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Abstract 

Background: Precision medicine is the Holy Grail of interventions that are 
tailored to a patient’s individual characteristics. However, conventional 
clinical trials are designed to find differences in averages, and interpreting 
these differences depends on untestable assumptions. Although only an ideal, 
a constant effect of treatment would facilitate individual management. A 
direct consequence of a constant effect is that the variance of the outcome 
measure would be the same in the treated and control arms. We reviewed the 
literature to explore the similarity of these variances as a foundation for 
examining whether and how often precision medicine is definitively required. 

Methods: We reviewed parallel clinical trials with numerical primary 
endpoints published in 2004, 2007, 2010 and 2013. We collected the baseline 
and final standard deviations of the main outcome measure. We assessed 
homoscedasticity by comparing the variance of the primary endpoint between 
arms through the outcome variance ratio (treated to control group). 

Results: The review provided 208 articles with enough information to 
conduct the analysis. One out of five studies (n = 40, 19.2%) had statistically 
different variances between groups, implying a non-constant-effect. The 
adjusted point estimate of the mean outcome variance ratio (treated to control 
group) is 0.89 (95% CI 0.81 to 0.97). 

Conclusions: The mean variance ratio is significantly lower than 1 and the 
lower variance was found more often in the intervention group than in the 
control group, suggesting it is more usual for treated patients to be stable. 
This observed reduction in variance might also imply that there could be a 
subgroup of less ill patients who derive no benefit from treatment. This 
would require further study as to whether the treatment effect outweighs the 
side effects as well as the economic costs. We have shown that there are ways 
to analyze the apparently unobservable constant effect. 

 

 

   



Introduction 

The goal of precision medicine is to develop prevention and treatment strategies that take into 
account individual characteristics. As Collins and Varmus stated, “The prospect of applying 
this concept broadly has been dramatically improved by recent developments in large-scale 
biologic databases (such as the human genome sequence), powerful methods for 
characterizing patients (such as proteomics, metabolomics, genomics, diverse cellular assays, 
and mobile health technology), and computational tools for analyzing large sets of data.” 
With this words in mind, US President Obama gave his strong endorsement in launching the 
2015 Precision Medicine initiative to capitalize on these developments 1, 2 . Here, we aim to 
quantify the proportion of interventions that may benefit from this idea. 

 

The fundamental problem of causal inference is that for each patient in a parallel group trial, 
we can know the outcome for only one of the interventions. That is, we observe their 
responses either to the new treatment or to the control, but not both. By experimentally 
controlling unknown confounders through randomization, a clinical trial may estimate the 
averaged causal effect. In order to translate this population estimate into effects for individual 
patients, additional assumptions are needed. The simplest and strongest one is that the effect 
is constant. Panels A and B in Figure 1 6– 15 represent two scenarios with a common effect in 
all patients, although it is null in the first case. Following Holland 16 , this assumption has the 
advantage of making the average causal effect relevant to each patient. All other scenarios ( 
Figure 1, Panels C to F) require additional parameters to fully specify the treatment effect. 



 

Figure 1. Scenarios representing fictional trials using 8 participants with 

systolic blood pressure as the primary endpoint. 

Because of the random allocation to one of two treatment arms, we 
will observe only one of the two potential outcomes for each patient: 
either under T or under C. Fully saturated colors represent observed 
systolic blood pressure (SBP) values, and transparent squares 
represent missing potential SBP values. The line slope indicates the 
individual non-observable effect for each patient. Densities are the 
potential distributions of the outcome in each group: As both 
random samples come from the same target population, the average 
causal effect is estimable without bias. Panel A shows the potential 
outcome values that we could obtain if there were not any treatment 
effect; as the intervention has no effect at all, both groups have the 
same distribution (i.e., mean and variance). Panel B shows the 
scenario of a constant effect, meaning that the intervention lowers 
the SBP by a single value in every patient and thus implying the 

No es pot v isualitzar la imatge enllaçada. Pot ser que s'hagi desplaçat o suprimit o que se n'hagi canviat el nom. Comproveu que l'enllaç apunta al fitxer i a la ubicació correctes.



