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Introduction 
 

Number patterns provide a variety of rich contexts that may be utilized to help students 

develop algebraic symbolization to express relationships. Such experiences often 

constitute an important feature in introducing Algebra in many reformed Algebra 

curricula. Various researchers recognize the potential of these activities for engaging 

students in generalizing and for helping them develop algebraic notation (see for example 

Mason (1996), NCTM (1997), Yerushalmy (2000)). Other studies (e.g. Sasman, 
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Developing Algebraic Notation Through 
Number Patterns 1 

Abstract:  
All the mathematics teachers in a Maltese secondary school were involved in
setting and correcting a task involving the use of algebraic symbolization to
describe number patterns in a number of their classes. A focus interview was
carried out with the teachers some time after this experience. As a group, the
teachers identified some very well documented difficulties that students have
with the use of letters in Algebra. The work also shows that tasks of the type
investigated provide teachers with contexts that they may utilize to help
students make some entry points into using letters as generalized number. 
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Linchevski & Olivier, (1999)) have focused on the cognitive difficulties evidenced by 

students working on generalizing patterns and describing the generalized pattern using 

algebra.  

 

This paper tells the story of some teachers' experience in working with activities of this 

type in a Maltese secondary school. Given the specificity of algebraic thinking, it is clear 

that the subject matter constitutes a crucial aspect in the teaching and learning of the 

subject. For this reason it was considered relevant to start with a discussion of students' 

difficulties in beginning Algebra.  

 

 

Theoretical Considerations 
 

Traditionally, the algebra curriculum focuses on teacher taught procedures that students 

are encouraged to reproduce. The difficulties faced by secondary school students learning 

algebra in such set-ups have been well documented (e.g. Herscovics (1989), Kieran 

(1989), Kieran (1992), Küchemann (1981)). Many students face extensive difficulties in 

coming to terms with the different meanings attached to letters in algebra. On the other 

hand, those initiated into algebraic methods use letters with an ambiguity that allows for 

flexibility of use. For example the equation 3x + 5 = 17, prompts the idea of x as a 

placeholder or unknown value for x. The relations x + 3 x = 4x and x + y  =  y + x are 

hardly useful if x and y are viewed as placeholders standing for  specific values of x and 

y. These statements are in fact more useful if the letters x  and  y  are viewed as 

generalised numbers. The relation y = 3x prompts notions of a function and also ideas of 

covariation, like that a change of 1 unit in the x-value corresponds to a change of 3 units 

in the y-value. Doing algebra involves choosing suitable interpretations for the letters 

being used and at times also shifting between different interpretations. This in itself is 

already difficult. To make matters worse, Algebra students are often hindered by 

incorrect meanings they associate with given algebraic statements. 
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Table 1: Responses to Question 9 in CSMS Algebra Test  (14 year olds) 

                                                                 (Adapted from Küchemann, 1981, p. 102) 

9.   Find the perimeter of the shapes below: 

(i) (iv) 

  

 

 

 

 

 

 

Part of this figure is not drawn.    There are 

n sides altogether all of length 2. 
 

Correct Response : 3e Correct Response: 2n  or  n2 

Facility 94% Facility 38% 

 

As part of the Concepts in Secondary Science and Mathematics project, Küchemann's 

work involved the analysis of students' performance on the CSMS Algebra test 

(Küchemann 1981). The test was administered to 3000 British students in their second, 

third and fourth year of secondary schooling. British pupils start learning algebra in their 

first or second year of their secondary education, at age 12 or 13. In his analysis to 

students' responses, Küchemann identified some of the many possible interpretations that 

secondary students give to letters. Consider for example, the responses of the fourteen 

year-old sample (just under 1000 students) on questiono9 of the CSMS test as shown in 

Table 1. While the answers to questions 9(i) and 9(iv) are similar, the facilities are in 

stark contrast. Although in question 9(iv), n is clearly defined as the number of sides of 

the shape; many seemed oblivious to this. They were unwilling to multiply the number of 

sides n, by 2, the length of each side. Instead, many counted the number of sides already 

drawn or else closed in the figure by adding one or more lines and gave an answer of 32 
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or 34. On the other hand, in question 9(i), the great majority of students were willing to 

multiply the length of the side, e , by 3, the number of sides. Küchemann argues that 

many students would have answered question 9(i) correctly by interpreting the letter e as 

just a name or label for each of the sides rather than an unknown number, the unknown 

length of each side. The letter e is regarded as an object, in this case the side, and the 

three sides are interpreted as 3e. Whilst an interpretation of the letter as object may have 

yielded a correct answer for question 9(i), such an interpretation often yields incorrect 

algebraic statements. 

 

An often-quoted example illustrating the interpretation of letters as objects is the students 

and professors problem. The following problem was given to a group of 150 freshmen 

studying Engineering at the University of Massachusetts. 

