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Abstract

We present a new incremental mesh morphing method obtained by propos-
ing and discretizing a solution procedure for the continuous morphing problem.
Our method seeks a diffeomorphism that transforms an initial domain to a fi-
nal domain by only prescribing the boundary displacement. To this end, we
propose to minimize the distortion of the morphing mapping constrained to
satisfy the imposed boundary displacement. To solve this problem, we con-
sider an augmented Lagrangian method in Hilbert spaces that incorporates the
boundary condition in the objective function using the Lagrange multipliers
and a penalty parameter. The distortion is devised to penalize the appear-
ance of non-invertible mappings and therefore, we do not need to equip our
discrete implementation with untangling capabilities. Moreover, we introduce a
weight function to improve the quality of the deformation and thus, the robust-
ness of the non-linear solver. The discretization of the continuous augmented
Lagrangian method leads to a mesh morphing method suitable for large dis-
placements and rotations of meshes with non-uniform sizing, and mesh curving
of highly stretched high-order meshes.

Keywords: Mesh morphing, mesh moving, mesh curving, smoothing,
boundary displacements, augmented Lagrangian

1. Introduction

In the last decades, mesh morphing methods [1, 2] have attracted consid-
erable attention from the computational methods and computer graphics com-
munities. This attention has been prompted by the ability of these methods to
deform an initial mesh to a target mesh without introducing inverted elements
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by only prescribing the mesh boundary displacement. This capability is criti-
cal both in applications that might require only one target configuration, e.g.
high-order mesh curving, or several target configurations, e.g. moving meshes
for fluid-structure interaction.

One key ingredient of mesh morphing methods is how to relocate the inner
nodes of the mesh to accommodate the imposed boundary displacement with-
out introducing inverted elements. The relocation of the inner nodes has been
extensively addressed in the existing mesh morphing literature and it is mainly
performed using solid mechanics analogies [3–9], optimizing mesh quality func-
tionals [10–19], and solving specific-purpose PDE’s [20–22]. Ordered from less
to more robust approaches, existing methods avoid the insertion of inverted
elements by using: non-explicit heuristics, explicit penalization of inverted el-
ements, and untangling techniques to remove existing invalid elements. It is
important to point out that untangling techniques usually feature the highest
computational cost.

Another key ingredient is how to impose the boundary displacement that de-
termines the target configuration. Unfortunately, this ingredient has not been
extensively studied in the existing literature even though it drives the inser-
tion of inverted elements. To illustrate this, we only need to consider a mesh
where part of its boundary has been displaced a distance larger than the size of
the corresponding boundary elements. These elements now feature an inverted
orientation since they have been crossed over by their corresponding boundary
nodes.

Existent methods can impose the boundary displacement in one stage or
in several incremental stages. To enhance robustness, one stage methods need
to feature untangling capabilities [3, 10, 11, 14–17] since large boundary dis-
placements might introduce, as we said before, inverted elements next to the
displaced boundary. On the contrary, by incrementally moving the mesh bound-
ary [5, 6, 8] the insertion of inverted elements can be mitigated or even fully
avoided.

To use several incremental stages it is necessary to define the trajectory of the
boundary nodes and a methodology to decide feasible increments. Specifically, it
is standard to use a linear [5, 6, 8] or non-linear [8] homotopy to characterize the
trajectory from the initial to the target boundary. Then, a full linear step from
the current to the target configuration is considered. While a valid mesh is not
obtained, the length of the step along the current linear trajectory is reduced.
This procedure is iterated until a valid mesh matching the target boundary
configuration is obtained. This approach explicitly penalizes the insertion of
inverted elements enhancing the robustness of mesh morphing methodology.

However, the number of intermediate mesh morphing stages might grow with
the number of element layers surrounding the moving boundaries. Furthermore,
it is required that all the intermediate stages of the boundary nodes along the
trajectory determined by the linear homotopy are compatible with a valid con-
figuration of the inner nodes. If an intermediate incompatible or non-valid
boundary configuration is obtained, the mesh morphing process might not con-
verge or low-quality or inverted elements might be generated. These issues might
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arise when large displacements are prescribed, when morphing highly stretched
boundary layer meshes and especially, when a straight-sided high-order mesh is
highly curved to match a prescribed curved boundary. This is so since the tra-
jectory between the piecewise straight-sided boundary and the curved boundary
could feature invalid curved boundary elements on the intermediate stages.

These issues can be alleviated by iteratively refining the initial straight-sided
mesh around the problematic boundary elements, until the mesh morphing pro-
cedure is successful. However, this could lead to non-desired additional human
interaction. Accordingly, the main goal of this work is to propose a novel incre-
mental mesh morphing formulation that automatically addresses the previous
issues. To this end, we consider a continuous morphing problem that consists
on transforming an initial domain to a deformed one by means of an invert-
ible mapping. Specifically, we minimize the distortion of such mapping, while
constraining the boundary values to the prescribed morphing condition.

To solve this continuous problem, we apply the augmented Lagrangian method
in Hilbert spaces, see [23–25]. In this method, the boundary condition is intro-
duced into the target functional in a weak sense by means of a penalty parameter
and the corresponding Lagrange multipliers. The main idea of the augmented
Lagrangian method is to solve a series of non-linear unconstrained problems
with larger penalty parameters and successive approximations of the Lagrange
multipliers. In each non-linear problem, the boundary constraint is further ap-
proximated, while keeping a valid mapping.

The second contribution is to introduce a weight function in order to in-
crease the quality of the morphing mapping. The weight function assigns an
importance to the different regions of the domain. Thus, low-quality regions
are associated to high weights. Nevertheless, the weight function is not known
a priori. Hence, we propose an iterative process at each step of the augmented
Lagrangian procedure to approximate it. The main idea is to compute the
weight function using the evolution of the distortion of the morphing mapping
during the optimization process. Thus, while the augmented Lagrangian formu-
lation deforms the domain to accommodate the boundary condition, the weight
function is modified in order to improve the quality of the mapping.

The discretization of the continuous augmented Lagrangian formulation leads
to a methodology to morph linear and high-order meshes. The proposed method-
ology has several advantages. The mesh boundary is not fixed during the opti-
mization process since it is driven by the penalty parameter and the Lagrange
multipliers. Thus, similarly to other incremental moving methods, the bound-
ary condition is only satisfied at the end of the optimization process. However,
it is worth pointing out that in our method we do not impose the trajectory
of the boundary nodes during the deformation process since it is automatically
computed by the augmented Lagrangian method. Moreover, since the mesh is
valid during the whole minimization, it is not necessary to feature untangling
capabilities. We propose to use a global non-linear solver, in which the nodes of
the mesh are moved at the same time. To this end, we use a backtracking line-
search method [26] in which the descent direction is computed using Newton’s
method and the step length is selected according to the Armijo rule. We point
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out that to perform Newton’s method we use the analytical derivatives of the
objective function.