same variability in both arms. For instance, the study from Duran-
Cantolla et al. 6 compared the 24-hour SBP in 340 patients 
randomized to either continuous positive airway pressure (CPAP) or 
sham–CPAP, and they observed a greater decrease of 2.1 mmHg 
(95% CI from 0.4 to 3.7) in the intervention group compared to the 
control group. Furthermore, baseline standard deviations (SDs) were 
12 and 11; and final SDs were 13 for both groups. Therefore, their 
results fully agree with the trial design’s assumption of a constant 
effect (scenario B) and nothing contradicts the inference that each 
patient exhibits a constant reduction of 2.1mmHg, although 
uncertainty from sampling  makes the results compatible with a 
constant effect that lies somewhere between 0.4 and 3.7. Panel C 
represents a situation with 2 different effects in 2 subpopulations 
(“treatment by subgroup interaction”). Although the effects are 
identical within them, the observable distribution in the treated arm 
would have higher variability. Here, finer eligibility criteria for 
classifying patients in those subpopulations might allow us to 
assume a constant effect again. In Panel D, the treatment has a 
variable effect in each patient, resulting also in greater variability 
within the treated arm but without any subgroup sharing a common 
effect. The results are poorly predictive about the effects on future 
patients. In the study by Kojima et al. 7 , the primary outcome 
measure was the 3-hour postprandial area under the curve of 
apolipoprotein B48, with outcome SDs being, respectively, 0.78 and 
0.16 in the treated and reference arms, thus showing an outcome 
variance ratio of 23.77. This is compatible with different treatment 
effects that could need additional refinements through precision 
medicine, since a greater variance in the treated arm indicates that 
“the interpretation of the main treatment effect is controversial” 8 . 
In that case, guidelines for treating new patients should be based 
either on additional eligibility criteria (“precision medicine”, panel 
C) or on n-of-1 trials (“individualized medicine”, panel D) 9– 13 . W. 
S. Gosset already highlighted this “treatment by patient interaction” 
in his 1908 paper, where he introduced the Student t-distribution 14 . 
Alternatively, interactions can result in smaller variances in the 
treated arm. Panel E shows a different effect in 2 subgroups; but the 
variability is now reduced, thus indicating that the best solution 
would be to identify the subpopulations in order to refine the 
selection criteria. In Panel F, the treatment again has a variable 
effect on each patient; but unlike Panel D, in this case the 
consequence is less variability within the treated arm. In the study 
from Kim et al. 15 , the primary endpoint was the PTSD Checklist–
Civilian Version (PCL-C). This scale is based on the sum of 17 
Likert-scale symptoms, ranging from 17 (perfect health) to 85 
(worst clinical situation). At the end of the trial, the respective 
outcome SDs were 16 and 3 for the control and treated arms, 
meaning that variance was reduced around 28 times. This situation 
can correspond to scenarios E or F, and it merits statistical 
consideration, that is beyond the scope of this paper. 



As an example, the 10 clinical trials published by the journal Trials in October 2017 
(Supplementary File 1: Table S1) were designed without explicitly allowing for an effect that 
was not constant within the study population. Furthermore, all their analyses intended to 
estimate just an average effect with no indication of any possible interaction with baseline 
variables ( Figure 1, Panels C and E), nor did they discuss any random variability for the 
treatment effect ( Figure 1, Panels D and F). Therefore, without further specifications, it 
seems that they were either hoping for the treatment effect to be the same for all patients or 
assuming that it was not useful to try and investigate this. As a contrary example, Kim et al. 
17 designed their trial to test an intervention for: 1) non-inferiority in the overall population 
and 2) superiority in the subgroup of patients with high epidermal growth factor receptor 
expression.  

The variability of a clinical trial outcome measure is relevant because it conveys important 
information about whether or not precision medicine is achievable. Does variance come only 
from unpredictable sources of patient variability? Or should it also be attributed to different 
treatment effects that require more precise prescription rules 3– 5 ? One observable 
consequence of a constant effect is that the treatment will not affect variability, and therefore 
the outcome variances in both arms should be equal (“homoscedasticity”). 