 

Write an equation, using the variables S and P to represent the following statement: “At 

this university there are six times as many students as professors.” 

Use S for the number of students and P for the number of professors.  

 

More than a third of the students tested were unable to unable to write the correct 

equation, S = 6P, in any form. The main error was to write the equation 6S = P,  

described by the authors as the reversed equation (Clement, Lochhead, and Monk 1981). 

 

Basing on the response of students on interviews, the authors claim that students writing 

the reversed equation 6S = P, were interpreting the letters S and P as labels standing for 

students and professors rather than variables standing for the number of students and 

number of professors respectively. The equation 6S = P was sometimes read as “there are 

six students for every one professor,” while pointing to S and P as they uttered the terms 

students and professors respectively. Alternatively S = 6P was read as “one student for 

every six professors. In both cases, the letters S and P were being conceived as students 

and professors; in other words the letters were viewed objects. While working on these 

problems these students, who were not novices to algebraic symbolization, seem to have 

missed the abstraction that the letters stand for the number of students and professors.  
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Students sometimes associate letters with their position in the alphabet taking for 

example the letters f, g to represent the numbers 6 and 7 respectively (see for example 

Küchemann (1981);  MacGregor and Stacey, 1997).  

 

A theoretical interpretation that has been used to explain students’ difficulties in 

interpreting algebraic symbolism is Sfard's theory of reification. Sfard & Linchevski 

(1994) argue that algebraic expressions can be viewed both operationally and structurally. 

Consider the expression x2 - 9. One possible interpretation of this expression involves 

treating it as a prompt to substitute one or more values for x. This interpretation involves 

an operational view of the expression. Alternatively, the expression can be viewed as a 

number in its own right, depending on an unknown value of x. It may also be viewed as a 

function of x taking on different values with different values of x. This acceptance of the 

expression x2 - 9 as a useful entity in its own right with an awareness that it may be 

manipulated to reveal other insights involves a structural view of this same expression. 

Sfard & Linchevski argue that an operational conception precedes a structural perception. 

They associate the move from the operational to the structural conception with the 

process of reification. 

 

"Mathematical objects are an outcome of reification - of our mind's ability to envision the 

results of processes as permanent objects in their own right." (Sfard & Linchevski, 1994, 

p. 194) 

 

Conceptual development in Algebra involves a lengthy process, involving various 

reifications. For example, it is one thing to view the expression x2 – 9 as an expression 

involving a fixed unknown value of x and yet another to view it as a function. Both views 

are constructs of reification, both ideas are initially conceived from an operational 

viewpoint. Once conceived as objects in their own right, the properties of the reified 

constructs, in this case expression and function can be articulated and applied. 
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The authors maintain that student difficulties in algebra often result from an inability to 

make the necessary operational-structural connections, the structural viewpoint often 

resulting very difficult to achieve. For example, students are often found to be unwilling 

to give answers in the form of open algebraic expression. This phenomenon is described 

by Collis (1974) as an inability to accept lack of closure. In such cases, it may very well 

be the case that for the student, the letters are only useful in an operational sense, namely 

as numbers to be computed to arrive at a final numerical answer.  On the other hand, 

some student errors, where students consistently assign the same incorrect meanings to 

letters, can be attributed to pseudo-structural conceptions. The student mistakes, 

discussed earlier, where letters are treated as object and where the position of letters in 

the alphabet is associated with their value qualify as pseudo-structural conceptions. 

 

Other authors have also recognized the dual nature of mathematical symbols. Taking 

examples mainly from Arithmetic, Gray & Tall (1994) distinguish between viewing the 

same mathematical symbol as a process to viewing it as a concept. Using their 

terminology, a mathematical symbol is viewed as a procept when this can be interpreted 

both as a  process and as a manipulable concept as the need arises. In analyzing some 

young children’s use of algebraic symbols, Tall (2001) distinguishes between evaluation 

algebra and manipulable algebra.  In evaluation algebra, symbolic expressions are 

viewed as processes of evaluation. Manipulable algebra is a more advanced stage where 

the symbols are viewed proceptually and are interpreted as processes or manipulable 

concepts as the need arises. 

 

Although named differently, Sfard’s operational and structural interpretations correspond 

to Gray& Tall’s (1994) distinction between viewing a mathematical symbol as a process 

and viewing it as an object. The basic idea is the claim that actions, operations or 

processes become in turn conceived as mental objects in their own right that are also 

acted upon. This gives the learner more flexibility in that symbols can be viewed as 

process or else acted upon as opportune. As Mason (1996) puts it, 
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Algebraic awareness requires, perhaps even consists of, necessary shifts of attention, 

which make it possible to be flexible in seeing written symbols  

• as expression and as value 

• as object and as process. (p.74) 

 

In Malta, as in many traditional Algebra curricula, Algebra is taught starting from ideas 

connected with simplification of algebraic expressions, linear equations in one unknown 

and linear equations in two unknowns. The emphasis is on teacher taught procedures that 

students reproduce in exercises similar to those already worked out by the teacher. 

