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Abstract

In this work, the 3D spatial organization of a human Jurkat cell, an immune cell who is one of

the main targets of the human immunodeficiency virus (HIV), is analyzed through the clustering

of genome interactions networks provided by the Hi-C data, a 3D massive sequencing technology

capable of quantifying interactions among regions of the genome inside the nucleus of a cell. The

data analysis approach consists on a graph theoretic modelling of these networks and the clustering

analysis is performed by the use of spectral clustering methods, a family of clustering techniques

based on the spectral decomposition of Laplacian matrices of graph networks. By inferring the

3D structure of the Jurkat cell at the nuclear scale, the distribution of HIV integration sites on

the Jurkat genome is analyzed and contrasted with the current knowledge of the the integration

mechanisms and their relationship with the 3D genomic context. The clustering results are also

evaluated through a common set of metrics, which serve to objectively asses the 3D structure of

the nucleus of the Jurkat cell. With the proposed data analysis, the main findings are: the 3D

spatial structure is not prominent, the global interaction genomic network contains just a few

communities and the insertion pattern of HIV, contrasted on the detected communities, confirms

the established knowledge of HIV integration mechanisms.
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Chapter 1

The 3D genome architecture

In this chapter, the biology basic concepts needed to understand this work are introduced. The

chapter is structured as follows: A quick review of the spatial organization principles of the 3D

genome is given, then the 3D sequencing technology that allows to sample the spatial structure of

the genome is introduced, and finally, methods for analyzing 3D sequencing data are presented.

1.1 The spatial organization principles of the genome

1.1.1 Nuclear DNA

Deoxyribonucleic acid (DNA) is a molecule that contains the information needed for a organism to

develop, function and reproduce. These DNA molecules are found in every individual or organism

cells. DNA consists of a series of smaller organic molecules called nucleotides. In each nucleotide,

there are four types of nitrogen bases: adenine (A), thymine (T), guanine (G) and cytosine (C).

The order of these bases determines the genetic information or genes, which are the set of essential

instructions for a cell’s functioning. A gene is a segment of DNA that is transcribed, i.e. that

is converted to ribonucleic acid (RNA), another type of acid nucleic molecule, either to be used

as is (structural, catalytic, regulatory RNA, ...) or to guide the synthesis of a protein. Most

DNA is located in the cell nucleus, where it is referred to as nuclear DNA. In eukaryotic cells,

the large amounts of DNA required to encode all the information needed to sustain cellular life,

are packaged into chromosomes. Chromosomes are very long double-stranded DNA molecules

found in the cell nucleous, as depicted in Figure 1.1. On the other side, prokaryotic cells typically

carry their genes on a single, circular DNA molecule called bacterial chromosome, found in the

cytoplasm.

The nuclear DNA in human species is packed into 24 different chromosomes, each consisting

of a fine thread of DNA and a set of proteins that fold and pack it into a compact structure. Such

complex of protein and DNA is called chromatin. The main function of the chromosomes is to

carry the genes. The total genetic information carried by all the chromosomes of an organism

constitutes its genome. As it may be expected, there exists a correlation between the genome size

11



12 CHAPTER 1. THE 3D GENOME ARCHITECTURE

Figure 1.1: The spatial configuration and hierarchial structure inside the cell nucleous

and the complexity of the species.

The long DNA strands of every cells genome are packaged into chromatin in a very confined

nuclear volume [1]. The organization of the chromatin in the nucleus is extremely important to

biological function at the gene level as well as the global nuclear level.

Noteworthy is that the dimensions of the entire cell would not be sufficient to contain the

DNA in a completely stretched form. The largest stretched human chromosome is nearly 3000

times larger than the average-sized cell diameter. Therefore, efficient compaction of DNA is an

essential prerequisite for cellular function.

Chromosomes fold in a hierarchy of structures with increasing complexity, from nucleosomes

and chromatin fibres to chromatin loops, chromosome domains, chromosome compartments and,

finally, chromosome territories. While it is common to think about the genome as a linear object,

in reality chromosomes are folded in a highly complex mode with regions located far apart on

the same chromosome often coming in contact with one another. For example, many regulatory

elements such as enhancers or insulators are physically separated to the genes they target and come

in contact via folding. Enhancers are short DNA pieces that amplify transcription levels of certain

genome areas, whereas insulators are DNA elements whose function is to prevent inappropriate

interactions among adjacent chromosome regions.

Accumulating evidence demonstrates that the three-dimensional (3D) organization of chro-

matin within the eukaryotic nucleus reflects and influences genomic activities, including transcrip-

tion, DNA replication, recombination and DNA repair. The study of the packaging of chromatin

in the nucleus can shed light on the spatial aspects of gene regulation, i.e. the mechanisms that

induce or suppress the expression of the genes.
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Figure 1.2: The genome sequencing high level procedure

Image source: [2]

1.1.2 Decoding the structure of the genome

Early methods for capturing the information encoded in the genome were based on DNA sequenc-

ing, a technology that is used to measure the order of the four bases (A,C,G,T) in a strand of

DNA.

The whole genome can not be sequenced all at once because methods of DNA sequencing can

only handle short regions of DNA at a time. The average length of the human genome is about

millions of nucleotides. So instead, the genome is broken into small pieces, called reads, these

pieces are sequenced and then reassembled in the proper order. Much of the work involved in

sequencing lies in putting together these fragments.

The first sequencing methods, Chemical and Sanger sequencing, were invented in 1977. These

methods were very slow and expensive, requiring enormous human power, but were able to gener-

ate reads of several hundreds of nucleotides. Later in the early 2000’s, Next Generation sequencing

technologies were developed, yielding bilions of reads in less than 24 hours.

These DNA-based sequencing methods only capture the linear structure of the genome. So a

different set of techniques have been developed and applied to uncover the intrinsic mechanism

of the genome architecture. To date, two types of tools have been used to dissect chromosome

structure: microscopy-based imaging technologies and more recently developed molecular and

biochemical tools. The chromosome conformation capture (3C) and 3C-derived methods, which

belong to the latter group, provide a powerful tool for detecting spatial interactions between a

single pair of genomic positions, within and between chromosomes.

In particular, Hi-C is the first of the 3C technologies to be truly genome-wide. It was the

development of the Hi-C protocol by Liebermann-Aiden et al. 2009, which essentially pushed up

the potential of 3C-based technology.
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1.1.3 Hi-C: High Throughput 3C technology

Hi-C is a chromosome conformation capture technology that allows to inspect the nuclear organi-

zation by quantifying the proximity between different pairs of fixed positions in the genome. The

Hi-C protocol involves the creation of DNA-protein bonds that cross-link physically interacting

DNA loci. The DNA is then processed and filtered to generate a library of products that were

spatially close to each other in the nucleus.

For example, consider regions i and j to be two nonadjacent regions on the same chromosome

in the DNA fragment captured, sequence from region i is at one end and sequence from region j

is at the other. Having captured these fragments, both ends are sequenced so that the nucleotides

sequence from region i and region j are obtained. By mapping these sequenced reads back to the

reference genome, and by summing up the number of reads with one end in region i and the other

end in region j, an score for the interaction between those two regions can be derived.

Finally, after sequencing, a 2D map of these interaction counts between genome regions, also

called genomic loci, is generated. This Hi-C dataset is typically further processed and analyzed

in order to discover new biological insights.

The genome-wide power and versatility of Hi-C makes it ideal for the study of the basic biology

of genome organization and its implications for health and disease.

1.2 Finding structure in the 3D genome with Hi-C data analysis

In order to uncover structure-function relationships, it is necessary first to understand the prin-

ciples underlying the folding and the 3D arrangement of chromosomes. In this chapter, the main

considerations to take into account to process and analyze Hi-C data are explained and a quick

review of the general patterns and structures that Hi-C data has already revealed in the human

genome.

1.2.1 The Hi-C matrix

Data from Hi-C experiments are usually represented by these so-called chromosomal contact maps.