Below, we will elucidate whether the comparison of observed variances may shed some light 
on the non-observable individual treatment effect. 

Our objectives are, first, to compare the variability of the main outcome between arms in 
parallel randomized controlled trials published in medical journals; and, second, to provide a 
rough estimate of the proportion of studies that could potentially benefit from precision 
medicine. To assess the consistency of results, we also explore the evolution of the variability 
of the treated arm over time (from baseline to the end of the study). 

   



Methods 

Population 

Our target population was parallel, randomized controlled trials with numerical primary 
endpoint. The trials should provide enough information to assess two homoscedasticity 
assumptions in the primary endpoint: between arms at trial end; and baseline to outcome over 
time in the treated arm. Therefore, baseline and final SDs for the main outcome were 
necessary or, lacking those, we required at least one measure that would allow us to calculate 
them (variances, standard errors or mean confidence intervals). 

Data collection 

Using the Medline database, we selected articles on parallel clinical trials from the years 
2004, 2007, 2010 and 2013 with the following criteria: “AB (clinical trial* AND random*) 
AND AB (change OR evolution OR (difference AND baseline))” [The word “difference” was 
paired with “baseline” because the initial purpose of the data collection (although it was 
subsequently modified) was to estimate the correlation between baseline and final 
measurements]. The rationale behind choosing these years was to have a global view of the 
behavior of the studies over a whole decade. For the years 2004 and 2007, we selected all 
papers that met the inclusion criteria. However, we retrieved a greater number of articles 
from our search for the years 2010 and 2013 (478 and 653, respectively); therefore, we chose 
a random sample of 300 papers (Section II in Supplementary File 1). 

Data were collected by two researchers (NM, MkV) in two phases: 2004/2007 and 
2010/2013. Later, two statisticians (JC, MtV) verified the data and made them accessible to 
readers through a Shiny application and through the Figshare repository 18 . 

Variables 

Collected variables were: baseline and outcome SDs; experimental and control interventions; 
sample size in each group; medical field according to Web of Science (WOS) classification; 
main endpoint; indication; type of disease (chronic versus acute); endpoint type (measured 
versus scored); intervention type (pharmacological versus non-pharmacological); 
improvement direction (positive versus negative); and whether or not the main effect was 
statistically significant. 

For studies that reported more than one numerical endpoint and failed to clarify which 
endpoint was the primary endpoint, the latter was determined using the following hierarchical 
criteria: (1) objective or hypothesis; (2) sample size determination; (3) main statistical 
method; (4) first numerical variable reported in results. 

In the same way, the choice of the "experimental" arm was determined depending on its role 
in the following sections of the article: (1) objective or hypothesis; (2) sample size 
determination; (3) rationale in the introduction; (4) first comparison reported in results (in the 
case of more than two arms). 

Statistical analysis 

We assessed homoscedasticity between treatments and over time. For the former, our main 
analysis compared the outcome variability between treated (T) and control (C) arms at the 



end of the trial. For the latter, we compared the variability between outcome (O) and its 
baseline (B) value for the treated arm. 

Three different methods were used to compare the variances: 1) a random-effects model; 2) a 
heuristic procedure based on the heterogeneity obtained from the previous random-effects 
model; and 3) a classical test for equality of variances. 

To distinguish between the random sampling variability and heterogeneity, we fitted a 
random-effects model. The response was the logarithm of the outcome variance ratio at the 
end of the trial. The covariates were the study as a random effect, while the logarithm of the 
variance ratio at baseline served as a fixed effect 19 . 