Considering this situation through the lenses of Sfard’s model, one problem is 

immediately evident. Given that reification is a slow and difficult process, many students 

never get the chance to make the necessary accommodations to view Algebra as a tool for 

generalization. As Sfard and Linchevski (1994) point out, the curriculum literally 

reverses the order in which algebraic notions are related with the more difficult structural 

approach being assumed at the outset. With the missing foundation work linking the 

operational and structural approach, it is only natural that many never grasp flexibility in 

algebra making it possible for them to be able to shift between operational and structural 

representations as necessary in working with Algebra.  

The search for suitable contexts to help students develop the necessary algebraic 

meanings is an essential part in reforming the algebra curriculum. (see for example 

Bednarz, Kieran and Lee (1996) and NCTM (1997)).The present study was undertaken 

with the conviction that number patterns offer a rich context for helping students come to 

terms with the use of letters to represent generalized numbers.  

 

 

The Study: Preliminaries 
 

The work being reported here started with a series of weekly meetings held between 

myself, Peter Vassallo, the Educational Officer responsible for the teaching of 

Mathematics in the school and the Mathematics teachers of a local Junior Lyceum for 

girls. On the other hand, I am employed with the Faculty of Education and am involved 
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in the Mathematics Education component of the initial teacher-training course offered by 

the Faculty. Peter and myself set out with the idea of exploring ways of working with 

teachers in context.  Peter was always present during our meetings and he proved to be a 

source of invaluable support throughout the work. 

 

The preliminary meetings were held in school time between February and May 2000. As 

with other Junior Lyceums in Malta, the school is a government secondary school and 

caters for a particular catchment area. Students, in this case girls, are admitted into Junior 

Lyceum at ten to eleven years of age if they pass the entry examinations in Mathematics 

and another four subjects. Secondary education entails five years of schooling; in this 

particular school, there were about five classes in each Form. The classes were also 

streamed. The Form I classes were streamed on the basis of the students’ results in their 

Junior Lyceum examinations. The other Forms were streamed according to the results 

obtained by the students in their annual examinations.  

 

A lesson period had been allotted by the school administration making it possible for the 

five Mathematics teachers to be able to meet during this time. These meetings were very 

necessary to get to know the teachers and to come to grips with the context under which 

the teachers were working so as to ensure that the demands being made on the teachers 

could be met. One of the concerns that came out during the penultimate of these 

preliminary meetings was that many students fail to see the relevance of Algebra. I 

suggested that tasks involving patterns that can also be represented algebraically could 

help in this respect. During the next and final meeting during this academic year, I 

circulated a number of tasks of varying levels of difficulty that could be tried out with 

students. It was agreed that next year each teacher would be involved in choosing one or 

more of the activities. The teachers were to trial the chosen activities with their classes. 

 

Three further meetings were held next year, during the month of November 2000. This 

new academic year there were four new teachers and one of the original five teachers had 

transferred to another school. During these meetings, the new teachers had the possibility 
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to familiarize with the tasks. The teachers also suggested some minor revisions to 

improve the readability of some of the tasks and these were taken into account.  

 

The teachers confirmed that none but the Form V students had ever been set similar 

problems at school. They were to set the tasks by giving the students individual 

worksheets and to let them work out the tasks individually or in small groups. Students 

were not to be given any prior hints as to how to work on the tasks. Also teachers were 

not to help the students on the tasks before the individual worksheets were collected. 

They were left free to decide which of the activities to try. However, they were 

encouraged to try at least one activity with each of their classes. They were also to collect 

and mark the activity sheets. The teachers agreed to try the tasks between December 2000 

and March 2001. The tasks that were eventually tried out are shown in Figure 1. A focus 

group meeting was held later on to discuss the outcomes of the trials in the different 

classes. 

 

The Focus Group Interview 
 

An audio-taped focus group interview, lasting just about one and a half hours was held in 

May 2001. One of the teachers, here denoted by Carmen, was ill and could not attend the 

meeting. The other seven teachers then teaching Mathematics in the school, Peter and 

myself participated in this interview. In my role as discussion facilitator, I decided to 

elicit from the teachers their views about the students’ performance on  the tasks they had 

carried out with their classes. On my part, it was important that I would elicit their views 

and results, rather than dictate my own beliefs. The teacher comments that will be used 

for the purposes of this paper were prompted by questions relating to these issues: 
   

(a) The tasks that were finally tried and with whom 

(b) Help given during the tasks  

(c) The instructional method used (individual/ pair work/ use of larger groups) 

(d) Students’ difficulties on the tasks 
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Circles and Triangles: Two Tasks 
 
 
 
 
 
 
 
  
 
Task 1: Circles  
 
The shapes above follow a pattern. Continue the 
pattern to draw shapes 4 and shape5. 
 