A contact map is a matrix whose entries store the population-averaged co-location frequencies

between pairs of loci. The genome is divided into equally sized bins or loci. The process that

transforms the raw products of the Hi-C experiment into these contacts maps is summarized with

these basic steps:

1. Map the Hi-C reads to the reference genome.

2. Filter out Hi-C experiment artifacts and create a contact matrix with valid Hi-C reads.

3. Filter matrix bins with low or zero read coverage.

4. Remove biases from the Hi-C contact matrices.
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Figure 1.3: Overview of the HiC technology. A) Hi-C detects chromatin interaction both within
and between chromosomes by covalently crosslinking protein/DNA complexes with formaldehyde.
B) The chromatin is digested with a restriction enzyme and the ends are marked with a biotiny-
lated nucleotide. C) The DNA in the crosslinked complexes are ligated to form chimeric DNA
molecules. D) Biotin is removed from the ends of linear fragments and the molecules are frag-
mented to reduce their overall size. E) Molecules with internal biotin incorporation are pulled
down with streptavidin coated magnetic beads and modified for deep sequencing. Quantitation
of chromatin interactions is achieved through massively parallel deep sequencing.

Image source: [3]
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Figure 1.4: Log-scale Intra-chromosomal map of interactions from a particular cell population.
The x and y axes represent loci in genomic order and each pixel represents the number of observed
interactions between them.

Recent single-cell imaging experiment suggests that the frequency serves as a reasonable proxy

of spatial distance [4]. Nonetheless it is important to remember that Hi-C does not measures spa-

tial distance. Formaldehyde crosslinking will occur only between loci which physically interact.

Thus, a weak Hi-C signal between two loci indicates that the interaction occurred in a small frac-

tion of the population, but we cannot determine the distance between the two loci without making

some simplifying assumptions about how interaction frequencies relate to physical distances. So

these HiC maps can also be interpreted as spatial proximity map. It can be visually represented

as a heatmap, with intensity indicating contact frequency.

Two kinds of contact maps can be generated, the intra-chromosomal maps and the inter-

chromosomal maps, describing read counts within a chromosome region and between chromosomes

regions respectively. The matrix of inter-chromosomal contacts is sparse as most of the a priori

possible pairings have no associated reads, either because they are not in spatial proximity, or

because their contact probability is too low to be reliably detected for a given sequencing depth.

The sequencing depth is proportional to the number of reads used for the Hi-C experiment and

describes the reach of the experiment.

Hi-C is an unbiased assay of chromatin conformation, resulting in even read coverage across

the entire genome. But the fact that most Hi-C reads describe interactions at close linear dis-

tance along the chromosomes produces a relatively sparse read coverage for interactions between
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individual loci separated by great spatial distance.

Typically, DNA fragments that are very close to each other in the linear genome will have the

tendency to interact frequently with each other. This is seen in the intra-chromosomal heatmaps

as a prominent diagonal.

Another important aspect of Hi-C data is its resolution. The space of all possible interactions

is very large. For example, consider the human genome length to be approximately 109 base-pairs

(bp). Using a 6-bp cutting restriction enzyme, there are almost 106 valid cut DNA fragments,

leading to an interaction space of 1012 possible pairwise interactions [3]. Thus, achieving sufficient

coverage of the whole genome to support very high resolution maps is a significant challenge.

In light of this, it is critical to establish the goals of the experiment, meaning whether one

is most interested in either large-scale genomic conformations (e.g. genomic compartments) or

specific small-scale interaction patterns (e.g. promoter-enhancer looping).

A Hi-C dataset is not sequenced deep enough to support maximal data resolution, as it is not

yet cost-effective to obtain a sufficient number of reads. Instead, the data is binned into various

fixed genomic interval sizes, to aggregate data and smooth out noise. Hi-C restriction fragments

are assigned to bins by their midpoint coordinate. Binning the Hi-C data reduces the complexity

and number of possible genome wide interactions.

1.2.2 Normalization of Hi-C data

Analyzing HiC maps is not an easy task. Hi-C data can contain many different biases, some of

known origin and others from an unknown origin. They can be classified as follows:

• Read depth per region : In Hi-C we expect to observe equal read coverage across the

genome. However, factors such as the ability to map reads uniquely (e.g. density of genomics

repeats)and the number of restriction sites (e.g. where cuts are allowed) in the experimental

sample will influence the total number of reads per region.

• Linear distance between loci along the chromosome : Loci closely spaced along a

chromosome are almost guaranteed to be ’near’ one another for no other reason than their

linear DNA separation. As a result, closely spaced loci with have very high Hi-C read counts,

regardless of their specific spatial conformation.

• Sequencing Bias: GC content ( e.g. percentage of nitrogenous bases on a DNA), ligation

preferences during library construction, normal sequencing problems.

There are two general approaches to Hi-C bias correction: explicit and implicit. Explicit bias

models take into account factors such as mappability, GC content, proximity ligation and frag-

ment length. One common explicit approach is the Observed over Expected (O/E) normalization

method. This method outputs the ratio of observed to expected interactions by assuming each

region has an equal chance of interacting with every other region in the genome by removing the
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Figure 1.5: Distance decay pattern of the interaction frequency in Hi-C data.

Image source: [3]

linear distance bias, where regions are expected to interact depending on their linear distance

along the chromosome.

The interaction frequency between loci within a chromosome decreases, on average, as their

genomic distance increases. In the interaction matrix this pattern appears as a gradual decrease

of interaction frequency the further one moves away from the diagonal. This effect is observed in

figure 1.5.

The implicit methods are based on the fact that it can be quite difficult to know each and

every bias, then one can use an implicit approach which we refer to as balancing or also refered

as iteractive correction [5]. This procedure attempts to balance the matrix by equalizing the sum

of every row/column in the matrix.

1.2.3 A/B compartments

Following the mapping, filtering and bias-correction of the Hi-C data, we are left with a binned,

genome-wide interaction matrix, where each entry reflects an interaction frequency between two

genomic loci. In this section, we briefly comment one of the first identified patterns in the

chromosomal maps.

In the seminal work in [6], Hi-C was applied to generate the first comprehensive and unbiased

long-range interaction maps of the human genome. Hi-C data revealed known hallmarks of nuclear

organization (e.g. formation of chromosome territories, and preferred co-location of particular

pairs of chromosomes) as well as novel folding principles of chromosomes. The phenomenon

is known as chromosome territories, where chromosomes are physically separated and occupy a

distinct volume in the nucleus. A particularly interesting result revealed that the human genome is

divided in two spatial compartments, one containing active chromatin, and one containing mostly

inactive segments of the genome. This is the so called A/B compartmentalization. Loci found
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Figure 1.6: The landscape of structures detected in intra-chromosomal HiC data at a mega base
scale

Image source: [3]

clustered in A compartments are generally gene rich, meaning that they are transcriptionally

active, whereas loci found in B compartments are relatively gene poor, transcriptionally silent.

1.2.4 Topological associating domains

Chromosome conformation capture studies suggest that eukaryotic genomes are organized into

structures called topologically associating domains (TADs) [7, 8]. TADS are defined as linear

units of chromatin that fold as discrete three-dimensional (3D) structures tending to favor internal

chromatin interactions. Small regions that are crucial for biochemical functions regulating the

genome reside in these structures. For example, a majority of regulatory protein binding sites

such enhancers and promoters localize within topological domains.

Detecting the topological domains is thus helpful for studying the relationship between chro-

mosome organization and gene transcription. Topological domains, as regions that have high

number of intra-contacts, are characterized by diagonal blocks in the Hi-C matrix. To identify

topological domains, in [7] the authors employed a Hidden Markov Model (HMM) on the di-

rectionally index from a Hi-C matrix to determine regions initiated by significant downstream

chromatin interactions and terminated by a sequence of significant upstream interactions.