This work improves in several aspects our previous method proposed in [27].
The mesh morphing problem is now derived from a continuous problem of do-
main deformation. Accordingly, we use an augmented Lagrangian technique in
Hilbert spaces. Moreover, the newly introduced weight function allows obtain-
ing deformed meshes with higher quality and to improve the robustness of the
non-linear solver. The main reason is that quality is not only increased in the fi-
nal mesh, but also in the intermediate steps of the optimization process. Finally,
new and more complex examples are considered, that show the application of
the proposed methodology in several test cases.

The rest of the paper is structured as follows. In Section 2, we review the
existing literature related to the presented work. In Section 3, we formulate the
constrained minimization problem using the augmented Lagrangian method.
Next, in Section 4 we detail the implementation of the method. In Section
5, we present several examples to show the features of the proposed method.
Finally, in Section 6, we detail the conclusions and the future work.

2. Related Work

In several applications, mesh untangling and smoothing can be required to
repair invalid elements and improve the overall mesh quality when applying a
mesh morphing technique. In these cases, the boundary nodes are displaced to
new positions, and it is necessary to recover a new mesh composed of valid el-
ements. There are different formulations to define a mesh morphing technique.
For instance, in the solid mechanics approach, the mesh is moved using linear
or non-linear elasticity analogies [3–9]. Other approaches consist on minimizing
an objective function that measures a quantity of interest of the mesh, such as
the mesh distortion [10, 11, 18, 28], the minimum Jacobian of the iso-parametric
mapping [16], or by formulating a variational minimization problem [21]. Fi-
nally, it is possible to define the mesh morphing process in terms of a PDE
[20]. In all these approaches, it is necessary to fix the positions of the boundary
nodes in order to satisfy the prescribed mesh morphing displacement. Usually,
the morphing displacement is introduced as a boundary condition for the mesh
morphing problem. In the most common approach, the positions of the bound-
ary nodes are fixed, and then, the locations of the inner nodes are computed
accordingly. However, when the boundary nodes are displaced in the initial step,
invalid elements may appear, and they could hinder the convergence of the mesh
morphing method, especially when complex geometries or non-uniform element
sizes are present.

In reference [29], the authors propose to solve a constrained minimization
problem in which the constraint is the final positions of the boundary nodes. To
this end, they apply a penalty method to solve a series of optimization problems
to enforce the constraint. Other approaches first project the boundary nodes
to the CAD model, and then pose an unconstrained minimization problem in
which the boundary nodes can slide along the geometric entity they belong
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to [15, 16, 30, 31]. In this case, the imposition of the boundary condition is
more flexible than prescribing a fixed nodal value. The only requisite is that
the boundary nodes are located on the required geometric entity. In [17], the
authors combine a mesh curving technique with a geometric accuracy measure
into a single functional. The boundary nodes are free to slide along the geometric
entities taking into account the geometric accuracy.

In reference [32], the authors introduce a geometric accuracy measure, and
it is later combined with a mesh curving technique in [33]. In this approach, all
the nodes of the mesh are free to move in the space, while the boundary nodes
take into account the geometric error. In the proposed optimization process, the
geometric accuracy term is treated as a boundary condition of the mesh curving
problem by means of a penalty method. In this approach, the boundary nodes
are not restricted to move along the geometric model. Instead, the boundary
mesh approximates the CAD model in a weak sense.

References [5, 6, 8, 20, 34] propose an incremental displacement of the bound-
ary nodes from the initial positions to the target ones. In this manner, inverted
elements may not appear, and the optimization process is more robust. To this
end, the optimization method tries a full step to the target positions. If the
optimization process fails, the step is reduced until the optimization converges.
This approach is iterated until the final positions of the nodes are reached.

In incremental stepping methods, invalid intermediate boundary configura-
tions might appear hampering the capability to recover a valid volume mesh.
This is not the case with our method, since the boundary conditions are weakly
imposed, and we penalize the appearance of inverted elements during the opti-
mization process. To avoid the appearance of invalid boundary configurations
it is also possible to constrain the boundary nodes to move on top of the CAD
entities and incorporate untangling capabilities [15, 17, 35]. On the contrary, in
this work, the boundary nodes are not constrained to be on top of the bound-
aries, and we do not need untangling capabilities. There are other methods,
proposed for linear meshes, where the boundary condition is incorporated in
the minimization functional [12, 22, 29]. However, these approaches do not
use an augmented Lagrangian formulation to incrementally impose the bound-
ary conditions as proposed herein. Furthermore, we have checked our method
not only for large displacements, but for non-uniform sizing, highly stretched
elements, and curved high-order meshes.

3. Formulation of the Optimization Process

In this section, we first formulate a constrained minimization problem for
mesh morphing, Section 3.1. Then, we detail the augmented Lagrangian contin-
uous framework to impose the desired boundary constraint, Section 3.2. Finally,
in Section 3.3 we state the optimization framework for a piece-wise polynomial
discretization of the domain.
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3.1. Continuous framework

Given an initial domain, ΩI ⊂ Rn, we want to characterize a morphed do-
main, ΩP ⊂ Rn, in terms of a diffeomorphism φ∗ from ΩI to ΩP . To this
end, we seek a diffeomorphism in the Hilbert space

[
H1(ΩI)

]n
, the space of

square-integrable vector functions with square-integrable gradients. The dif-
feomorphism φ∗ has to satisfy the morphing boundary condition, and feature
optimal point-wise distortion [28]. Herein we consider,

φ∗ = argmin
φ∈[H1(ΩI)]n

‖Mφ‖2ω,

T (φ∗) = gD, ∀y ∈ ∂ΩI , (1)

where gD is a known and fixed Dirichlet boundary condition in the Hilbert space[
L2(∂ΩI)

]n
, and the weighted norm ‖f‖ω is

‖f‖2ω =

∫
ΩI

ω f · f dΩ,

being ω a positive weight function. Note that φ and gD are mappings that go
from the undeformed configuration to the morphed configuration. Thus, the
input are the coordinates in the undeformed configuration, ΩI , and the output
are coordinates of the morphed configuration, ΩM .

The point-wise distortion measure, Mφ∗, is defined in terms of the shape
distortion measure for linear simplices [10, 36] as

Mφ(y) = η(Dφ(y)) =
|Dφ(y)|2

nσ(Dφ(y))2/n
, (2)

where Dφ is the Jacobian of φ, σ(·) is the determinant, n is the space dimension
and | · | =

√
(·, ·) is the Frobenius norm of matrices. The point-wise distortion

measure is equal to one when the mapping φ is locally a rotation, a translation
or a scaling, and it is equal to infinity when the determinant of the mapping
Jacobian is zero.