(a) Continue the table below: 
 

Shape  Number 1 2 3 4 5 

Number of circles 4 8    

 
(b) How many circles are there in shape 20?  

Explain your reasoning. 
 
(c) How many circles are there in  shape N? 
 
 
 
Task 2: Triangles 
 
Use the same pattern as in previous task. 
In this task, instead of finding the number 
of circles,  the number of triangles used 
for different shapes are found. 
 
(a) Continue the table below : 
 

Shape  Number 1 2 3 4 5 

Number of triangles 0 1    

 
(b) How many triangles are there in shape 20?  

Explain your reasoning. 
 
(c) How many triangles are there in  shape N? 

 

Hexagons 
 

The three shapes in Figure below form a 
sequence. 
 
 
 
 
 
 
 
a. How many hexagons are there in the first, 

second and third shape? 
 

b. If the sequence is continued, how many 
hexagons are there in the:  

i) fourth  shape 
 

ii) eighth shape 
 

iii) n th shape  ? 
 

Matches  

 

Arrangement 1 2 3 4 5 6 7 8 

Number of matches 4 7 10      
 

 

a) Find the number of matches needed for 
arrangement 4.  You may use matches or 
draw a diagram if you find this useful. 

 

b) Complete the table.  
 

c) How many matches  are needed for 
arrangement 20?  

d) How many matches are needed for 
arrangement 30? 

e) Describe a rule that helps you to find out 
the number of matches according to the 
arrangement number. 

f) How many matches are needed for 
arrangement N? 

1st shape 2nd shape 3rd shape

Arrangement 1

Arrangement 2

Arrangement 3

Figure 1: The tasks tried out by the teachers
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During the focus group interview, the teachers collaborated fully. In their responses, 

they amplified on the reasons why they worked the way they did. For example, I 

asked all the teachers in turn about the help given while students were working on the 

task separately from the students’ difficulties on the task. While in my questions I 

treated the two issues separately, some of the teachers’ responses to my first question 

amplified on the students’ difficulties. After transcribing the focus interview, it was 

clear that the teachers had a lot to say regarding the performance of the students on 

the tasks. 

 

Anna had tried out Hexagons with her Form II classes. Most teachers had tried out the 

tasks Circles and Triangles. Stefan and Maria tried them out with their Form III 

classes, whilst Frank and Tanya tried them out with their FormcIV and Form V 

classes. Vera who was teaching Mathematics to two Form V classes in the lowest 

achieving streams tried out the task Matches in both her classes. 

 

All the teachers had tried out one or two tasks with their Mathematics classes, except 

for the Form I classes.  In Junior Lyceums, Algebraic notation is introduced in Form I 

but the two teachers teaching this Form opted not to try any of the tasks with this 

Form. Not all the circulated tasks had been tried out and most teachers tried out the 

same tasks. Although Carmen was not present for the interview, on her invitation, I 

had visited one of her Form II classes, when she was trying out the task Hexagons 

with this class.  

 

Copies of the students’ handouts were also collected at the end of the interview. This 

made it possible for me to gain greater understanding into the teachers’ comments 

about the students’ performance on the tasks. 

 

Students’ performance on the tasks 

  

The Form II classes 
 

The major difficulty that was apparent in all Form II classes related to the students’ 

difficulties with representing the observed patterns in algebraic symbolization. Even 

when they had found a global pattern that could be described verbally and used to find 
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any specific term, many found it difficult to write this down as an expression for the n 

th term. 

 

Both teachers working with Form II’s tried out the task Hexagons. In this case the n th 

term of the sequence was n2. In The following excerpt Anna explains how  she found 

it necessary to help her students while working on the task. (All excerpts are 

translated from Maltese.) 

 

Anna:  I used Hexagons with Form II’s. Now while they were finding out the 

9th shape or something similar, there o.k. So they are working. But 

when they came to the n th term, there was panic. For one thing they 

did not understand what the n th term is. They had no idea. Because 

some drew the letter N. And they counted the corners in the letter N. 

Hopeless case! And I had to explain. And I explained that if I ask you 

“How many hexagons are there in the 100th shape, I don’t think that 

you have to draw them. You need to find out something. And I insisted 

on this something. And many were arriving at the right answer. But 

there were still others who did not get to the right answer. 