The finest pattern identified in Hi-C data are the small scale loops formed by interactions of

regulatory elements spanning hundreds kilobases. These are usually seen as peaks in the Hi-C

heatmap. Figure 1.6 shows the different architectures dected in Hi-C data.
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Chapter 2

Graphs, Graph learning and Spectral

Clustering

This chapter reviews important concepts on algebraic graph theory and presents the notation used

in the forthcoming chapters. The Hi-C data analysis pipelines proposed on the following chapters

are based on a graph theoretic interpretation of Hi-C matrices. Modeling the spatial organization

of chromosomes in a nucleus as a graph allows us to use spectral methods to quantitatively study

their properties. The structure of this section is the following: Firstly, basic concepts of graph

theory are reviewed, then an introduction to the graph learning framework, which later on will be

used as a tool to model the Hi-C data. Finally, the core theory of the spectral clustering methods

implemented is discussed.

2.1 Graph theory

A graph is defined as G = (V, E), where V is the set of vertices indexed with i = 1, . . . , N and

E ⊆ V × V is an unordered set of pairs of vertices from V called edges representing a connection

between two vertices, where the total number of vertices is M ≤ N2. The edge between two

vertices i and j is denoted eij and refers to the information flowing from vertex j to vertex i. If

a one-way direction is assigned to the edges, the relations are asymmetric and the graph is called

a directed graph, or a digraph. On the other hand, if both directions are assigned to the edges,

then eij ∈ E ⇐⇒ eji ∈ E for all pairs {i, j} ∈ V and the graph is called an undirected graph. An

undirected graph is connected when there is a path between every pair of vertices, that is every

vertex is within reach from a specific vertex.

A graph is called weighted if a weight is associated with every edge according to a proper map

W : E → R+ such that W (eij) 6= 0 if eij ∈ E , W (eij) = 0 otherwise.

The edge structure of a graph G with N nodes is described by means of its adjacency matrix.

The adjacency matrix A of G is the matrix with entries aij given by:

21
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aij =

1 if eij ∈ E

0 otherwise
(2.1)

,i.e., the {ij}th entry of A is 1 only if vertex j is a neighbor of vertex i. If G is undirected,

aij = aji, i.e, A is symmetric. In this work, only undirected weighted graphs are considered given

the nature of the Hi-C data. The weighted adjacency matrix W of G is a symmetric matrix whose

entries wij = W (eij) for all eij ∈ E .

The degree of a vertex i are determined by the sums of the weights of edges, i.e.,

di =

N∑
i=1

wij (2.2)

The degree matrix D of G is the N ×N diagonal matrix with its {ij}th entry given by

Dij =

di if i = j

0 otherwise
(2.3)

The entries of the degree matrix are equal to the row sums of the weighted adjacency matrix, that

is

D = diag(W · 1) (2.4)

where 1 ∈ RN is the vector of all ones and diag(v) refers to the N × N diagonal matrix whose

entries are the elements of a vector v ∈ RN .

2.1.1 The Laplacian matrix

This section introduces the Laplacian matrix, which is used for mathematical convenience to

describe the connectivity of a graph in a more compact form. In general, the spectral properties

of the Laplacian are of interest for the spectral clustering methods. The Laplacian matrix of an

undirected and weighted graph G has its {ij}th entry given by

Lij =

di − wii if i = j

−wij i 6= j
(2.5)

This definition can be expressed in matrix form as follows

L = D−W (2.6)

and the normalized Laplacian [9] is given by,
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LN = I−D−
1
2WD−

1
2 = D−

1
2LD−

1
2 (2.7)

By construction, the Laplacian matrix of an undirected and weighted graph is always symmetric.

2.1.2 Spectral properties of the Laplacian

In undirected weighted graphs, the associated Laplacian is positive semidefinite and its eigenvalues

can be arranged in an increasing order as follows

0 = λ1 ≤ · · · ≤ λN ≤ 2dmax (2.8)

where λi denotes the ith eigenvalue of L and dmax denotes the maximum degree of G. For the

normalized Laplacian, the spectrum is normalized as follows

0 = λ1 ≤ · · · ≤ λN ≤ 2 (2.9)

The eigenvalues are real, non-negative and repeated according to their multiplicity ki. In addition,

the eigenvector associated with λ1(L) is 1 such that 1TL = 0T, where 1 = [1, . . . , 1]T . The

second smallest eigenvalue λ2 is known as the Fiedler number, or algebraic connectivity, which

characterizes the connectivity and stability of the graph.

Let G be an undirected graph with non-negative weights. Then, the multiplicity of the eigen-

value λ1(L) equals the number of connected components A1, . . . , Ak1 in the graph. The eigenspace

of the eigenvalue λ1(L) is spanned by the indicator vectors 1A1 , . . . ,1Ak
of those components.

These indicator vectors are binary vectors that contain ones for points within the components or

cluster and zero otherwise. The latter is particularly important for the topic of spectral clustering.

2.2 Graph learning

In this section, the framework for graph learning at large scale proposed in [10] is presented. There

are many ways to construct a graph from data. Typically they are constructed either by connecting

nearest vertices or samples according to some metric, or by learning them from data, solving

an optimization problem. While graph learning does achieve a better quality than traditional

methods, it also comes with a higher computational cost. In particular, the previous state-of-the-

art model cost is O(N2) per iteration for N nodes [11]. Furthermore, it needs parameter tweaking

to control the graph sparsity, which makes it prohibitive for applications with more than a few

thousands of nodes.

The setup for the large scale graph learning framework is the following: given X ∈ RN×M

whose columns reside on the nodes of an unknown weighted undirected graph, the objective is

to learn the weight edges w ∈ R
M(M−1)

2
+ under the smoothness assumption. This assumption

states that values change smoothly across adjacent nodes. The smoothness of a set of vectors
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x1, . . . ,xN ∈ RM is usually quantified by the Dirichlet energy [12]. Let W be the adjacency

matrix of an unknown weighted undirected graph. The Dirichlet energy is expressed by

Tr(XTLX) =
1

2

N∑
i,j

wij
∥∥xi − xj

∥∥2 (2.10)

where wij ∈ R+ denotes the edge weight between node i and j and Tr(·) is the trace operator.

We can learn a graph under the assumption that X is smooth on it, by minimizing (2.10) w.r.t.

L, when X is given. Recently, [11] proposed an unified model for learning graphs from smooth

signals, which solves:

minimize
W∈W

‖W ◦ Z‖1,1 + f(W) (2.11)

where zij =
∥∥xi − xj

∥∥2 , ◦ denotes the Hadamard product, and the first term is equal to

Tr(XTLX). The optimization is over the setW of valid adjacency matrices, that is, non-negative,

symmetric, with zero diagonal. The smoothness term is a weighted l1-norm of W that penalizes

edges connecting dissimilar rows of X. The role of f(W) is to stop W from obtaining a trivial

zero value, regulate sparsity, and impose more structure depending on the application. Kalofolias

obtained state-of-the-art results using

f(W) = −α1T log(W1) +
β

2
‖W‖2F (2.12)

Substituting (2.12) in (2.11) forms the so-called log model. It is desirable to have control of how

sparse the resulting graph is. To meet these expectations, the parameters α > 0 and β ≥ 0 control

the magnitude of the weights in f(W). The terms in (2.12) have different roles. The logarithmic

barrier acts on the node degree vector W1, which enforces a positive degree, but does not prevent

the weights from becoming zero. This improves the overall connectivity of the graph, without

compromising sparsity. Note however, that adding solely a logarithmic term (β = 0) leads to very

sparse graphs, and changing α only changes the scale of the solution and not the sparsity pattern.

For this reason, the frobenius norm of W is added to penalize the formation of big weights. Note

that that solely minimizing the smoothness term leads to naturally sparse graphs, so adding an

extra l1-norm term has no effect in the sparsity of the solution.

2.2.1 Constrained edge pattern

In traditional graph learning [11], all
(
N
2

)
possible edges between N nodes are considered, which

results in a cost of O(N2) computations per iteration. Often, however, we need graphs with a

roughly fixed number of edges per node, like in k-NN graphs. It is natural to see whether the cost

of graph learning can be reduced, while still reflecting the final desired graph sparsity.

In fact, (2.11) can be solved efficiently when a constrained set Eallowed ⊆ E of allowed edges is

known a priori. In that case, it is enough to solve the modified problem
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minimize
W∈W̃

‖W ◦ Z‖1,1 + f(W) (2.13)

where we optimize in the restricted set of adjacency matrices W ∈ W̃ . In this form, the problem

can be solved by the primal dual techniques by [13]. The cost of this technique is O(|Eallowed|)
instead of O(N2) of the initial algorithm by [11], thus reducing the overall complexity.

