://doi.org/10.1145/1390630.1390648
https://doi.org/10.1109/ICSTW.2011.12
https://doi.org/10.2307/2282330
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0046
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0046
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0046
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0046
http://refhub.elsevier.com/S0950-5849(19)30140-5/sbref0046
https://doi.org/10.1023/A:1026586415054

	On the use of virtual reality in software visualization: The case of the city metaphor
	\numberline {1}Introduction
	\numberline {2}Related work
	\numberline {3}Background and motivations
	\numberline {3.1}The city metaphor
	\numberline {3.2}Assessing the city metaphor and motivations for our experiment

	\numberline {4}Experiment
	\numberline {4.1}Goals
	\numberline {4.2}Experimental units
	\numberline {4.3}Tasks
	\numberline {4.4}Experimental materials and tools
	\numberline {4.4.1}Code2City
	\numberline {4.4.2}Code2City<12:inf >VR</12:inf>\@empty
	\numberline {4.4.3}Eclipse

	\numberline {4.5}Hypotheses, parameters, and variables
	\numberline {4.6}Experiment design
	\numberline {4.7}Procedure
	\numberline {4.8}Analysis procedure
	\numberline {4.9}Summary of the differences

	\numberline {5}Results
	\numberline {5.1}Descriptive statistics and exploratory analysis
	\numberline {5.2}Hypotheses testing (and post-hoc analysis)
	\numberline {5.3}Results on PANAS – positive and negative affects
	\numberline {5.4}Answers to the post-questionnaire
	\numberline {5.4.1}Playfulness
	\numberline {5.4.2}Perceived usefulness
	\numberline {5.4.3}Behavioral intention to use
	\numberline {5.4.4}Side effects of Code2City<12:inf >VR</12:inf>\@empty

	\numberline {6}Discussion
	\numberline {6.1}Answering the research questions
	\numberline {6.2}Overall discussion
	\numberline {6.3}Implications and future extensions
	\numberline {6.4}Threats to validity

	\numberline {7}Conclusion
	Conflicts of interest
	Acknowledgment
	\numberline {Appendix A}Results by task
	Supplementary material
	References