 

A similar situation had occurred in the class I had observed with Carmen. The class 

was a high achieving stream in Form II and the girls were set to work in pairs. They 

immediately started out working on the task. Initially some were using iteration to 

find the next term, but within a short time all the pairs were using the global pattern- 

squaring. Like in the excerpt above, the students got stuck when they came to describe 

the n th term. The students were visibly frustrated. After a short discussion with the 

teacher, we decided to tell them that  n stands for any number. And we waited. After 

what seemed a very long wait, one of the students got the answer. Slowly, the other 

pairs were also coming to the answer. It seemed that everybody was accepting the 

pattern as n2. While we were collecting the students’ handouts, one of the students 

remarked; “But n2 is not an answer!” While we were asking her about the meaning of 

n and n2, she herself connected this problem with some work they had done a couple 

of weeks earlier in connection with constructing formulae. 
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Form III 

Two teachers Stefan and Maria were teaching Form III’s. Both tried Circles and 

Triangles, two patterns built on the same sequence of shapes with the n th shape being 

made up of 4n circles and (n-1)2  triangles. In the following excerpt, Stefan and Maria 

are discussing the performance of different classes on these tasks. 

 

Stefan:  Yes, I saw a difference between the classes, the higher achieving got more  

involved. They completed the first task easily. The second task, the 

same as with the other classes. I gave them the tasks when we got back 

to school in January. They took it in their stride, you know, they 

weren’t very worried. 

Cettina: They managed to get it, did they? 

Stefan:  Yes, yes. But nobody managed to get (n-1)2, not even the better classes.  

Verbally, yes they got it and many managed to find the number of 

triangles in shape 20. 

Maria:  In my case, there were some correct responses. 

Stefan:  (n-1)2, nobody. Verbally yes. 

Maria:  But I did explain a bit. 

Stefan:  I didn’t. 

Maria:  I was telling them, what is the meaning of shape n? They were saying the  

previous number squared. They were saying the previous number 

squared. I was saying, if I have 5, how do I write the previous number 

4? Five minus 1. 

Stefan:  They managed as I said earlier. They used a different number for n and 

they worked as for part (b). So they said n = 50 and they used n = 50. 

This means that at least they noticed that n stands for any number. 

 

In the of case Maria, who offered some help, some students did manage to finish the 

tasks, complete with the algebraic representation of the more difficult pattern, (n-1)2 

for the triangles task. In the case of Stefan, who gave no help whatsoever, nobody 

completed the algebraic representation required in the Triangles task. Although some 

described the pattern verbally for the triangles appropriately, none of the girls in 

Stefan’s classes managed the description of this pattern in terms of n. This occurred in 
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spite of the fact that Stefan’s classes included the two highest achieving classes in 

Form III. 

 

Form IV 

Three teachers; Karen, Frank and Tanya tried out the same tasks, Circles and 

Triangles with their Form IV classes. One of the teachers, Karen offered some help 

with her classes. The other two did not. Even without help from their teachers, in this 

Form, there were some girls who managed the algebraic representation of the triangles 

pattern (n-1)2.  Still there were a lot of difficulties with the algebraic representations, 

as is evident from the following two excerpts, the first involving Frank. 

 

Cettina: Any surprises in your case?  

Frank:  As such there were no surprises. The best class worked at the task and 

they  

got the answer. The others, some did it, some did not. Look at this. 

(pointing to a student’s hand-out). Because the children understand it 

could be how many circles are there in shape n, she told me (meaning 

she wrote down) ‘it could be any number’. She understands that shape 

n could stand for any number, because n can represent any shape 

number. But she was not able to relate this, to get the formula, she 

could not do it. 

 

Cettina: This was a fourth former. The 4n, it was the simplest. 

 

Frank:  She managed the first one. ‘There are 80 circles. It is a multiplication 

of 4’(reading from script). But when she came to the second one she 

told me (wrote) ‘n can stand for any number and was not able to realize 

that all she had to do was 4n. 

 
At another stage Tanya pointed out another peculiar response: 

 

Tanya:  … The fourths. (pause). The same, I have three classes. The lowest 

ability 
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stream found it difficult. In fact the n, they counted as a, b, c, d, e, f, 

g… m was 13 and they ended with a formula m2 instead of (n-1)2. They 

put the letter m. 

Maria:  The letter before n. 

Tanya:  So they don’t, (pause), At first I, (pause), and then I realized. 

Inaudible… sighs of surprise from the other teachers.  

Anna:  The m comes before n. 

 

Form V 

All the Form V classes had already done similar activities that year. Patterns 

involving the n th term are specifically mentioned in the Form V syllabus and 

problems of this type have repeatedly appeared in recent years in the Secondary 

Education Certificate (SEC) examination in Mathematics usually taken at the end of 

Form V. Vera was only teaching the two classes at the lower end of the achievement 

spectrum and she tried out a different task with these classes, Matches. With their 

Form V classes, Frank and Tanya tried out the same tasks they had presented to their 

Form IV classes, namely Circles and Triangles. 

 

Both Frank and Tanya set the tasks individually in their Form V classes. Tanya  had 

the best achieving class and she was very satisfied with the performance of these 

students. Some of the best students continued the triangles pattern in a different way 

than that intended. As they drew the next terms of the pattern, they were leaving an 

empty space at the center of their shapes. They ended up with a pattern that could not 

be easily represented in terms on n. As Tanya remarked during the interview, this 

could have been avoided had the question included a further term in the sequence. 