Nevertheless, the shape distortion measure presents finite values when the
determinant is negative. This would lead to meshes with inverted elements. To
solve this issue, we propose to regularize the shape distortion measure as

η0(Dφ(y)) =
|Dφ(y)|2

nσ0(Dφ(y))2/n
, (3)

where

σ0(Dφ(y)) =
1

2
(σ + |σ|) . (4)

In this manner, when the determinant is negative, the point-wise distortion
takes a value of infinity, and when the determinant is positive, the point-wise
distortion takes a finite value.
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3.2. Continuous augmented Lagrangian framework

In this section, we deduce an augmented Lagrangian formulation [23–25] to
solve the optimization problem (1). First, we rewrite the morphing problem as
the following constrained optimization

min
φ∈[H1(ΩI)]n

E(φ) = ‖Mφ‖2ω

subject to:

T (φ) = gD,

where T :
[
H1(ΩI)

]n → [
L2(∂ΩI)

]n
is the trace operator. The objective of

the weight function ω is to give more importance to regions of high distortion
in order to obtain a high quality mapping. In Section 4.1, we discuss how to
select the weight function. We have introduced a merit function that measures
the distortion of mapping φ and thus, the constrained minimization problem
consists on minimizing the mapping distortion while fixing the boundary values.

The idea of the augmented Lagrangian method is to define a new functional
that takes into account the merit function (distortion) and the constraint (target
boundary displacement). Then, a series of optimization problems is solved to
enforce the constraint. Specifically, the new functional to minimize is

Eλ,µ(φ) = ‖Mφ‖2ω − (λ,T (φ)− gD)∂ΩI
+

1

2
µ‖T (φ)− gD‖2∂ΩI

, (5)

where µ ≥ 0 is a real parameter, and λ ∈
[
L2(∂ΩI)

]n
is an approximation of

the Lagrange multipliers associated to the constraint. Note that (·, ·)∂ΩI
and

‖·‖∂ΩI
are the scalar product and the norm of

[
L2(∂ΩI)

]n
, respectively, defined

as:

(f ,g)∂ΩI
=

∫
∂ΩI

f · g dΓ, ‖f‖∂ΩI
= (f , f)

1/2
∂ΩI

.

The augmented Lagrangian functional in Equation (5) is composed of three
terms. The first one is the original target function while the second one is re-
lated to the Lagrange multipliers. These two terms define the Lagrangian of
the constrained minimization problem. Nevertheless, to solve the constrained
minimization problem using the Lagrangian it is necessary to solve a non-linear
saddle-point problem taking into account the original unknowns and the La-
grange multipliers. To address this issue, the augmented Lagrangian method
introduces an additional penalty term. Note that the Lagrange multipliers, λ,
and the penalty, µ, are parameters of the problem, and no additional unknowns
are introduced. Instead of solving one non-linear saddle-point problem with
additional unknowns, we solve a series of non-linear problems with the original
unknowns. During the optimization process the penalty parameter is increased
in order to enforce the boundary condition, and the Lagrange multipliers are
successively approximated in order to limit the growth of the penalty parameter.

Algorithm 1 details the proposed augmented Lagrangian method adapted
for domain morphing with prescribed boundary condition. The input of the
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Algorithm 1 Continuous augmented Lagrangian method.

Input: ΩI , gd, δ
∗ ,ε∗, µ0, ω0, ε0

Output: Mapping φ∗

1: function meshOptimization

. Variables initialization
2: φ0 ← Id
3: λ0 ← 0
4: ω0 ← 1
5: m0 ← 10
6: m1 ← m0, µ1 ← µ0

7: δ1 ← δ0, ε1 ← ε0

. Augmented Lagrangian main loop
8: while ‖T (φk)− gD‖∂ΩI

> ε∗ and ‖∇Eλk,µk
(φk)‖ΩI

> δ∗ do

. Optimize Functional (5), see Section 4
9: φk+1 ← optimizeFunction(φk, λk, µk, ωk, δk)

. Update augmented Lagrangian parameters
10: if ‖T (φk+1)− gD‖∂ΩI

≤ εk then . Update Lagrange multipliers
11: λk+1 ← λk − µk(T (φk+1)− gD)
12: mk+1 ← mk

13: µk+1 ← µk
14: εk+1 ← εk/m

0.9
k+1

15: δk+1 ← δk/µk+1

16: else . Update penalty parameter
17: λk+1 ← λk
18: mk+1 ← 100mk

19: µk+1 ← µ0/(m0/mk+1)
20: εk+1 ← ε0/(m0/mk+1)0.1

21: δk+1 ← δ0/(m0/mk+1)
22: end if
23: end while
24: end function

algorithm is an initial domain, ΩI , the tolerances for optimization of the non-
linear objective function and the boundary condition, δ∗ and ε∗, respectively,
and the parameters of the augmented Lagrangian method. The algorithm stops
when a solution is found that satisfies

‖T (φk)− gD‖∂ΩI
≤ ε∗ and ‖∇Eλk,µk

(φk)‖ΩI
≤ δ∗.

We initialize φ0 to the identity mapping, Id. Note that the identity mapping
is optimal with respect to the distortion measure. However, it does not satisfy
the boundary constraint. We also set the initial weight function, ω0 to one.
This weight function will be updated to take into account the elements of worse
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quality. Then, we initialize the multipliers in Line 3, the penalty parameter
in Line 6, and the tolerances to check the evolution of the non-linear problem
and the constraint in Line 7. Lines 8–23 define the main loop of the augmented
Lagrangian method. This loop is performed until the stopping criteria are satis-
fied. In Line 9, we optimize functional (5) using the current λ and µ parameters,
using φk as initial condition, and using the current weights, ωk to compute the
distortion measure of the mapping φk. In Section 4.1, we detail the algorithm
to optimize functional (5), and to update the weight function. Then, we update
the values of λ and µ according to the current value of the constraint norm. If
the constraint norm is small enough, Line 10, we update the values of λ, keep
the value of µ, and tighten the tolerances. On the contrary, if the constraint
norm is too high, Line 16, we increase the value of µ, keep the current value of
λ, and tighten the tolerances accordingly.

Note that the only unknown of functional (5) is the mapping φ, while λ
and µ are parameters that are selected according to the augmented Lagrangian
method, see Lines 10–22. Moreover, the weight function is updated using an
explicit formula, see Section 4.1. Thus, when we apply the proposed augmented
Lagrangian technique, we have not included additional unknowns to the original
constrained minimization problem.