When approximating the support of the final edges of a graph, it is preferable to begin with an

initial support with a larger cardinality than the desired final graph support, and let the weight

learning procedure automatically select which edges to set to zero.

2.2.2 Automatic parameter selection

A major obstacle in the log model is the choice of convenient parameters α, β, as a grid search

increases computation remarkably. Still, the problem can be avoided. The sparsity can depend

effectively on a single parameter, and Kalofolias proposes a method to set it automatically for an

average number of neighbours per node. The reduction of the grid search to a single parameter

tuning the sparsity of the graph is based in a two-step process. Firstly, it is shown in [10] that

all graphs that can be learned by model (2.11) can be equivalently computed by multiplying the

distances Z by θ = 1√
αβ

, using them to learn a graph with fixed parameters α = β = 1, and

multiplying all resulting weights by a factor δ =
√

α
β . The factor δ only changes the scaling of the

resulting solution, so in practice, the focus is on tuning parameter θ. This claim is formulated in

Theorem 2.2.1.

Theorem 2.2.1. Let W ∗(Z,α, β) denote the solution of the log model for input distances and

parameters α, β > 0.Then the same solution can be obtained with fixed parameters α = 1 and

β = 1, by multiplying the input distances by θ = 1√
αβ

and the resulting edges by δ =
√

α
β .

W ∗(Z,α, β) =

√
α

β
W ∗(

1√
αβ

Z, 1, 1) = δW ∗(θZ, 1, 1) (2.14)

The last step for automating parameter selection is to find a relationship between θ and the

desired graph sparsity ks (i.e. the average number of neighbors per node).

2.3 Spectral clustering

Clustering algorithms provide a useful instrument to explore data structures. The aim of clustering

methods is to collect patterns on the basis of a similarity (or dissimilarity) criteria where clusters

are sets of similar patterns.

Clustering techniques can be roughly divided into two categories: hierarchical and partitioning.

Hierarchical clustering techniques [14] are able to find structures which can be further divided in

substructures and so on recursively. The result is a hierarchical structure of groups known as

dendrogram.
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Partitioning clustering methods try to obtain a single partition of data and are often based

on the optimization of an adequate objective function. One example is the well-known K-means

clustering.

A particular efficient and popular class of partitioning clustering methods is spectral clustering,

which arises from concepts in spectral graph theory. Spectral clustering became popular with,

among others, [15, 16]. The basic idea is to construct a weighted graph from the initial data

set where each vertex represents a data point and each weighted edge measures the similarity

between two data points. Once a graph is built, spectral decomposition methods are employed

on the adjacency matrix of the graph to construct spectral embeddings where other classes of

partitioning algorithms such as k-means can be used. The clustering problem can be seen as a

graph cut problem, which can be addressed by means of the spectral graph theory. In fact, there

is a very fine linkage between the graph cut problem and spectral graph theory.

Figure 2.1: A toy graph with a partition into two disjoints subsets A and B.

Consider a partition of the weighted graph, G, depicted in Figure 2.1 into two disjoint vertices

subsets, A and B. The Min-Cut problem tries to partition graph into two sets A and B such that

weight of the edges connecting vertices in A to vertices in B is minimum. One intuitive goal is to

find the partition that minimizes (2.15), the so-called cut cost function.

cut(A,B) =
∑

i∈A,j∈B
wij (2.15)

This bi-partitioning problem often yields non satisfactory partitions, as it isolates vertices from

the rest of the graph for some graph instances. Consider the following function that measures the

size of a subset A ⊆ V:

vol(A) =
∑
i∈A

di (2.16)

where di denotes the node degree of an undirected graph. Intuitively, vol(A) measures the size

of A by summing over the degrees of vertices in A. Then the normalized min-cut problem, also

called NCut, which takes into account the size of the clusters, is stated as follows
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Ncut(A,B) = cut(A,B)(
1

vol(A)
+

1

vol(B)
) (2.17)

The Ncut problem belongs to a complexity class of problems called NP-hard, for which no

polynomial-time algorithm capable of solving it exists. It has been demonstrated [9] that spectral

clustering with the normalized Laplacian is an approximation to the graph partitioning problem.

The semi-optimal solution for this relaxed version of the problem is the second eigenvector of the

graph’s Laplacian, the Fielder vector. Cuts based on the second eigenvector give a guaranteed

approximation to the optimal cut [9]. This method can be extended to finding k clusters by using

recursion or computing more eigenvectors.

The core theory of spectral clustering is to find a low-dimensional spectral embedding of the

weighted graph, achieved by an eigenvalue decomposition of the Laplacian matrix of the weighted

graph where clusters properties are enhanced. Next, the general guidelines to perform spectral

clustering inspired by [17] are reviewed.

Given a set of data points x1, . . . ,xN and some notion of similarity wij ≥ 0 between all pairs of

data points xi and xj , a way of representing the data is in form of the similarity graph G = (V, E).

Each vertex or node vi in this graph represents a data point xi. Two vertices are connected if the

similarity aij between the corresponding data points xi and xj is positive or larger than a certain

threshold, and the edge is weighted by wij . The problem of clustering can now be reformulated

using the similarity graph: we want to find a partition of the graph such that the edges between

different groups have very low weights (which means that points in different clusters are dissimilar

from each other) and the edges within a group have high weights (which means that points within

the same cluster are similar to each other).

The main tools for spectral clustering are graph Laplacian matrices. In particular, this al-

gorithm makes use of the normalized Laplacian for its well-known properties. To highlight one

of the weakness of unnormalized Laplacians, its spectrum is influenced by the nodes having the

highest vertex degree. This can lead to the high degree nodes masking the nodes with lower vertex

degrees, and consequently leads to loss of sensitivity to complex structure. The spectral clustering

steps are summarized in Algorithm 1.

Algorithm 1 Spectral Clustering procedure

1: procedure Spectral clustering
2: Input : Weighted adjacency matrix W, number of clusters k
3: Build normalized laplacian LN
4: Compute the first k eigenvectors {v1, . . . ,vk} associated to the k smallest eigenvalues of

LN
5: Build the matrix V ∈ RN×k with the eigenvectors as columns.
6: For i = {1, . . . , N}, let yi ∈ Rk be the vector corresponding to the i-th row of V
7: Cluster the points {yi}i=1,...,N with k-means into clusters C1, . . . Ck
8: Output : Clusters A1, . . . , Ak with Ai = {j|yj ∈ Ci}
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2.3.1 Spectral clustering analysis

Consider an ideal case where some graph G has k connected components . Without loss of

generality, assume that the nodes of the graph are ordered according to the connected components

they pertain to. In this case, the weighted adjacency matrix W has a block diagonal form, and

the same happens for L

L =


L1

L2

. . .

Lk

 (2.18)

Notice that each of the blocks Li is well-defined Laplacian on its own, specifically the Laplacian

corresponding to the subgraph of the i-th connected component. The spectrum of L is given by

the union of the spectra of Li, and the corresponding eigenvectors of L are the eigenvectors of

Li, filled with 0 at the locations of the other blocks. As each Li is a Laplacian of a connected

graph, it is known that every Li has eigenvalue 0 with multiplicity 1, and the corresponding

eigenvector is the constant one vector 1 on the i-th connected component. Consequently, the

matrix L has as many eigenvalues with value 0 as there are connected components, and the

correspondent eigenvectors are the vectors indicating the positions of the connected components

on the graph. This assumption hols true for the ideal case, but in real-world scenarios, graphs

not always contain k connected components. However, spectral clustering still can work for the

case of a graph containing weakly connections between components.