 

Frank also set the tasks individually with his fifth formers. A number gave fully 

correct responses but many did not manage to complete the tasks.  

 

Vera who was teaching the two lowest achieving classes set the task Matches where 

the nth term corresponding to the number of matches in the nth shape resulted to be 

3n+1. In this task, the pattern was not obvious from the diagrams. In the previous 

tasks described, the patterns involved were n2 for the task Hexagons, 4n and (n-1)2 for  

the Circles and Triangles task. The global patterns were quite transparent. This was 



88 Journal of Maltese Educational Research  Vol: 1 No.2 2002   

© Faculty of Education, University of Malta, 2002 

not the case for this task, Matches. According to the teacher, the girls, working in 

groups of 3 to 4 students found plenty of difficulty with finding the nth term, with 

some giving answers like 3n and n +3. Still a few managed to complete it 

successfully. 

 

Evidence from students’ handouts confirmed the claims made by Vera. Although the 

students could easily find successive terms by adding on three matches for the next 

term, many failed to find a correct expression for the nth term. When asked to 

describe a rule that gives the number of matches according to the arrangement 

number, these students generally wrote ‘add 3’.  There were a few exceptions. There 

were cases where the students used the general form of an arithmetic sequence to 

derive correctly the nth term, a method that had not have been covered in class but 

that the students would have met during private lessons. There were also cases where 

the students derived the nth term. In some cases, it is not quite clear how the students 

came to the correct answer. Since they were working in groups, some may have 

copied the answer. One particular student’s work is shown in Figure 2. Clearly, the 

involvement of this particular student on the task is substantial. She was also able to 

split up the pattern in a way that was amenable to finding the nth term of the 

sequence. A possible interpretation of how she might have determined this is shown 

in Figure 3. As is clear from the right bottom corner of her work, where she expressed 

her result as n+3x+x2(n-1), the student was successfully engaged in algebraic 

reasoning. In the process of describing the patterns she had discovered in terms of n 

and in the subsequent simplification of her answer, she was operating with and on the 

unknown n. 
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Figure 2: The work on Matches of a Form V student 
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Discussion 
 

All the tasks required the students to find distant terms in a sequence, the 8th term for 

Hexagons, the 20th term in Circles and Triangles, the 20th and 30th term in the task 

Matches. In all the tasks used, except for Hexagons, the students were also required to 

explain their reasoning. So the classroom observation of the teachers together with the 

evidence from students’ scripts made it possible to distinguish between situations 

where the students failed at sorting out the global pattern and situations where 

students failed because of an inability to express the observed pattern algebraically. 

Apart from Vera, the tasks that the teachers chose for their classes involved finding 

global patterns that were very transparent in the sense that they were evident for many 

of their students. Consequently, students’ difficulties with expressing the observed 

patterns algebraically became evident. This step, the writing of the recognized pattern 

in algebraic notation proved to be the major source of difficulty for many students.  

 

Just a few weeks before the task Hexagons had been tried out, the Form II classes had 

covered a chapter on equations and formulae. Some of the questions in this chapter 

1 + 3

+ 3 + 2

3 + 3 + 2 + 2

Figure 3: An interpretation of how the student may have sorted out the pattern 
                 to find the th term n 

2

Number of Matches
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are actually devoted to students’ construction of formulae.  Still, while working on 

Hexagons, even when the students had recognized that the number of hexagons in the 

8th shape was 82, and so on, when unaided, they proved unable to write this down in 

terms of n. The prompting that was done in the class I visited and that described by 

Anna was certainly very minimal and was directed in helping the students use the 

algebraic convention, that n stands for any number. It is significant that even in the 

highest achieving classes, none of the girls came up with the answer before any help 

was given. This experience is consistent with the research findings described in the 

first section.  Using Sfard’s terminology, these students would have had no trouble 

with using the expression n2 operationally; they would surely have coped for example 

with substituting the value for n in expressions. On the other hand, when no help was 

offered they could not express their simple pattern algebraically. The mere reminder 

by the teacher that n stands for any number helped many of the students come up with 

the answer n2 themselves. With the slight help provided, it seems as if the students 

were making some steps in the direction of being able to make structural 

interpretations.  

 

In the Form III classes, most students finished the task Circles complete with the 

algebraic generalization of 4n without any prompting from their teachers. On the other 

hand, none of the Form III students, including the higher achievers, managed the 

algebraic representation of the Triangles task, (n-1)2, when no help was given. This in 

spite of the fact that many could describe the pattern verbally and could derive the 

20th term in the sequence using the pattern they had discovered. In the case of the 

teacher who did prompt the students on the meaning of n when they got stuck, some 

of the students did manage to come up with the correct algebraic representation of (n-

1)2. It is interesting to note that many of the Form III students were able, without 

prompting, to come up with the algebraic representation of 4n. On the other hand, (n-

1)2 is structurally more complex, and although many had recognized the pattern, they 

could not articulate the pattern in an algebraic form unless some help was 

forthcoming. 