The stopping condition of the augmented Lagrangian method, Line 8, in-
volves two norms. The first one, ‖T (φk)− gD‖∂ΩI

, is an L2 norm of functions.
The second one, ‖∇Eλk,µk

(φk)‖ΩI
, is the H1 norm of the H1 gradient of the

functional Eλk,µk
evaluated at φk.

In Algorithm 1, the exponents 0.9 and 0.1, Lines 14 and 20, respectively,
and the scaling factor in the update of m, Line 18, are chosen according to
[24, 26]. In particular, these values are set up to control the increase of the
penalty parameter and the decrease of the convergence tolerances for the non-
linear solver.

3.3. Problem discretization

The proposed augmented Lagrangian formulation is devised to solve a con-
tinuous morphing problem by performing a series of minimization problems of
the functional (5). If we want to apply this methodology to the corresponding
discrete mesh morphing problem, we need to discretize the functional. To this
end, we assume that the initial domain, ΩI , is approximated by a mesh, MI ,
and that the final mesh,MP , is defined in terms of a homeomorphism, φ∗h ∈ U ,
where

U =
{
u ∈ C0(MI ,Rn) such that u|eI ∈ [Pp (eI)]

n ∀eI ∈MI

}
,

and Pp (eI) is the space of polynomials of degree at most p over the element
eI . Note that we enforce the continuity of mapping φ∗h in order to obtain a
conformal mesh. Thus, the discretized version of the augmented Lagrangian
functional becomes

Eλh,µ(φh) = ‖Mφh‖2ωh
− (λh,T (φh)− gD)∂MI

+
1

2
µ2‖T (φh)− gD‖2∂MI

, (6)
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being the weighted norm ‖Mφh‖ωh

‖Mφh‖2ωh
=

∑
eI∈MI

∫
eI

ωh (Mφh)2 dΩ, (7)

where ωh is an element-wise constant weight function, T : U → V is the trace
operator, λh ∈ V is the discretization of the Lagrange multipliers associated to
the constraint, and

V =
{
v ∈ C0(∂MI ,Rn) such that v|fI ∈ [Pp (fI)]

n ∀fI ∈ ∂MI

}
,

being Pp (fI) the space of polynomials of degree at most p defined over the
boundary face fI . Note that we approximate the Lagrange multipliers using
polynomials of the same degree as the physical mesh. The scalar product,
(·, ·)∂MI

, and its associated norm, ‖ · ‖∂MI
, are defined as

(f ,g)∂MI
=

∑
fI∈∂MI

∫
fI

1

h
f · g dΓ, ‖f‖∂MI

= (f , f)
1/2
∂MI

being fI the elemental faces that are located at the boundary of the mesh, and
h a measure of the boundary face size. By taking into account the element size
of the boundary elements in the boundary integrals, we balance the distortion
and the constraint contributions in the discretized version of the augmented
Lagrangian functional. In our work, we use the in-radius as the element size.

Note that φh is expressed in terms of the physical nodes as follows

φh =

nN∑
i=1

xiNi,

where nN is the number of nodes in the mesh, and {Ni}i=1,...,nN
is a Lagrangian

basis of element-wise polynomial shape functions continuous at the element
interfaces. Thus, the augmented Lagrangian functional only depends on the
positions of the physical nodes:

Eλh,µ(φh) = Eλh,µ(x1, . . . ,xn).

For this reason, the optimization of the discrete functional in Equation (6) can
be interpreted as computing the positions of the mesh nodes in the morphed
configuration.

Similarly to the continuous case, the update of the Lagrange multipliers in
the discrete version of the augmented Lagrangian is performed as

λh,k+1 = λh,k − µ (T (φh,k)− gD) . (8)

Note that the Lagrange multipliers, λh, are expressed as

λh =

mN∑
j=1

λjN
b
j ,
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where mN is the number of boundary nodes, and {N b
j }j=1,...,mN

is a Lagrangian
basis of element-wise polynomial shape functions continuous at the element
interfaces, defined at the boundary of the mesh. Accordingly, the Lagrange
multipliers are determined by the boundary nodal values and, can be updated
by evaluating Equation (8) at each node of the boundary mesh.

In the discrete case, the stopping condition of the augmented Lagrangian
method also involves two norms. Since the term ‖∇Eλk,µk

(φk)‖ΩI
is only used

in the stopping condition, we approximate it by evaluating the Euclidean norm
of the residual vector. We approximate it to avoid the computation of the H1

gradient of the functional Eλk,µk
. The term ‖T (φk) − gD‖∂ΩI

is evaluated as
the L2 norm of functions.

4. Implementation of the Augmented Lagrangian Optimization Frame-
work

In this section, we detail the specific implementation of the optimization
framework developed in this work. First, in Section 4.1 we explain the imple-
mentation of the optimization framework, specifying the computation of the
elemental weights required during the process. Second, in Section 4.2, we il-
lustrate the features of the chosen elemental weights by optimizing an example
featuring a large displacement of a sphere.

4.1. Implementation of the optimization process

In this work, the weight function ωh in Equation (7) is discretized using an
element-wise constant function. In particular, we have that

‖Mφh‖2ωh
=

∫
MI

ωh(Mφh)2 dΩI =
∑
e∈MI

ωe
∫
e

(Mφh)2 dΩI ,

being ωe a constant weight over the element e. That is, the contribution of each
element into the target function takes into account the elemental weight. In this
manner, it is possible to increase the mesh quality by increasing the weight of
the low-quality elements. Nevertheless, it is not possible to know a priori which
elements will have the lowest quality. Thus, we propose an iterative process
to estimate the value of the elemental weights. This process is performed at
each step of the augmented Lagrangian method, see Line 9 in Algorithm 1. The
objective is to optimize the discrete functional in Equation (6) and, at the same
time, update the values of the elemental weights. To this end, we define the
distortion measure of an element [37], herein named ηe, as

ηe =

√∫
e

(Mφh)2 dΩ√∫
e

1 dΩ

. (9)
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Using the elemental distortion, we update the value of the elemental weight, ωeh,
in two steps. An initial value is computed as

ω̂e = max
{
ωe, eα(ηe−1)

}
, (10)

where α is a parameter that controls the behavior of the weights. In our imple-
mentation, we use α = 3. However, if the new values of the weights are too high,
instabilities in the non-linear solver and in the augmented Lagrangian method
may be introduced. Thus, we limit the increment of the elemental weights in
the following manner

ωe = min
{
βωe, ω̂e

}
, (11)

where, herein, we use β = 1.25. That is, we limit the increment of the ele-
mental weights to 25%. The weights are devised in such a way that they are
non-decreasing, and to take into account the evolution of the distortion of the
corresponding element. If at some point of the optimization an element gets
highly distorted, its associated weight will be high.