The main fitted model for between-arm comparison was: 

log	 (VOTVOC)i=μ+Si+β.log	 (VBTVBC)i+ei  

with Si∼N(0, τ2) and ei∼N(0, vi2)  

where V ij represents the variances of the outcome in each arm (V iT, V iC) at the end of the 
study (V OT, V OC) and at baseline (V BT, V BC). The parameter μ is the logarithm of the 
average variance ratio across all the studies; s i represents the heterogeneity of the between-
study effect associated with study i and having variance τ 2; β is the coefficient for the linear 
association with the baseline variance ratio; and e i represents the intra-study random errors 
with variance vi2 . 

The parameter μ represents a measure of the imbalance between the variances at the end of 
the study, which we call heteroscedasticity. 

The estimated value of τ 2 provides a measure of heterogeneity, that is, to what extent the 
value of μ is applicable to all studies. The larger τ 2 is, the lesser the homogeneity. 

The percentage of the response variance explained by the differences among studies in 
respect to the overall variance is measured by the I 2 statistic 20 . That is: 

I2=τ2τ2+v2  

v 2 is the mean of the error variances vi2 . 

An analogous model was employed to assess the homoscedasticity over time. As there is only 
one available measure for each study, it is not possible to differentiate both sources of 
variability: (i) within-study or random variability; and (ii) heterogeneity. To isolate the 
second, the first was theoretically estimated using either the delta method, in the case of 
comparison between arms, or some approximation, in the case of comparison over time (see 
details in Sections VI and VII of Supplementary File 1). Thus, the within-study variance was 
estimated using the following formulas: 

V[log (VOTVOC)]=2nOT−2+2nOC−2   (between  arms)  

V[log (VOTVBT)]=4n−1−2⋅log [1+2⋅Corr[YOT,YBT]2n2/(n−1)]   (over   me)  

Funnel plots centered at zero are reported in order to help investigate asymmetries. They 
represent the variance ratios as a function of their standard errors. The first and main analysis 
considers the studies outside the triangle delimited by ± 2 times the standard error to be those 
that have statistically significant differences between variances. 

The second analysis is heuristic. In order to obtain a reference value for τ 2  in the absence of 
treatment effect, we first modeled the baseline variance ratio as a response that is expected to 
have heterogeneity equal to 0 due to randomization – provided no methodological impurities 
are present (e.g., considering the outcomes obtained 1 month after the start of treatment to be 



the baseline values). This reference model allows us to know the proportion of studies in the 
previous models that could increase heterogeneity over levels that are incompatible with a 
constant effect situation. (Section III in Supplementary File 1). Specifically, studies with 
larger discrepancies in variances were removed one by one until the estimated value of τ was 
as close as possible to that of the reference model. These deleted studies were considered to 
be those that had significantly different variances, perhaps because the experimental 
treatment either increased or decreased the variance. From now on, the complete dataset and 
the resulting dataset after removing the abovementioned studies will be called CDB 
(complete dataset) and RDB (reduced dataset) for between-arm comparison and CDO 
(Complete) and RDO (Reduced) for over-time comparison. 

Thirdly, as an additional sensitivity analysis, we also assessed homoscedasticity in each 
single study by using tests for comparing variances: (a) between outcomes in both arms with 
an F-test for independent samples; and (b) between baseline and outcome in the treated arm 
with a test for paired samples 21 when the variance of the paired difference was available. All 
tests were two-sided (α=5%). 

Several subgroup analyses were carried out according to the statistical significance of the 
main treatment effect and to the different types of outcomes and interventions. 

All analyses were performed with the R statistical package version 3.2.5. (The R code for the 
main analysis is available from https://doi.org/10.5281/zenodo.1239539 22 ) 

   



Results 

Population 

A total of 1214 articles were retrieved from the search. Of those papers, 542 (44.6%) belong 
to the target population and 208 (17.1%) contained enough information to enable us to 
conduct the analysis ( Figure 2). 

 

   

Figure 2. Flow‐chart of the articles in the study. 