 

The same tasks, Circles and Triangles were tried out in Form IV, and some of the 

Form V classes. A number of students in these forms including many of the students 

in the highest achieving class completed both tasks successfully, without any 
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prompting. It is clear that at the beginning of the fourth form, a good number of 

students are gaining control over the structural complexities of algebraic 

representation. This is not to say that this is true of the majority of the students. Even 

in the fifth form, where students had already been introduced to these types of 

problems, many of the students who were not in the best achieving classes failed to 

arrive at the algebraic representation (n-1)2. One of the excerpts refers to a Fourth 

former who deduced that the n th term for the Triangles task was m2 because m 

precedes n. In this case the student was clearly assigning an incorrect meaning to the 

letters in algebra, a good exemplar of a pseudo-structural construction. This is not the 

first instance where students assign meanings to letters according to their position in 

the alphabet. I have seen it occurring in classes I have personally observed  and it is 

also evident from literature.  (Küchemann (1981); MacGregor and Stacey, 1997). 

 

Matches, the task tried out with the two lowest achieving classes involved a global 

pattern of 3n +1. The iteration pattern, adding three matches for each successive 

arrangement of matches was easy for the girls to see, but the global pattern was not at 

all transparent. The fifth formers were already exposed to problems of this type and 

certainly some of their responses would have been influenced by prior instruction. 

Probably, some of the girls got the right answer using some teacher taught methods, in 

which case it is impossible to interpret the meanings the students were attaching to the 

letters. Even though the students had already done similar problems, a good number 

failed to find the nxth term appropriately. A notable exception is the student whose 

work is shown in Fig 2.  In writing the pattern as n + 3 +(2n –1) and simplifying, the 

student was using the letters structurally. She was using the expressions she derived as 

objects in their own right. In this case, the act of simplifying is not simply a rote 

procedure but involves a purposeful manipulation of the algebraic expression in order 

to obtain a neat concise symbolic description of the pattern involved. 

 

 

The students’ performance on the tasks is consistent with the findings from literature 

that were discussed in the first section. Even the first steps towards a structural 

representation of algebraic expressions involving generalised number is indeed a 

hurdle, that many of our students do not manage to overcome over their five years of 

secondary schooling. Except in the case of the task Matches, the global patterns were 
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very transparent. In all these tasks (Hexagons, Circles and Triangles: Tasks 1 & 2) a 

number of students could describe the global pattern accurately but were found to 

have difficulty with representing the pattern using algebraic symbolization. For 

example in Hexagons, while working on their own, most students recognized the 

global pattern and worked out the number of hexagons in the eight shape by squaring 

the number 8. Yet these Form II students were unable to express this pattern in terms 

of n, the generalized shape number. Since the global pattern was so transparent, the 

students’ difficulties in using algebraic representation became more explicit. At the 

same time, the very act of some of the teachers to get the students to think about the 

meaning of n was sufficient for many to overcome their difficulties; at least for the 

specific example in question. Using the distinction made by Tall between evaluative 

and manipulative algebra (Tall 2001), such transparent patterning tasks can be viewed 

as very rich learning experiences with the teachers having the possibility of helping 

their students with building some bridges from evaluative to manipulative algebra. 

Tasks like Matches where the global pattern is less transparent are more difficult and 

this is possibly the reason why they were not a popular choice with the teachers. In 

such tasks, students will not be able to express the pattern algebraically without 

recourse to some work at the level of manipulatitive algebra. Both types of patterning 

problems  provide teachers with contexts where the students can make some entry 

points into using letters as generalized numbers and tasks of this nature could 

certainly be utilized more fully in the curriculum starting from the earliest Forms with 

the more transparent patterns.  

 

 

Clearly the secondary algebra curriculum is wider in scope than the concepts tackled 

in this work. Rather than focusing on rote algebraic procedures, students need a wider 

variety of contextual problems if we want more students to make meaning out of their 

school algebra. Evidence from abroad affirms that this is by no means a simple issue 

and points to the need for an upheaval of the Algebra curriculum as is stated all too 

clearly in one of the NCTM documents.  
 