Chapter 3

Clustering pipeline of Hi-C contact

maps

In this chapter, the strategy to explore the 3D spatial structure of the nucleus of a Jurkat cell

infected with the human immunodeficiency virus (HIV) is discussed. Given that the role of nuclear

architecture in viral infection is known to be important, the main goal is to test the hypothesis

that HIV viruses have a non-random insertion pattern in the host’s genome [18] by interpreting

the relationship between HIV integration spots and genome organization. The viral DNA accesses

the chromatin of the cell nucleus and integrates itself in the host chromosomal DNA. The Hi-C

data of the Jurkat genome can provide a 3D view of the nuclear organization of the cell. To

achieve this task, the Jurkat genome is segmented into spatial clusters. For each chromosome,

K1 clusters of loci enriched in self interactions were generated and then coalesced down to K2

genome-wide clusters based on their inter-chromosomal contacts. These genome-wide clusters are

evaluated to indicate whether 3D genome organization of Jurkat cells is an important factor in of

the HIV insertion process.

A metric named A/B score is used to biologically interpret the resulting clusters and test the

stated hypothesis. Hi-C data have shown that transcribed genes make preferential contacts with

other transcribed genes, forming a spatial cluster known as the A compartment. Reciprocally,

silent genes form a spatial cluster known as the B compartment. The loci of the B compartment

are usually in contact with the nuclear outer shell, i.e. the periphery of the nucleus. However,

the transcribed genes in contact with the nuclear pores are also peripheral, making the nuclear

periphery a composite environment, with features of either silent or active chromatin. The A/B

score will help characterizing the presence of these two spatial clusters within the resulting genome-

wide communities.

Two clustering methods are implemented to asses the consistency of the detected structure:

a Pearson correlation and a graph learning based spectral clustering. Moreover, the clustering

methods are quantitatively evaluated to objectively measure of the true genome-wide structure of

the nucleus resulting from this particular Hi-C experiment.

29
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3.1 Hi-C Jurkat cell data and HIV insertion hotspots

The available data is a Hi-C assay performed with the protocol published by [19] with modifi-

cations. Briefly, one million cells are used for the experiment. Hi-C on uninfected Jurkat cells

yielded 1.5 billion informative contacts [20]. The resolution of the Hi-C dataset, determined by

the sequencing depth and others factors, is about 5 kilo-base pairs (5kbp) per genome bin. To

our knowledge, this dataset constitutes the highest resolution Hi-C experiment presently available

in Jurkat cells. The Jurkat cell has two copies of each autosome but only one copy of each sex

chromosome, adding up to 23 pairs of chromosomes. In addition, chromosomes X and Y are

targeted less frequently than autosomes. In this work, we will consider only the set of autosomes,

therefore the number of chromosomes analyzed is Nchr = 22. Two kinds of Hi-C maps are avail-

able: intra-chromosomal and inter-chromosomal. The length of each chromosome as the number

of genomic bins at 5kbp per bin is displayed in Figure 3.1, which in fact determines the size of

the raw Hi-C matrices.
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Figure 3.1: Length of each chromosome in genomic bins units

The Hi-C maps of the larger chromosomes are usually sparse matrices. In a parallel experi-

ment [18], a list of integration spots of the HIV virus on a infected Jurkat genome were sequenced.

The authors developed a method called Barcoded HIV ensembles (B-HIVE) to map the genomic

positions of thousands of individual viruses in an infected cell population. Another list of chromo-

somal locations or genomic positions of HIV integration spots is obtained from [21], thus providing

more samples for the raw data describing HIV insertion spots. These two independent lists, gen-

erated on very similar Jurkat cell models, will be analyzed to evaluate the insertion patterns in

the genome-wide communities.
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3.2 Pre-processing Hi-C data

Let Hc ∈ RLc×Lc be the symmetric and non-negative matrix of interaction between the genome

regions of a given chromosome c, where c = 1, . . . , Nchr and Lc is the length of chromosome c in

genomic bins. Therefore, the element hcij denotes the number of contacts detected between loci i

and loci j of the genome. At higher resolution, these matrices are typically very sparse and noisy,

so signals or patterns revealing some kind of structure are often hidden.

The intra-chromosomal raw Hi-C matrix of chromosome 14 is depicted as an intensity heatmap

in Figure 3.2. The Topologically Associating Domains (TADs) and loop domains are clearly visible

on the raw Hi-C map in 5 kbp bins, showing that the Hi-C experiment captures the basic structural

features of the Jurkat genome.
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Figure 3.2: Raw Hi-C map of chromosome 14

In order to eliminate possible biases, the HiC matrices are processed as follows: some blank

areas that correspond to a part of the chromosome called centromere are removed. This region is

unmappable due to the existence of duplicated reads, so no Hi-C information is available.

After removing the centromere region, the Hi-C matrix is normalized by the Observed over

Expected (OE) procedure to remove the distance effect. Recall that closely spaced loci are likely

to have large Hi-C read counts regardless of their specific conformation. The normalization divides

the (i, j)-th entry of a Hi-C matrix by the mean of Hi-C reads of all matrix entries at the same

distance d = |i− j|. Let Uc ∈ RLc×Lc be the normalized Hi-C matrix with entries

ucij =
hcij
fd

(3.1)
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where fd is the so-called expected contact frequency coefficient at distance d = |i − j|. These

coefficients are computed using all the intra-chromosomal matrices. Mathematically, this step is

described as:

fd =

Nchr∑
c=1

∑
(i,j)∈Id

hcij

Nchr∑
c=1

Lc,d

(3.2)

The term Lc,d defines the possible number of pairs of genomic positions separated by d on a

given chromosome, and Id = {(i, j) | i − j = d, 0 < i ≤ Lc, 0 < j ≤ Lc} is the set of matrix

elements at a distance d = |i− j|. Moreover, it is also common to apply a simple outlier removal

method to the normalized Hi-C matrix Uc. The OE matrix is saturated to the 90-th percentile

of the matrix data. The dynamic range of the values of the matrix is effectively reduced. The

resulting heatmap after pre-processing a raw Hi-C matrix is shown in Figure 3.3.
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Figure 3.3: Log-scale processed Hi-C map after applying O/E normalization and percentile satu-
ration

3.3 A/B clustering at Mega base pairs scale

In this section, an experiment to test that our data is consistent with the A/B compartmental-

ization of the chromosome territory structure at the mega base pair (Mbp) scale is carried out.

At this lower resolution, processing time of the Hi-C matrices is not as significant and the A/B
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compartmentalization is highlighted.

Recall that within each chromosome territory, compartments originally termed A and B, each

of several mega pair-bases, tend to associate within each single chromosome, reflecting the prefer-

ential association of gene-rich regions and their segregation from gene-poor regions. The objective

of this section is to explore the method that revealed this insight.

The method described below is based on [6]. The spatial clustering is performed on the Hi-C

interaction count matrix of a particular chromosome c. The resolution of Hi-C bins is 1 Mbp,

meaning that each genomic coordinate or loci spans 1 mega base-pairs of the linear genome. The

clustering method follows these general steps:

1. Pre-process the Hi-C matrix.

2. Perform PCA with the Pearson correlation matrix on the normalized Hi-C matrix.

3. Assign A/B compartments to the peaks and valleys of the first principal component with

some threshold criteria.

The raw Hi-C matrix of chromosome 16 is firstly pre-processed with the O/E procedure and the

matrix entries are saturated at the 90-th percentile of the data. The resulting heatmap is depicted

in Figure 3.4.

The Pearson correlation coefficient is a measure for linear relationships between two normal

distributed variables. Usually, a Pearson coefficient with a value of 1 represents a perfect positive

relationship, -1 a perfect negative relationship, and 0 indicates the absence of a relationship

between variables. The coefficients of the Pearson correlation matrix of Uc are computed as

follows:

pci,j =

∑Lc
k=1

(
uci,k − ūci

)(
uck,j − ūcj

)
√∑Lc

k=1

(
uci,k − ūci

)2√∑Lc
k=1

(
uck,j − ūcj

)2 (3.3)

where ucj = [uc1,j , . . . , u
c
Lc,j

]T denotes the j-th column of Uc, reflecting how a single loci interacts

with the rest of chromosome coordinates and ūcj = 1
Lc

∑Lc
k=1 u

c
k,j is the mean value of the j-th

column vector. The diag(Pc) is set to zero to avoid self-interacting loci, which do not contribute

relevant information about spatial organization.