Percentages represent the number of papers  with respect to the ones 
retrieved from the bibliographic search. The number of articles for 
each year (2004/2007/2010/2013) is specified in the second line of 
each box (separated by slashes). $300 papers were randomly selected 
for years 2010 and 2013. *Four papers were excluded because the 
variance of the change over time was inconsistent with both the 
baseline and final variances, which would lead to impossible 
absolute correlation estimates greater than 1. DB1 and DB2 are the 



datasets used in the main and heuristic analysis, respectively, for the 
between-arm comparison. DO1 and DO2 are the datasets used in the 
main and heuristic analysis, respectively, for the over-time 
comparison. 

The majority of the selected studies were non-pharmacological (122, 58.6%); referred to 
chronic conditions (101, 57.4%); had a continuous outcome measured with units (132, 
63.8%) instead of a constructed scale; had an outcome that was measured (125, 60.1%) rather 
than assessed; and had lower values of the outcome indicating positive evolution (141, 
67.8%). Regarding the primary objective of each trial, the authors found statistically 
significant differences between arms (all of which favored the treated group) in 83 (39.9%) 
studies. Following the Web of Science criteria, 203 articles (97.6%) belonged to at least one 
medical field. The main areas of study were: General & Internal Medicine (n=31, 14.9%), 
Nutrition & Dietetics (21, 10.1%), Endocrinology & Metabolism (19, 9.1%), and 
Cardiovascular System & Cardiology (16, 7.7%). 

Homoscedasticity 

In descriptive terms, the average of the outcome variance ratio is 0.94, reflecting lower 
variability in the treated arm. At the end of the study, 113/208 (54%, 95% CI, 47 to 61%) 
papers showed less variability in the treated arms ( Supplementary File 1 : Figure S1 and 
Figure S2). Among the treated arms, 111/208 (53%, 95% CI, 46 to 60%) had less or equal 
variability at the end of follow-up than at the beginning ( Supplementary File 1 : Figure S3 
and Figure S4). 

Based on the random-effects model ( Supplementary File 1: Table S4, model 3 with DB1) the 
adjusted point estimate of the mean outcome variance ratio for comparison between arms 
(Treated to Control group) is 0.89 (95% CI 0.81 to 0.97). This indicates that treatments tend 
to reduce the variability of the patient's response by about 11% on average. As for the 
comparison over time ( Supplementary File 1 : Table S4, Model 6 with DO1), the average 
variability at the end of the studies is 14% lower than that at the beginning. Figure 3 shows 
the funnel plots derived from the random-effects models. The triangles delimit the 95% 
confidence regions of random variability. In the between-arm comparison, the studies 
(represented by the circles) to the right of the triangle have variances that are significantly 
larger in the treatment arm than in the control arm, while those on the left are significantly 
larger in the control arm. As for the over-time comparison, the studies to the right have a 
significantly higher variance at the end of the study in the treated group, while those on the 
left are significantly larger at the beginning of the study. Table 1 (random-effects method) 
shows the frequencies and percentages of the studies according to the classification illustrated 
in these funnel plots. 

The second heuristic analysis was motivated by the fact that the estimated baseline 
heterogeneity (τ 2) was 0.31 ( Supplementary File 1 : Table S4, Model 1 with DB1), which is 
a very high value that could be explained by methodological flaws similar to those presented 
by Carlisle 23 . Fortunately, the exclusion of the four most extreme papers reduced it to 0.07 ( 
Supplementary File 1 : Table S4, Model 1 with DB2); one of these was the study by Hsieh et 
al. 24 ,whose “baseline” values were obtained 1 month after the treatment started. When we 
modeled the outcome instead of the baseline variances as the response, estimated 
heterogeneity ( τ^=0.55 ) was almost doubled ( Supplementary File 1 : Table S4, Model 6 
with DB1). We found 30 studies that compromised homoscedasticity: 11 (5.3%) with higher 
variance in the treated arm and 19 (9.1%), with lower variance (see heuristic method in Table 
1). Based on the classical variance comparison tests (sensitivity analysis), these figures were 



slightly higher: 41 studies (19.7%) had statistically significant differences between outcome 
variances; 15 (7.2%) favored greater variance in the treated arm; and 26 (12.5%) were in the 
opposite direction. Larger proportions were obtained from the comparisons over time of 95 
treated arms: 16.8% had significantly greater variability at the end of the study and 23.2% at 
the beginning. Table 1 also summarizes those numbers for the F-test and paired Test. 