The values of the α and β parameters have been chosen empirically and
according to the following reasoning. The α parameter relates the elemental
weight with the element quality. As α increases, so does the elemental weight
and therefore, the element quality at the end of the optimization process will
be higher. However, large values of α may hamper the convergence of the non-
linear solver. The β parameter limits the variation of the elemental weights
in successive iterations. If the variation of the elemental weights is too large,
instabilities in the non-linear solver might be introduced and therefore, the non-
linear solver might diverge.

The proposed iterative process to optimize functional (6) while estimating
the weight function is described in Algorithm 2. The input data is the current
value of mapping φh, λh and µ, the tolerance of the non-linear solver, δ, and an
initial value of the elemental weights, ωh. Lines 2 to 9 define the main loop of
the function. This loop is iterated until the stopping criterion is satisfied. That
is, until

‖∇Eλh,µ(φh)‖ < δ.

In Line 3, we optimize the discretized functional using a backtracking line-search
method in which the advancing direction is selected using Newton’s method, and
the step length is set according to Armijo rule [26]

Eλh,µ(xk + αkpk) ≤ Eλh,µ(xk) + cαkpk · ∇Eλh,µ(xk + αkpk),

where αk is the step length, pk is the advancing direction and c = 10−4, ac-
cording to [26]. This rule ensures that the decrease in the objective function is
proportional to the step length and the gradient of the objective function. The
linear systems related to the Newton’s method iterations are solved using the
GMRES [38] iterative method with restart every 200 iterations and a relative
tolerance of 10−9. The linear systems are preconditioned using an incomplete
LU decomposition [39]. In the case of linear meshes, we use one level of fill-in,
ILU(1), while in the high-order case, we use two levels of fill-in, ILU(2).
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Algorithm 2 OptimizeFunction

Input: φh, λh, µ, ωh, δ
Output: Mapping φh

1: function optimizeFunction

. Main iteration loop
2: while ‖∇Eλh,µ(φh)‖ > δ do

. Optimize function using Newton backtracking line-search
3: φh ← NewtonBackTracking(Eλh,µ, δ)

. Update elemental weights
4: for e ∈MI do
5: ηe ← getElementDistortion(e)
6: ω̂e ← max{ωe, eα(ηe−1)}
7: ωe ← min{βωe, ω̂e}
8: end for
9: end while

10: return φh
11: end function

Then, we perform a loop over the elements of the mesh in order to update the
corresponding elemental weights according to the formulas presented in Equa-
tions (9), (10) and (11), see Lines 5 to 7. Since the weight function is modified
at each iteration, the convergence criterion in Line 2 has to be checked until it is
satisfied. That is, when the weight function is modified, the functional gradient
is also modified. Thus, the process is iterated until the weight modification does
not induce a large modification in the functional gradient.

Our method is devised to favor that at each optimization step, a valid mesh
is deformed to a valid mesh. To this end, two main ingredients have been
considered. First, functional (6) penalizes inverted elements by taking an infinite
value. Second, we have incorporated a backtracking line search to Newton’s
method. Thus, if a Newton full step was deforming a valid mesh to an invalid
mesh, the backtracking line-search would decrease the step length to recover a
valid mesh.

4.2. Behavior of the weight function: 3D spherical domain

The objective of this example is to show the effect of the weights in the
formulation in order to obtain better quality meshes. To this end, we solve a
mesh morphing problem in which we apply a large displacement to an inner
spherical boundary. Figure 1a shows the initial mesh, composed of 14361 tetra-
hedra and 2642 nodes. The inner radius is 1 unit, the outer radius is 21 units,
and the applied displacement of the inner sphere is 15 units. Figure 1b shows
the final mesh when the weights are considered equal to one during the whole
optimization process. Note that low-quality elements are present around the
displaced sphere. Figure 1c is optimized using the proposed approach in which
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(a)

(b) (c)

Figure 1: Cut view of the initial mesh around a sphere: (a) initial mesh; and final mesh for
(b) constant and (c) non-constant weight function.

we estimate a weight function with higher values in regions in which low-quality
elements are present. Note that in this case, the movement of the nodes is dis-
tributed in a larger region than in the first case. Thus, the minimum quality of
the mesh is increased from 0.06 to 0.38.

Figure 2a presents the evolution of the constraint norm through the iterations
of the augmented Lagrangian method. In dashed line, we depict the case when
the weights are constant and equal to one, and in solid line we depict the case
when using non-constant weights. Note that in both cases the constraint norm
presents similar behavior. In all the iterations the constraint norm decreases
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(a) (b)

Figure 2: (a) Evolution of the constraint norm against the iterations of the augmented La-
grangian solver; and (b) evolution of the minimum element quality over the iterations of the
augmented Lagrangian solver.

and in four iterations the augmented Lagrangian method converges.
Figure 2b shows the evolution of the minimum element quality over the

iterations of the augmented Lagrangian method. In both cases, at the first
iteration the element quality decreases and in the next iterations the minimum
quality remains constant. Nevertheless, using the proposed elemental weights
it is possible to increase the minimum element quality.

To obtain the final results, both cases have taken four augmented Lagrangian
iterations. In the case of constant weight function, the optimization takes 27
seconds, while the case with non-constant weight function takes 44 seconds.
This difference comes from the number of non-linear problems that are solved.
In the case of constant weight function, each augmented Lagrangian iteration
leads to a single non-linear problem. However, in the case of the non-constant
weight function, twelve non-linear problems are solved in total. Although there
are three times more non-linear problems, in the case of constant weight function
there are 66 linear problems to be solved, while in the case of the non-constant
weight function, there are 97. Note that the ratio of linear solves per second is
roughly the same for the two cases.

5. Examples

This section presents several examples to show the capabilities of the pre-
sented mesh morphing method. Note that the presented examples are devised
to stress the proposed augmented Lagrangian formulation. Specifically, we il-
lustrate the intermediate boundary configurations for a two-dimensional mesh
morphing problem, Sec. 5.1, an algorithmic scalability analysis of the proposed
method, Sec. 5.2, a high-order mesh curving for highly stretched elements, Sec.
5.3, a large displacement of an aircraft, Sec. 5.4, and a large rotation of a
propeller, Sec. 5.5.
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To generate the initial meshes, we have used Pointwise [40]. The mesh
morphing framework has been implemented in Python [41] using the FEniCS
[42] and petsc4py [43] libraries. The optimization process has been performed
in a Dell XPS 15 9560, with an Intel Core i7-7700HQ CPU at 2.80 GHz and
16 GB of RAM memory. All the examples have been executed using only one
processor.

In all the examples we use the relative element quality, qe defined in terms
of the elemental distortion defined in Equation (9)

qe =
1

ηe
.