The Pearson correlation matrix Pc displays a sharpened chessboard pattern in Figure 3.5,

highlighting the interactions among far distant regions within the chromosome. The interpretation

of the Pearson coefficients is that regions or loci that correlate positively and negatively interact

with the rest of loci in a similar manner, indicating that they might lie close in the 3D space, and

values close to zero denote that they are not similar at all and might not be anywhere near each

other.

The plaid pattern suggests that each chromosome can be decomposed into two sets of loci

(arbitrarily labeled A and B) such that contacts within each set are enriched and contacts between

sets are reduced.
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Figure 3.4: Pre-processed Hi-C matrix of chromosome 16 at 1 Mbps resolution
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Figure 3.5: Pearson correlation matrix of the pre-processed Hi-C map of chromosome 14
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For partitioning the chromosome, a principal component analysis (PCA) approach is taken,

by performing the eigendecomposition of the correlation matrix. The typical goal of a PCA is to

reduce the dimensionality of the original feature space by projecting it onto a smaller subspace,

where the eigenvectors will form the axes. In this case, the first eigenvector corresponding to the

largest eigenvalue is kept as the first principal component (PC).

The first principal component (PC) corresponds to the plaid pattern in Figure 3.6 (positive

values defining one set, negative values the other).
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Figure 3.6: The first PC and the Pearson correlation matrix aligned

To explore whether the two spatial compartments correspond to known features of the genome,

we would need to compare the compartments identified in our 1 Mb correlation maps to known

genetic and epigenetic features of this particular cell type. But, due to lack of availability of

genetic/epigenetic data-sets and that the scope of this work is limited to the technicality of the

clustering methods, no further experiments are carried on. This spatial configuration has already

been confirmed in human cells [6, 22].

3.4 Clustering methods

Modeling the spatial organization of chromosomes in a nucleus as a graph allows us to make use

spectral methods to quantitatively study their properties. A Hi-C matrix therefore associates a

graph to the genome, where vertices are defined by binned loci in the genome, and the edge weight
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between a pair of loci is proportional to their contact frequency. In this section, we introduce the

two main algorithms that are used in the clustering process of the genome interaction networks.

Both methods belong to the family of spectral clustering and are well suited for finding non-

compact/non-convex clusters. While the type of weighted adjacency matrix used by the algorithms

is different. Recall that the input to a spectral clustering algorithm is a similarity or adjacency

matrix and that the high-level main steps of a spectral clustering algorithm are

• Compute a spectral embedding of the similarity/adjacency matrix

• Employ a technique such as k-means to cluster the nodes in the low-dimensional spectral

embedding.

Figure 3.7: Graph theoretic approach for modelling Hi-C contacts

Firstly, a spectral clustering method based on the Pearson correlation proposed in [20] is

reviewed. It will serve as a baseline method. This clustering method is very similar to the PCA

clustering method described in Section 3.3. The objective is to generate K partitions of the

intra-chromosomal interaction network. The general methodology is detailed in Algorithm 2.

Algorithm 2 Correlation-based Spectral clustering

1: procedure Correlation-based Spectral clustering
2: Input : normalized Hi-C matrix Uc ∈ RLc×Lc , number of clusters K
3: Compute the Pearson correlation matrix, C
4: Compute the first K eigenvectors {v1, . . . ,vK} associated to the K largest eigenvalues of

C
5: Build the matrix V ∈ RN×K with the eigenvectors as columns.
6: For i = {1, . . . , N}, let yi ∈ RK be the vector corresponding to the i-th row of V
7: Cluster the points {yi}i=1,...,N with k-means algorithm into clusters C1, . . . CK
8: Output : Clusters A1, . . . , AK with Ai = {j|yj ∈ Ci}

Additionally, another spectral clustering algorithm is proposed for comparison, the approach

consists on learning a new weighted adjacency matrix W from the Hi-C matrix through the graph

learning method and applying the classic spectral clustering procedure to produce the labeling

of the nodes, e.g the coordinates or locus of the chromosomes graphs. In this case, the weight

edges of the adjacency matrix are not signed (i.e wi,j ∈ R+), such that the formal assumptions
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for spectral graph theory are fullfilled. The algorithm computes an eigendecompostion of the

Laplacian matrix and selects the K eigenvectors associated to the smallest eigenvalues to form

the clustering embedding for k-means. The procedure is detailed in Algorithm 3.

Algorithm 3 Graph learning based Spectral clustering

1: procedure Graph learning based Spectral clustering
2: Input : Normalized Hi-C matrix Uc ∈ RLc×Lc , number of clusters K, graph sparsity level

k
3: Scale and center Uc to have zero mean and unit variance.
4: Compute the Euclidean distance matrix, Zc, of Uc.
5: Apply the graph learning procedure to generate a weighted adjacency matrix, called W,

with a graph sparsity level of approximately k neighbours per node.
6: Construct the normalized laplacian LN of W .
7: Compute the first K eigenvectors {v1, . . . ,vK} associated to the K smallest eigenvalues

of LN

8: Build the matrix V ∈ RN×K with the eigenvectors as columns.
9: For i = {1, . . . , N}, let yi ∈ RK be the vector correspoding to the i− th row of V

10: Cluster the points {yi}i=1,...,N with k-means algorithm into clusters C1, . . . CK
11: Output : Clusters A1, . . . , AK with Ai = {j|yj ∈ Ci}

As we will see in section 3.6, these two clustering tools will be employed to detect the self-

interacting communities in the Hi-C maps.

3.5 Case study: Graph learning applied to chromosome 16

In this sub-section, a walk-through of the graph learning step of the spectral clustering algorithm

is given. The initial dataset is the normalized intra-chromosomal contact matrix, U, generated

from the Hi-C experiments for chromosome 16. The heatmap of the normalized intra-chromosomal

matrix can be visualized in Figure 3.8, the dynamic range of the intensity values has been reduced

for better figure representation.

The first step towards learning a graph from the intra-chromosomal map is to compute the

pairwise distances matrix , Z, where zi,j = ||ui − uj||2 and ui is the i-th column vector of U.

The next step consists on applying the learning procedure defined in Equation (2.13), the so-

called log model, to generate a weighted adjacency matrix W. The inputs to this method are the

Euclidean distance matrix Z and parameter θ, that is automatically set by specifying the desired

graph sparsity level, ks, as explained in Section 2.2.2. The convex optimization solver for this

procedure is explained in [10]. The edge mask used to restrict the set of allowed edges is defined

in Section 3.5.1.

3.5.1 Edge mask selection

Recall that the intra-chromosomal maps are matrices of moderate size. In this sub-section, a bi-

nary edge mask based on the structure of the Pearson correlation matrix is introduced, the masked
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Figure 3.8: Normalized intra-chromosomal contact matrix U of chromosome 16

Figure 3.9: Normalized pairwise Euclidean distance matrix Z
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edges are ignored by the learning algorithm, thus alleviating the computational complexity of the

process. At first glance, the matrix has very well defined plaid pattern that reveals community

structure between nodes. We will use this prior information to filter out edges that are not needed

for our enhanced weighted adjacency matrix.

Figure 3.10: The Pearson correlation matrix for chromosome 16

Since we want to connect pairs of loci with similar interaction patterns with the rest of the

genome, a threshold γ is used to filter out low values of the pairwise correlation between bins. Let

M ∈ ZLc×Lc
2 be the binary edge mask and C the Pearson correlation matrix, the entries of the

mask are computed as follows

mi,j =

1 if ci,j ≥ γ

0 otherwise
(3.4)

The sparsity of the resulting binary edge mask, defined as the number of non-zeros divided by

the total number of entries, denotes the fraction of allowed edges for the optimization algorithm..

For different values of γ, the resulting sparsities are shown in Table 3.1.

To get an idea of the overall distribution of the Pearson correlation coefficients, we plot the

histogram of the Pearson correlation in Figure 3.11.