Table 1. Variance comparison. 

Alternative possible methods for estimating the number and 
percentage of studies with different variances on comparisons 
between arms and over-time. Limits for declaring different 
variances come from different statistical methods: (1) the analysis 
relying on random-effects model and funnel plots; (2) the heuristic 
analysis based on number of studies that have to be deleted from the 
random-effects model in order to achieve a negligible heterogeneity 
(studies with larger discrepancies in variances were removed one by 
one until the estimated value of τ was as close as possible to that of 
the reference model – the one that compares the variances of the 
response at baseline. See Methods for details); (3) classic statistical 
tests for comparing variances (F for independent outcomes or Sachs’ 
test 21 for related samples). ¥ This comparison was performed on 
studies reporting enough information to obtain the variability of the 
change from baseline to outcome, for example because they provide 
the correlation between outcome and baseline values. 

Comparing  

variances 

N  Method  After treatment, variability is… 

Increased  

n (%) 

Decreased 

n (%) 

Not changed 

n (%) 

Outcome between 

treatment arms 

208 Random‐effects 

model 

14(6.7%)  26 (12.5%)  168(80.8%) 

Heuristic  11 (5.3%)  19 (9.1%)  178 (85.6%) 

F‐test  15 (7.2%)  26 (12.5%)  167 (80.3%) 

Outcome versus  

baseline in treated 

arm 

95 ¥  Random‐effects 

model 

16 (16.8%)  22(23.2%)  57(60.0%) 

Heuristic  13 (13.7%) 19 (20.0%)  63 (66.3%) 

Paired test  16 (16.8%) 22 (23.2%)  57 (60.0%) 



 

Figure 3. Funnel plots of variance ratio. 

Funnel plots of outcome variance ratio between arms ( Panel A) and 
of outcome variance ratio over time ( Panel B). The first shows all 
208 studies while the second shows only the 95 studies in which the 
variance of the difference between the baseline and final response 
was available. Vertical axis indicates precision for the comparison 
of variances; with points outside the triangle being statistically 
significant. Additionally, red points mark significant differences 
between the means, which correspond to each study’s objective to 
assess main treatment effects. In Panel A, points on the right 
indicate higher outcome variability for the treated individuals, as 
expected if there is patient-by-treatment interaction; similarly, 
points on the left correspond to lower variability, although this is 
compatible with traditional Evidence-Based Medicine. Eleven 
(5.2%) out of 208 studies reported exactly the same outcome 
variability in both arms. We observe more red points on the left, 
indicating that changes in the average accompany reductions in the 
variance. In Panel B, points on the right indicate higher variability 
in the treated arm at the end of the study, as expected in a scenario 
of heterogeneous treatment effect; points on the left correspond to 
lower variability at the end, which implies a more homogenous 
response after treatment. The largest number of points on the left 
side indicates a majority of experimental interventions that reduce 
variability. In addition, several of these interventions yielded 
significant results in the main endpoint. V OT: variance of the 
outcome in the treated arm. V OC: variance of the outcome in the 
control arm. V BT: variance of the outcome at baseline in the treated 
arm. 
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Subgroup analyses suggest that significant interventions had an effect on reducing variability 
( Supplementary File 1 : Figures S5–S7), a fact which has already been observed in other 
studies 25, 26 . Even more importantly, lower variances in the treated arm occur only in 
outcomes for which a positive response is defined as a decrease from baseline. This is in line 
with other works that have found a positive correlation between the effect size and its 
heteroscedasticity 27, 28 . The fact is that it is difficult to find heteroscedasticity when there is 
no overall treatment effect. The remaining subgroup analyses did not raise concerns (Section 
V in Supplementary File 1). 