The relative element quality takes values between zero for inverted elements to
one for ideal elements. In all the examples we define the mesh quality as the
minimum element quality.

5.1. Illustrating intermediate boundary configurations

In this example we show a two-dimensional case in which we apply a rotation
of 120 degrees to the inner circles of the mesh in Figure 3a. The mesh is
composed of 2466 linear triangles and 1318 nodes. We apply the proposed
augmented Lagrangian formulation to perform the mesh morphing, and we show
several stages of the deformation in Figures 3b, 3c and 3d. The displacement
of the inner circles in the intermediate stages is automatically obtained by the
method. Note that this displacement is neither a linear homotopy between
the initial and the final positions, nor an incremental rotation between zero
and 120 degrees. The method automatically detects the number of stages to
fulfill the boundary constraint. In this case, the augmented Lagrangian solver
is performed in seven iterations and takes 8.30 seconds.

Figure 4a shows the evolution of the norm constraint over the iterations of
the augmented Lagrangian method. In this case the norm of the constraint
monotonically decreases and in seven iterations the method converges. Figure
4b shows the evolution of the minimum element quality during the iterations
of the augmented Lagrangian method. In the first iterations, the element qual-
ity diminishes in order to accommodate the large displacement of the boundary.
Once the boundary condition is sufficiently reproduced and the boundary move-
ment is small, the minimum element quality does not decrease. That is, in the
last iterations the error in the boundary condition is further reduced without
hampering the element quality. In the last iteration, the minimum element
quality is 0.34, while the norm of the constraint is 2 · 10−8.

5.2. Mesh independence of augmented Lagrangian iterations

The goal of this example is to show that the number of augmented La-
grangian iterations seems to remain almost constant for different mesh resolu-
tions. To provide more information, we also include the number of Newton’s
method and GMRES iterations, and the total CPU time. Nevertheless, it is not
our goal to conclude any type of scalability result for the total CPU time since
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(a) (b)

(c) (d)

Figure 3: Initial, intermediate and final mesh configurations for a 120 degrees mesh morphing
rotation. (a) First stage; (b) second stage; (c) third stage; and (d) last stage.

better pre-conditioners will need to be investigated. To this end, we generate a
series of linear meshes for the exterior domain of a sphere. In each mesh, we ap-
proximately multiply by four the number of elements and the number of nodes
of the previous mesh. The domain is defined by an inner sphere and an outer
sphere of radius 1 and 21, respectively. The element size on the inner sphere is
ten times smaller than the element size on the outer sphere. In this example,
we apply a displacement of eight units to the inner sphere. The main objective
is to measure several quality and computational cost indicators to analyze the
scalability of proposed augmented Lagrangian technique.
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(a) (b)

Figure 4: (a) Evolution of the constraint norm against the iterations of the augmented La-
grangian solver; and (b) evolution of the minimum element quality over the iterations of the
augmented Lagrangian solver.

Table 1: Scaling results for the spherical meshes.

min AL non-lin lin GMRES time per
nodes quality its. solves solves its. time (s) its and nodes
3380 0.558 6 7 16 356 13.70 1.14 · 10−5

13522 0.575 6 8 16 531 60.47 8.42 · 10−6

50691 0.572 5 7 16 731 245.81 6.63 · 10−6

213340 0.559 5 7 17 1198 1129.70 4.42 · 10−6

Table 1 shows the number of elements and nodes, the minimum element
quality, the number of augmented Lagrangian iterations, the number of non-
linear and linear solves, the number of GMRES iterations, and the optimization
time (seconds) to obtain the final mesh. We obtain similar minimum qualities,
approximately 0.56, for all the meshes of the analysis. Moreover, the number
of augmented Lagrangian iterations, the number of non-linear solves and the
number of linear solves is roughly the same for all the test cases. Nevertheless,
the number of GMRES iterations increases with the mesh size.

Figure 5 shows the distribution of linear and non-linear solves during the
augmented Lagrangian iterations. Each square denotes a linear solve, corre-
sponding to an iteration of the non-linear solver. Furthermore, the groups of
linear solves within thick lines denote a non-linear solve, corresponding to the
iterations that approximate the elemental weights. Finally, each iteration of the
augmented Lagrangian is depicted with different colors. Note that there are
augmented Lagrangian iterations in which only one non-linear solve is needed
to approximate the weights, and other iterations with more than one non-linear
solve. These iterations correspond to the ones in which the element quality de-
creases because of the current boundary displacement and thus, the elemental
weights have to be increased to enhance element quality. Note that the be-
havior of the proposed augmented Lagrangian formulation is similar for all the
presented meshes. Not only the number of linear solvers is roughly the same,
but also number of linear solvers for each non-linear solver.
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Figure 5: Distribution of linear and non-linear solves during the augmented Lagrangian it-
erations. Each square denotes a linear solve, corresponding to an iteration of the non-linear
solver. The groups of linear solves within thick lines denote a non-linear solve, and each
iteration of the augmented Lagrangian is depicted with different colors.

(a) (b)

Figure 6: (a) Computational time to solve the optimization process against the number of
nodes; and (b) number of GMRES iterations against the number of nodes.

Figure 6a shows the computational time in seconds to obtain the final mesh
against the number of nodes of each mesh. Note that at each step, the number
of nodes is roughly increased by a factor four, and the time to obtain the final
mesh is also roughly increased by a factor four. In this case, the time scaling is
proportional to n1.05. In Figure 6b, we show the GMRES iterations to obtain
the final mesh against the number of nodes. The number iterations iterations
to obtain the final configuration increases roughly linearly with the number of
nodes. Although the number of iterations increases, by memory bandwidth
density, the cost per degree of freedom is improved when bigger is the mesh
until the point that the memory bandwidth is saturated.

Note that the objective of this work is not to obtain a scalable implemen-
tation of the proposed formulation. Nevertheless, the proposed augmented La-
grangian formulation leads to obtaining roughly the same number of linear sys-
tems to be solved, and a linear time scaling with the number of unknowns.

5.3. Curving highly stretched elements: sphere mesh of polynomial degree three

In this example, we show the application of the proposed method to curve
a high-order mesh with highly stretched elements. To this end, we generate a
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(a) (b)

Figure 7: Cut view of the curved high-order mesh around a sphere: (a) initial straight-sided
mesh; and (b) final curved high-order mesh.

tetrahedral mesh of polynomial degree three around a sphere of radius one, see
Figure 7a. We generate a boundary layer composed of 40 layers of elements, a
wall distance of 10−5, and a growth factor of 1.3. The first layer of elements
define a stretching ratio of 1 : 2 · 105. The whole mesh is composed of 6577
elements and 30147 nodes. Since the mesh is composed of elements of polynomial
degree three, there are 20 nodes for each element. We apply the proposed
augmented Lagrangian method in order to curve the initial straight-sided mesh
into a curved one, see Figure 7b.