The threshold γ is set to have sufficient coverage for the parameter ks controlling the number of

neighbouring edges per node in the optimization procedure. The cardinality of the set of allowed

edges in the mask must be larger than ksLc, where Lc is the number of nodes in the adjacency

matrix of the intra-chromosomal Hi-C map.
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γ (threshold) Sparsity ratio of
edge mask

-0.10 0.2374

0.05 0.1893

0.25 0.1373

0.5 0.089

Table 3.1: Sparsity ratio of the edge mask for different Pearson coefficients based thresholds

Figure 3.11: The histogram of the Pearson correlation matrix for chromosome 16
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3.5.2 Learned weighted adjacency matrix of the intra-chromosomal Hi-C map

Under the Pearson correlation threshold criteria, for a threshold γ = 0.05, we present the learned

weighted adjacency matrices for different values of ks. It is worth noting that with the use of an

edge mask the running time of the procedure is significantly reduced.

Figure 3.12: Smoothed weighted adjacency matrix for different graph sparsity levels

A value of ks must be selected in order to proceed with the clustering algorithm. The value

ks must be kept low to maintain the sparnesses of the adjacency matrices. For the range of

chromosomes 1, . . . , Nchr, the parameter ks for each chromosome is selected empirically and shown

in Table 3.2.

Chromosomes ks
1-12 3000

13-18 1500

19-22 500

Table 3.2: Value of ks selected for different ranges of chromosomes

The threshold γ of the correlation matrix to form the edges mask of each chromosome is

automatically set to give enough room for the learning method to output the desired final sparsity.

3.6 3D spatial clustering pipeline

In this section, the strategy followed to inspect the 3D genome snapshot of this Jurkat-wild type

cell at the 5 kbp resolution of the available HiC maps is presented. A data processing approach

inspired in [20] is used to obtain a few global genome communities at the nuclear level, beyond

the intra-chromosomal level interactions, that describe the 3D structure of the analyzed cell. The

clustering strategy is divided into two steps,also represented in Figure 3.13:

• Dimensionality reduction: the first step consists inreducing the high dimensionality of

the intra-chromosomal maps by producing a set of clusters {A1, . . . , AK1} for each intra-

chromosomal Hi-C map. This procedure is repeated for each of the chromosomal Hi-C

maps, a total of Nchr times.

• Genome wide clustering: By summing up the interactions among the clustered chromo-

somal loci of all chromosomes, a normalized inter-chromosomal map describing the density

of contacts between loci in different chromosome is generated. Then, by using a cluster-

ing method of choice, a set of global compartments {I1, . . . , IK2} at genome-wide scale are

identified on this inter-chromosomal map.
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Figure 3.13: Clustering strategy yielding genome wide communities over the set of Nchr chromo-
somes

3.6.1 Dimensionality reduction

The spatial segmentation of the Jurkat genome begins by applying a spectral clustering method

on the intra-chromosomal maps of all chromosomes. The parameter K1, defining the number of

clusters to detect, dictates the dimensionality reduction factor, thus representing the coarseness

of the grid where all inter-chromosomal combinations are represented. The intra-chromosomal

Hi-C matrices are pre-processed, as explained in Section 3.2, to add robustness to the posterior

clustering and eliminate bias such as the linear genome distance effect. Depending on the clustering

method of choice, different kinds of adjacency or distance matrices are firstly generated.

If correlation based clustering is used, the Pearson correlation matrix of the normalized intra-

chromosomal Hi-C map Uc of a given chromosome c is computed. On the other hand, when em-

ploying the graph learning procedure, an enhanced adjacency matrix is derived from Uc through

an optimization method. In order to reduce the computational complexity of the learning algo-

rithm at this step where the high dimensionality of the Hi-C data imposes moderate and large

matrix sizes, an edge mask based on the Pearson correlation of these maps is used to reduce

this complexity and filter out unnecessary edges, which are automatically set to zero during the

learning process.

The first round of clustering contains the major computational bottlenecks of the whole

pipeline. The length of chromosomes can be in the order of tens of thousands of 5kbp bins. For

example, the length of chromosome 1 results in L1 ≈ 50000. In particular, the clustering phase

is dominated by the spectral decomposition of the adjacency matrix W and the computation of

the pairwise Euclidean distance matrices and the Pearson correlation matrices. Their footprint in
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memory can also be notable. This eigenvalue decomposition computation can be performed more

efficiently by only computing a few of the first smallest eigenvalues and the associated eigenvectors

instead of the whole spectrum.

3.6.2 Genome wide clustering

After the first round of clustering, a new weighted adjacency matrix WG is built, representing

a graph where its nodes are the intra-chromosomals clusters and the weighted edges reflect a

normalized interaction score between communities of different chromosomes. Each (i, j)-th entry

of WG is the aggregated count of inter Hi-C reads between the set of loci in community Ak of

chromosome i and the set of loci in community Al of chromosome j, where i 6= j and k, l ∈
{1, . . . ,K1}. Recall that this information is made available via the inter-chromosomal Hi-C maps

of the Jurkat cell. This aggregated count is normalized by the sizes of the communities such

that the units of the matrix values are [Hi-C reads / kbp2], allowing communities of different loci

spans to be fairly compared. This normalization results into measuring densities of contacts in

a 2D region. The matrix WG ∈ R(K1Nchr)×(K1Nchr) is symmetric and can be interpreted as the

adjacency matrix of a graph. The heatmap of WG is shown in Figure 3.14.
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Figure 3.14: Log-scale heatmap of the inter-chromosomal Hi-C density score matrix

Please notice that the aggregated interactions among intra-communities are not considered

and furthermore eliminated as they add no relevant information of the overall organization at the
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nuclear genome scale and they would mask patterns

The final round of clustering is performed on WG. The goal is to find K2 clusters describing

the 3D overall architecture of the genome. At this stage, there is no need for OE normalization

as we are only considering inter-connections between locus of different chromosomes, so the linear

genome distance effect is not present.

As in the first stage of the 3D spatial clustering approach, depending on the requirements of

the clustering method, a different type of adjacency matrix is employed as input to the spectral

decomposition procedure. Therefore, when using the correlation-based clustering algorithm, the

Pearson correlation matrix of the inter-chromosomal map WG is computed. The Pearson correla-

tion matrix, shown in Figure 3.15, can be interpreted as a signed weighted adjacency matrix that

highlights hubs of chromosomal communities in the whole genome map and sharpens transitions

among chromosomal clusters behaving differently with the rest of the nucleus, indicating they

might not be co-located. A higher correlation coefficient in absolute value terms shows that these

chromosomal clusters might lie close together in the 3D space of the nucleus.
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Figure 3.15: Heatmap of the Pearson correlation matrix of WG

The spectral clustering algorithm based on graph learning applies an optimization procedure

to learn a weighted adjacency matrix from data prior to the spectral decomposition phase. In

this case, the data is the matrix WG and the goal is to produce an enhanced weighted adjacency

matrix version, more suited for a clustering method to discover structure. Recall that the desired
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graph sparsity level must be given as input to the learning algorithm. A value of ks = 50 is

empirically chosen. It is preferable to set ks large enough, so that the algorithm itself decides

whether an edge weight should be zero or not. The heatmap of the learned adjacency matrix is

depicted in Figure 3.16.
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Figure 3.16: Heatmap of the learned inter-chromosomal adjacency matrix

3.6.3 Results

In this section, we conduct experiments to evaluate the genome wide clustering. Both spectral

clustering algorithms are analyzed and compared. It is particularly interesting to extract insights

from the final round of clustering. The main target of our work to find community structure on

the overall spatial organization of the Jurkat cell. Several methods exists to test the performance

the clustering methods; we will focus mainly on a quantitative characterization of the results of

the k-means partitioning by exploring the optimal number of clusters K2 through metrics such as

the silhouette index, the k-means objective function and the analysis of the eigenvalue spectrum

of the Laplacian matrix. Although it is important to be cautious about what exactly is optimal

in this biological experiment setting, a quantitative analysis will help us establishing the ground

rules for algorithm comparison. Then, a biological inspired metric called A/B score will be used

to quantify the two types of chromatin present in the genome wide communities, such that an

active/non-active genomic score can be assigned to each detected cluster. The latter will help us
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identify whether meaningful structure is captured or not. Finally, the HIV insertion distribution

throughout the genome-wide communities will be studied.