   



Discussion 

Main findings 

We aimed to show that comparing variances provides evidence about whether or not 
precision medicine is a sensible choice. When both arms have equal variances, then a simple 
and believable interpretation is that the treatment effect is constant, which, if correct, would 
render futile any search for predictors of differential response. This means that the average 
treatment effect can be seen as an individual treatment effect (not directly observable), which 
supports the use of a unique clinical guideline for all patients within the eligibility criteria, 
thus in turn also supporting the use of parallel controlled trials to guide decision-making in 
these circumstances. Otherwise, heteroscedasticity may suggest a need to specify further the 
eligibility criteria or search for an additive scale 25, 30 . Because interaction analyses cannot 
include unknown variables, there might be value in repeating trials once any new potential 
interaction variable emerges (e.g., a new biomarker) as a candidate for a new subgroup 
analysis. We have described how homoscedasticity can be assessed when reporting trials 
with numerical outcomes, regardless of whether every potential effect modifier is known. 

We have provided a rough estimate of the proportion of interventions with different 
variability that might benefit from more precise medicine: Considering the most extreme 
result from Table 1 for comparison between arms, 1 out of 14 interventions (7.2%) had 
greater variance in the treated arm while 1 out of 8 interventions (12.5%) had lower variance. 
That is, we have found evidence of effect variation in only 1 out of 5 trials (40/208), 
suggesting a limited role for tailored interventions. These might be pursued by either a finer 
selection criteria (common effect within specific subgroups), or with n-of-1 trials (no 
subgroups of patients with a common effect).  

 

The sensitivity analysis of the change over time in the treated arm agreed with the findings in 
the comparison between arms, although this comparison is not protected by randomization. 
For example, the existence of eligibility criteria at baseline may have limited the initial 
variance (a hypertension trial might recruit patients with baseline SBP between 140 and 159 
mm Hg), leading to the variance increasing naturally over time. 

Regarding the subgroup analyses, we found that variability seems to decrease for treatments 
that perform significantly better than the reference; otherwise, it remains similar. Therefore, 
the treatment seems to be doing what medicine should do: having larger effects in the most ill 
patients. Two considerations may be highlighted here: (1) as the outcome range becomes 
reduced, we may interpret that, following the intervention, this population is under additional 
control; but also, (2) as subjects are responding differently to treatment, this opens the way 
for not treating some (e.g., those subjects who are not very ill and thus lack the scope to 
respond very much), which subsequently incurs savings in side effects and costs. 

This reduced variability could also be due to methodological reasons. One is that some 
measurements may have a “ceiling” or “floor” effect (e.g., in the extreme case, if a treatment 
heals someone, no further improvement is possible). In fact, according to the subgroup 
analysis of the studies with outcomes that indicate the degree of disease (high values imply 
greater severity; e.g., pain), a greater variance (25%) is obtained in the treated arm (see 
Figure S5). However, in the studies with outcomes that measure the degree of healthiness 
(high values imply better condition; e.g., mobility), the average variances match between 
arms, and this does not suggest a ceiling effect. As mentioned above, another reason might be 
that the treatment effect is not additive on the scale used for analysis, suggesting that it would 



be suitable to explore other metrics and transformations. For example, if the treatment acts 
proportionally rather than linearly, the logarithm of the outcome would be a better scale. 

Limitations 

There are three reasons why these findings do not invalidate precision medicine in all 
settings. First, there are studies where the variability in the response is glaringly different, 
indicating the presence of a non-constant effect. Second, the outcomes of some type of 
interventions such as surgeries, for example, are greatly influenced by the skills and training 
of those administering the intervention; and these situations could have some effect on 
increasing variability. And, third, this study focuses on numerical endpoints; thus, time-to-
event or categorical outcomes are out of scope. 