Figure 8 shows the evolution of norm of the constraint, Figure 8a, and the
minimum element quality, Figure 8b, through the iterations of the augmented
Lagrangian solver. The augmented Lagrangian method has converged in five
iterations. After the first iteration, the norm of the constraint is of the order
of 10−8 and the minimum element quality is 0.87. In the next iterations, the
proposed augmented Lagrangian improves the element quality while the norm of
the constraint oscillates since the Lagrange multipliers are being approximated.
The whole process takes five iterations and, at each iteration, only one linear
problem is solved. Thus, in this example we have obtained a three-dimensional
curved high-order mesh with highly stretched elements by solving only five linear
problems. The whole process takes around 36 minutes.

5.4. Large displacement: aircraft

In this example we apply the proposed technique to apply a mesh moving to
an aircraft corresponding to the geometry provided by the 4th Drag Prediction
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(a) (b)

Figure 8: (a) Evolution of the constraint norm against the iterations of the augmented La-
grangian solver; and (b) evolution of the minimum element quality over the iterations of the
augmented Lagrangian solver.

(a) (b)

Figure 9: Cut view of the mesh around an aircraft. (a) Initial mesh and; (b) final mesh.

Workshop [44]. The length of the aircraft has been normalized to one unit, and
we apply a forward displacement of two units. Figure 9a shows a global cut
view of the initial mesh around the aircraft, while Figures 10a and 10c show
a horizontal and longitudinal cut view around the aircraft, respectively. The
mesh is composed of 153478 linear tetrahedra and 29766 nodes.

We apply the proposed optimization process to obtain the morphed mesh,
see Figure 9b. This mesh is composed of valid elements in which the minimum
quality is 0.33. Figures 10b and 10d show a detailed view of the aircraft mesh.
Note that the elements of lower quality are located around the aircraft, in order
to accommodate the large displacement of the mesh. That is, the elements in
the rear part of the aircraft are elongated while the elements in the frontal part
are compressed. Further away from the aircraft, there are high quality elements
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(a) (b)

(c) (d)

Figure 10: Detail of the cut view of the mesh around an aircraft: In rows, (a,b) horizontal
and (c,d) longitudinal cut views. In columns, (a,c) initial and (b,d) final meshes.

since the nodes are almost at their initial positions.
Figure 11 shows the evolution of norm of the constraint, Figure 11a, and the

minimum element quality, Figure 11b, through the iterations of the augmented
Lagrangian solver. The method has converged in six iterations and, after the
first iteration, the norm of the constraint is reduced to 10−4, and the minimum
element quality is around 0.05. During the next iterations, the proposed aug-
mented Lagrangian method improves the minimum quality while reducing the
norm of the constraint.

The whole process is performed in 60 minutes. We highlight that this ex-

22



(a) (b)

Figure 11: (a) Evolution of the constraint norm against the iterations of the augmented
Lagrangian solver; and (b) evolution of the minimum element quality over the iterations of
the augmented Lagrangian solver (b).

ample features a real test geometry with non-uniform element size and a large
deformation compared to the size of the aircraft. The element size along the
aircraft varies from 0.05 to 0.01. Note that the applied displacement is two hun-
dred times larger than the smallest element size. Thus, the element quality may
rapidly decrease as the aircraft is displaced. This leads to non-linear problems
that require numerous iterations to be solved.

5.5. Large rotation: propeller

In this example, we compare the results obtained by applying our method
using successive small rotations and only one large rotation. To this end, we
first rotate the mesh around a propeller, see Figures 12a and 12c, seventy-two
degrees in increments of one degree. Note that this angle corresponds to the
angle between two consecutive blades of the propeller. At each increment, we
solve the non-linear problem using the proposed augmented Lagrangian method.
Then, we compare the results by imposing one large rotation to the whole mesh.
The mesh is composed of 180167 linear tetrahedra and 32868 nodes.

At each step, the augmented Lagrangian method is initiated using the op-
timized mesh of the previous step. Nevertheless, note that the mesh quality is
computed taking into account the initial mesh. Similarly, the Lagrange multi-
pliers and the penalty parameter are initialized using the values of the previous
step. Figures 12b and 12d show the mesh at the end of the displacement process.

In Figure 13, we show the whole rotation process in increments of six degrees.
Note that the mesh accommodates the movement of the propeller in order to
obtain a valid mesh composed of high-quality elements. As the propeller rotates,
it drags the elements at the outer part of the mesh in order to obtain a valid
mesh.

Figure 14 shows the evolution of the minimum quality element along the
rotation process. At the first iteration, the minimum quality is one, and it
starts to decrease as the propeller rotates. Although in the first iterations the
mesh quality rapidly decreases, in the rest of the morphing process the minimum

23



(a) (b)

(c) (d)

Figure 12: Cut view of the mesh around a propeller: In rows, (a,b) horizontal and (c,d)
longitudinal cut views. In columns, (a,c) initial and (b,d) final meshes.

quality roughly remains constant. At the end of the morphing process, the worst
element has a quality of 0.40.

Note that in this example we have applied the rotation of the propeller in
small steps. Nevertheless, we have also morphed the mesh from the starting
position to the final one in one step. Thus, we apply the proposed formulation
to rotate the mesh around a propeller 72 degrees. The whole process takes four
augmented Lagrangian iterations, and nine non-linear solves. The final config-
uration is computed in 636 seconds. Figure 15 shows the final configuration of
the propeller by evolving the rotation in increments of one degree (15a), and
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by directly imposing the final configuration (15b). Note that both configura-
tions present similar results of the final mesh. The maximum difference between
corresponding nodes is 3.7 units, and the whole geometry measures 400 units.
Thus, the relative error between the two meshes is less than 1%. Furthermore,
the minimum element quality of both meshes is similar. In the case of sub-
stepping, the minimum quality is 0.4, while in the case of directly imposing the
final configuration, the minimum quality is 0.39.
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(c) (d)

(e) (f)

Figure 13: Intermediate rotation steps at increments of twelve degrees: (a) 12 degrees, (b) 24
degrees, (c) 36 degrees, (d) 48 degrees, (e) 60 degrees; and (e) 72 degrees.
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Figure 14: Evolution of the minimum element quality against the rotation angle.