The school algebra curriculum must be reconsidered from the ground up, rather than 

just tinkering with the present curriculum. The challenge is to build a connected and 

coherent algebra strand by introducing important algebraic ideas at the appropriate 
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grade level and point in the curriculum sequence and to build on this foundation 

throughout the rest of the K-12 curriculum. (NCTM, 1997, p.14) 

  

By all accounts, curricular reform is a complex business and a serious attempt at 

reforming the Algebra curriculum is indeed a great challenge. As Gravemeijer (1977) 

argues, reform efforts in Mathematics Education are seriously hampered unless ample 

attention is given to develop instructional sequences that fit the reform. Teachers not 

only have to find effective activities for the various topics; they also have to sort out 

how to organise them within the current academic year. At the same time they may 

have little or no control over the manner in which prerequisite material had been 

covered in previous years. Teachers have little chance of overcoming all the hurdles 

unless they are given support through the design of sequences of instructional tasks 

that are tailored to fit the reform efforts. 

 

Other factors impinging seriously on attempts at curricular reform relate to assessment 

issues. On the one hand, a serious evaluation of the proposed curricular changes is 

necessary to inform decision-makers on the effectiveness of the proposed curriculum 

changes. Teachers are an essential feature of such a scenario and they are indeed 

important partners if a serious attempt is to be made at reforming the Algebra 

curriculum. Another crucial issue is the need for assessment to be aligned to the 

reform. Students and teachers cannot be expected to give due credit to the desired 

reform outcomes unless the assessment methods used in schools and other 

examinations that may seriously affect students’ lives do likewise.  

 

References 

Bednarz, N., Kieran C. & Lee L. eds. (1996). Approaches to Algebra, The Netherlands: Kluwer 
Academic Publishers. 

Clement, J., Lochhead, J. & Monk, G. (1981). Translation Difficulties in Learning Mathematics, 
American Mathematical Monthly, 88, 286-290. 

Collis, K.F. (1974). ‘Cognitive Development and Mathematics Learning’, paper prepared for the 
Psychology of Mathematics Education Workshop, published at the Centre for Science Education, 
Chelsea College, London, UK. 

Gravemeijer, K. (1977). ‘Instructional Design for reform in Mathematics Education’, in M. Beishuizen, 
K.P.E. Gravemeijer and E.C.D.M.van Lieshout eds. The Role of Contexts and Models in the 
Development of Mathematical Strategies and Procedures, The Netherlands: Freudenthal Institute. 

Gray, E. & Tall D.O. (1994). ‘Duality, Ambiguity, and Flexibility: a “Proceptual” View of Simple 
Arithmetic, Journal for Research in Mathematics Education 25, 116-140. 



95 Journal of Maltese Educational Research  Vol: 1 No.2 2002   

© Faculty of Education, University of Malta, 2002 

Herscovics, N. (1989). ‘Cognitive Obstacles Encountered in the Learning of Algebra’ in S. Wagner and 
C. Kieran eds. Research Issues in the Learning and Teaching of Algebra, Reston, Virginia, NCTM, and 
Hillsdale N.J.: Erlbaum. 

Kieran, C. (1989). ‘The Early Learning of Algebra: a Structural Perspective’ in S. Wagner and C. 
Kieran eds. Research Issues in the Learning and Teaching of Algebra, Reston, Virginia, NCTM, and 
Hillsdale N.J.: Erlbaum. 

Kieran, C. (1992). 'The Learning and Teaching of School Algebra' in D.A. Grouws ed., Handbook of 
Research on Mathematics Teaching and Learning, Hillsdale NJ: Erlbaum. 

Küchemann, D. (1981). ‘Algebra’ in K. Hart ed., Children’s Understanding of Mathematics, London: 
John Murray. 

MacGregor, M. and Stacey, K. (1997). 'Students' understanding of algebraic notation 11-15', Educational 
Studies in Mathematics 33, 1-19. 

Mason, J. ( 1996). ‘Expressing Generality and the Roots of Algebra’. In N. Bednarz, C. Kieran & L. 
Lee eds., Approaches to Algebra, The Netherlands: Kluwer Academic Publishers. 

NCTM (1997). A Framework for Constructing a Vision of Algebra: a Discussion Document, Reston, 
USA:  National Council of Teachers of Mathematics, Inc. 

Sasman, M.C; Linchevski, L. & Olivier A. (1999). ‘Factors influencing students’ generalisation 
thinking processes’ in D. Zaslavsky ed., Proceedings of the 23rd Conference of the International Group 
for the Psychology of Mathematics Education, Volx4, Haifa, Israel, pp. 161-167. 

Sfard, A. and Linchevski, L. (1994). ‘The Gains and Pitfalls of Reification: The Case of Algebra’, 
Educational Studies in Mathematics 26, 191-228. 

Tall, D. (2001). ‘Reflections on early algebra’ in M. van den Heuvel-Panhuizen ed., Proceedings of the 
25th Conference of the International Group for the Psychology of Mathematics Education, Vol 1, 
Freudenthal Institute, The Netherlands, pp. 149-152. 

Yerushalmy, M. (2000). ‘Problem Solving Strategies and Mathematical Resources: A Longitudinal 
View on Problem Solving in a Function Based Approach to Algebra’, Educational Studies in 
Mathematics 43, 125-147. 