The results rely on published articles, which raises some relevant issues. First, some of our 
analyses are based on Normality assumptions that are unverifiable without access to raw data. 
Second, a high number of manuscripts (61.6%, Figure 2) act contrary to CONSORT 29 advice 
in that they do not report variability. Thus, the included studies may not be representative. 
Third, trials are usually powered to test constant effects and thus the presence of greater 
variability would lead to an underpowered design; that is, if the control group variance is 
used to plan the trial, increased treatment group variance would reduce power (perhaps 
leading to non-publication). Fourth, the heterogeneity observed in the random-effects model 
may be the result of methodological inaccuracies 23 arising from typographical errors in data 
translation, inadequate follow-up, insufficient reporting, or even data fabrication. On the 
other hand, this heterogeneity could also be the result of relevant undetected factors 
interacting with the treatment, which would indeed justify the suitability of precision 
medicine. A fifth limitation is that many clinical trials are not completely randomized. For 
example, multicenter trials often use a permuted blocks method. This means that if variances 
are calculated as if the trial were completely randomized (which is standard practice), the 
standard simple theory covering the random variation of variances from arm to arm is at best 
approximately true 25  

The main limitation of our study arises from the fact that, although a constant effect always 
implies homoscedasticity on the chosen scale, the reverse is not true; i.e., homoscedasticity 
does not necessarily imply a constant effect. For example, the highly specific and non-
parsimonious situation reflected in Figure 4 indicates homoscedasticity but without a 
constant effect. Nevertheless, a constant effect is the simplest explanation for 
homoscedasticity (Section VIII of Supplementary File 1: Conditions for homoscedasticity to 
hold without a constant effect under an additive model). 

 

No es pot v isualitzar la imatge enllaçada. Pot ser que s'hagi desplaçat o suprimit o que se n'hagi canviat el nom. Comproveu que l'enllaç apunta al fitxer i a la ubicació correctes.



Figure 4. Scenario representing a fictional trial with 8 participants and having homoscedasticity but a 

non‐constant effect. 

SBP potential values of each patient in both groups (C: control; T: treated) under a highly 
hypothetical scenario: the treatment effect has no value if systematically applied to the whole 
population; but if n-of-1 trials could be performed in this situation, the best treatment strategy 
would be chosen for each patient and the overall health of the population would be improved. 

Conclusion 

In summary, for most trials, the variability of the response to treatment scarcely changes or 
even decreases. Thus, if we take into account the limitation previously explained in Figure 4, 
this suggests that the scope of precision medicine may be less than what is commonly 
assumed. Evidence-Based Medicine (EBM) operates under the paradigm of a constant effect 
assumption, by which we learn from previous patients in order to develop practical clinical 
guidelines for future treatments. Here, we have provided empirical insights to postulate that 
such a premise is reasonable in most published parallel randomized controlled trials. 
However, even where one common effect applies to all patients fulfilling the eligibility 
criteria, this does not imply that the same decision is optimal for all patients. More 
specifically, this is because different patients and stakeholders may vary in their weighting 
not only of efficacy outcomes, but also of the harm and cost of the interventions – thus 
bridging the gap between common evidence and personalized decisions. 

Our results uphold the assertion by Horwitz et al. that there is a “need to measure a greater 
range of features to determine [...] the response to treatment” 31 . One of these features is an 
old friend of statisticians, the variance. Looking only at averages can cause us to miss out on 
important information. 

Data availability 

Data is available through two sources: 

 A shiny app that allows the user to interact with the data without downloading it: 
http://shiny-eio.upc.edu/pubs/F1000_precision_medicine/  

 The Figshare repository: https://doi.org/10.6084/m9.figshare.5552656 18  

In both sources, the data can be downloaded under a Creative Commons License v. 4.0. 

The code for the main analysis is available at the following link: 
https://doi.org/10.5281/zenodo.1239539 22  
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Supplementary File 1: The supplementary material contains the following sections:  

Click here to access the data  

- Section I: Constant effect assumption in sample size rationale 

- Section II: Bibliographic review 

- Section III: Descriptive measures 

- Section IV: Random-effects models 

- Section V: Subgroup analyses 



- Section VI: Standard error of log(V OT/V OC) in independent samples 

- Section VII: Standard error of log(V OT/V BT) in paired samples 

- Section VIII: Conditions for homoscedasticity to hold without a constant effect under an 
additive model 
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