(a) (b)

Figure 15: Comparison of the final configurations of the propeller by: (a) evolving the rotation
in steps of one degree; and (b) directly imposing the final position.
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6. Concluding Remarks and Future Work

In this work, we have proposed a new mesh morphing method by discretiz-
ing a constrained optimization problem solved with an augmented Lagrangian
formulation in Hilbert spaces. We introduce the boundary constraint into the
target functional in a weak sense, and the boundary condition is imposed au-
tomatically and gradually during the optimization process. We do not allow
invalid mappings during the optimization process and therefore, the method
does not need untangling capabilities. Thus, at each stage, we transform a
domain to another domain using an invertible mapping.

In order to distribute the distortion along the domain, we introduce a weight
function in the target functional. The main idea is to assign a higher weight
to areas with high distortion in the optimization process. In this manner, we
obtain higher quality mappings. Nevertheless, we need to introduce an iterative
process in order to estimate the weight function, since it is not known a priori.
In the proposed formulation, we explicitly target the volume mesh quality, and
we penalize inverted elements in order to have a valid mesh during the whole
optimization process. Thus, the boundary condition does not need to define
a valid boundary mesh for the process to obtain a valid final mesh. Never-
theless, in practical applications, since we update the boundary condition after
each penalty iteration, at some point of the optimization process the boundary
condition becomes valid. Therefore, the proposed method can be interpreted
as an incremental method in which the intermediate boundary positions are
automatically computed without the need to define valid boundary meshes.

The full optimization algorithm is composed of three nested loops. The outer
loop defines the augmented Lagrangian method. In this loop, we update the
values of the Lagrange multipliers and the penalty parameter. In the middle
loop, we estimate the weight function in order to obtain high-quality mappings
during the optimization process. Finally, the inner loop defines the backtracking
line-search non-linear solver, in which a series of linear problems are solved.

The discretization of the continuous problem defines a mesh morphing frame-
work with applications to mesh moving and high-order mesh curving. In the
examples, we have shown that the method handles three-dimensional cases with
non-uniform element size, large deformations, and high-order mesh curving with
highly stretched elements. Moreover, we have also shown that the number of
iterations to converge the augmented Lagrangian method does roughly not de-
pend on the element size.

We have shown in the examples that the constraint is reproduced with high
accuracy, and the nodes can be as close to the surface as prescribed through the
tolerance of the boundary condition. If desired, it is possible to project the nodes
to the target positions, although the error of reproducing the constraint may
increase. That is, interpolative conditions feature zero error at the interpolation
nodes, and non-zero residual at intermediate points.

Several examples have been performed to analyze the applicability and the
features of the proposed morphing approach. First, we have illustrated the
intermediate boundary configurations for a two-dimensional mesh morphing
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problem. Then, we have performed an algorithmic scalability of the proposed
method. Following, we have used the technique to curve a high-order mesh of
polynomial degree 3 on a sphere with elements with high stretching close to
the geometry. Finally, we have shown large deformations of an aircraft and a
propeller.

The main motivation of setting the augmented Lagrangian method in a
Hilbert space and then discretize the resulting minimization problem is to mit-
igate the influence of the mesh resolution in the number of required non-linear
solves. Note that the number of iterations to solve the continuous problem is
determined by the difficulty of the problem, the initial µ and its scaling fac-
tor. By solving the discretized version of the continuous problem we expect a
similar number of iterations of the augmented Lagrangian method since we are
approximating the solution of the continuous problem while measuring all the
terms with the adequate inner products and norms. Although we do not pro-
vide theoretical results on this reasoning, our numerical experiments on mesh
independence seem to support this claim.

Alternatively, we could have discretized Equation (1) to obtain a constrained
optimization problem defined in Rn, and then we would apply the augmented
Lagrangian method to this constrained optimization problem. Nevertheless, in
this manner, instead of considering the same inner products and norms of the
continuous problem, we would have used the discrete Euclidean scalar product
and norm in Rn. The differences of the inner products and norms would lead
to a different discrete problem where the number of non-linear solves would
increase with the mesh resolution.

In hyperelastic and optimization-based mesh curving frameworks, it is inter-
esting to ensure the existence of minimizers of the target functional. With this
objective in mind, it is sufficient to show that the target functional is polycon-
vex. That is, the target functional can be written using a convex function of
the sub-determinants of the input matrix, see [7, 9]. Note that this is the case
for our continuous functional and therefore, we ensure that the there exists a
minimizer of the functional. Not that the existence of minimizers does not imply
that the final mesh is valid if the mesh distortion allows inverted configurations.
To enforce feasible configurations, we regularize the shape distortion in such a
manner that is not modified for positive determinants of the Jacobian, and leads
to unbounded values for non-positive determinants of the Jacobian. Note that
a full step of Newtons method could lead to an invalid configuration with un-
bounded distortion and therefore, to enforce feasibility we equip the non-linear
solver with a backtracking line search procedure.

In all the examples, we have scaled the penalty parameter in each iteration
with a small enough factor to properly ensure the continuation of the bound-
ary condition. This enhances the convergence of the augmented Lagrangian
solver. If we were using larger scaling factors we would increase the number
of non-linear solver iterations and even the problem would not converge. We
have equipped the non-linear solver with a backtracking line search procedure
to improve the global convergence of the solver. Actually, this non-linear solver
has converged all the examples considered in this study. However, if the back-
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tracking line search procedure was disabled we would not able to converge some
of the examples. Although, we could have used a trust region method, we pre-
ferred the simplicity of the backtracking line-search approach. Nevertheless, it
might be interesting to perform a comparison between both globalization meth-
ods to contrast their robustness and computational cost for the mesh morphing
problem.

To avoid poor conditioning of the related linear systems, it is required to
start with a large enough penalty parameter to sufficiently enforce the boundary
displacement and small enough to avoid large matrix entries. Note that when
higher the polynomial degree and the mesh resolution are, larger is the condition
number. In practice, we avoid these issues by pre-conditioning with incomplete
LU factorizations with one or two levels of fill-in. As we have seen in the
mesh independence example, the number of GMRES iterations to solve a mesh
morphing problem increases with the mesh resolution. To improve the scaling of
the linear solver, we will investigate alternative combinations of iterative solvers
and pre-conditioners. Moreover, in the near future, we consider parallelizing the
code in order to improve the computational efficiency of the proposed method,
and be able to apply it to more computationally demanding mesh moving and
curving problems.

The main objective of this work is to propose a new mesh morphing and mesh
curving method suitable for low- and high-order meshes. The main difference
with other existing high-order mesh morphing and mesh curving methods is
that the proposed method automatically computes always valid intermediate
configurations. Thus, in our approach it is not necessary to include an initial
untangling stage to ensure valid high-order meshes. Nevertheless, other mesh
morphing and curving methods based on functional minimization might use a
similar augmented Lagrangian formulation to avoid the untangling stage. In
the future, it would be interesting to perform a comparison between different
mesh volume functionals using a similar augmented Lagrangian formulation.
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