In the first round of clustering, namely the dimensionality reduction stage, k-means is employed

on the spectral embedding of the intra-chromosomal adjacency matrices of all chromosomes with

the number of clusters to search for set to K1 = 15. As it is known, the quality of k-means

clustering is quite sensitive to the selection of initial number of cluster centers, thus the algorithm

is randomly initiated ten rounds to add robustness to the final clustering.

In the second round of clustering, k-means with ten random restarts is also employed on the

spectral embeddings obtained with both clustering methods. At this point, K2 needs to be set

manually which poses a significant challenge if the cluster structure is not pronounced. To begin

with the clustering analysis, we start by analyzing the well-known elbow method to evaluate the

consistency and the goodness of the K-means procedure. It also helps identifying the appropriate

number of clusters. This method evaluates the K-means objective function that the clustering

procedure is trying to minimize with the number of clusters as a hyper-parameter. For both

spectral clustering methods, the evaluation of the K-means cost function with the number of

clusters is represented in Figures 3.17 and 3.18. Results indicate that the number of communities

that minimize the cost function is very low and both algorithms show a very clear trend, increasing

the number of clusters does not result on a better k-means score.

Figure 3.17: Spectral clustering based
on Pearson correlation: k-means cost
function evaluation

Figure 3.18: Spectral clustering based
on graph learning: k-means cost func-
tion evaluation

Another tool to analyze the consistency within the detected clusters is the silhouette analysis,

which explores the separation distance between the resulting clusters. The silhouette coefficient

quantifies how close each sample in one cluster is to samples in the neighboring clusters and

thus provides a way to assess the number of clusters visually. In this work, samples refer to

the Nchr ×K1 chromosomal communities. The measure has a range of [-1, 1]. To interpret the

measure, positive values show that the sample is far away from the neighboring clusters. A value

of 0 indicates that the sample is very close to the decision boundary between two neighboring

clusters and negative values indicate that those samples might have been assigned to the wrong

cluster.
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The silhouette metric is computed as the average of the silhouette coefficients of all samples.

The silhouette plot is displayed in figure 3.19. Results from both spectral clustering methods are

consistent with the elbow method, a higher number of clusters does not correspond with better

silhouette score, rather indicating that the number of clusters present on the inter-chromosomal

graph is low.

Figure 3.19: Silhouette analysis for both spectral methods

In the graph learning based spectral clustering algorithm, the Laplacian matrix of the adja-

cency matrix is computed. The eigenvalue spectrum of the Laplacian matrix provides another

way of estimating a proper K2 through an heuristic called eigengap [17]. Intuitively, only the

first eigenvalue of this Laplacian matrix equals exactly 0, K2− 1 eigenvalues are practically equal

to 0, and the rest is significantly different from 0. Thus, indicating that the position with the

largest absolute difference value between successive eigenvalues is the right number of clusters.

The eigengap is displayed in Figure 3.20. The greatest absolute difference between successive

eigenvalues is found at a K2 = 1, indicating that the Laplacian has a single block structure. The

first eigenvalue of the Laplacian matrix clearly corresponds to 0.

The clustering validation performed previously reveals that there is no clear definition of

the optimal number of clusters, concluding that no strong connected components appear on the

genome wide graph. To continue with the analysis, we manually set K2 = 5, a relatively low

number of clusters. A particularly interesting property is how the first round chromosomal com-

munitiesare distributed throughout the detected K2 communities, in both the spectral graph

clustering methods. The distribution is plotted in Figure 3.21 and shows that there are no promi-

nent clusters acquiring most of nodes, which in turn is reasonable because k-means tends to output

compact clusters. Both algorithms achieve a fairly similar distribution of nodes in their respective
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Figure 3.20: Eigenvalue spectrum of the laplacian matrix in the graph learning based clustering

communities. Notice that clusters are ordered and labeled by size.

The A/B score is derived from the eigenvector associated to the highest eigenvalue of the

Pearson correlation matrix, the vector v1 ∈ RLc . Recall that, at low base pairs resolution, these

intra-chromosomal maps exhibit a binary community structure, namely two regions called A and

B can be found. The A/B reference regions are set to be the top/bottom 10% entries of v1

respectively. This results in two sets A = {i : v1(i) ≥ P90} and B = {i : v1(i) ≤ P10}, where

Pp denotes the p-th percentile of the vector v1, denoting the genomic bins within the A and B

reference regions respectively. To compute the A/B score, for each row of the Pearson correlation

matrix, the following quantities are computed as the sum of the correlation row values over the

A and B reference regions, respectively, as

as(i) =
∑
j∈A

Cij , bs(i) =
∑
j∈B

Cij

am(i) =
∑
j∈A

∣∣Cij

∣∣ , bm(i) =
∑
j∈B

∣∣Cij

∣∣ (3.5)

Finally, the A/B score is calculated as follows

AB(i) =
as(i)− bs(i)

am(i) + bm(i)
· 100 (3.6)

where AB ∈ RLc is the A/B score vector of a given chromosomal Pearson correlation matrix.

This vector is obtained for all the Nchr chromosomes, producing an A/B quantity for the all the

individual loci available from all chromosomes. This measure has a range of [-100,100], yielding

values between 100 for A-like regions and -100 for B-like regions. Ambiguous regions that are
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Figure 3.21: Clusters node distribution for K2 = 5 ordered by community size

identically in contact with the reference A and B regions, or that might not be in contact with

them at all, will have AB scores close to 0. Up to this point, we have access to a catalogue of

A/B scores for each loci or genomic bins of all the chromosomes. To study the A/B properties of

the resulting clusters, we analyze the distribution of A/B score in the genomic loci of the genome-

wide communities through the statistical tool named box plot. A box plot is a standardized way

of displaying the distribution of data that summarizes key properties such as the median, the

minimum and maximum, how tightly the data is, and if and how data is skewed.

Figure 3.22: A/B score distribution for the
Correlation based spectral clustering

Figure 3.23: A/B score distribution for the
Graph learning based spectral clustering

The red and green lines represent the medians of the A/B score distribution. The top and

bottom sides of the rectangles represent the lowest and highest A/B values. The A/B scores are
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ordered by the value of their medians. These A/B scores help identifying what kind of chromatin

composes the genome wide communities. Ideally, a partitioning that reveals very concentrated

A/B scores could indicate some form of meaningful clustering. But, even if the spread of values is

significant in Figures 3.22, the medians still show a diverse scenario of the A/B genomic feature

in this clustering. There are clusters that tend to have more A-like regions than B-like and the

opposite as well. The A/B scores are ordered by the median value for better visualization. It is

noticeable that both spectral algorithms yield very similar results.

Finally, we proceed to evaluate the HIV insertion distribution on these genome wide commu-

nities and see how the distribution correlates with the A/B score properties. To do so, the two

independent lists of HIV pro-viruses insertion sites are processed. The genomic coordinates on

the Nchr chromosomes of each insertion site at the 5kbp resolution is available, thus a count of the

total number of insertions per genome wide cluster can be extracted. Tables 3.3 and 3.4 reflect

the analysis of HIV insertion on the detected communities for each spectral clustering method.

The average density of HIV insertions on a particular community (i.e. normalized by community

size in base pairs) compared to its A/B score median allows to asses whether the HIV virus has a

tendency to cluster around A-like regions. The HIV insertion average density is computed as the

average of HIV insertion densities of the two independent HIV insertion lists. The results indicate

that communities with higher A/B score median have a higher density of HIV insertions. Note

that clusters are arbitrarily labeled.

Pearson correlation

Cluster labels Cluster size (bins) A/B score median HIV insertions HIV insertion av-
erage density

0 40970 5.95 6194 0.076
1 68400 17.64 5915 0.043
2 51281 -43.34 3668 0.037
3 213915 -15.87 17453 0.041
4 158662 27.5 19064 0.061

Table 3.3: Pearson correlation based spectral clustering: HIV insertions average density and
medians of A/B scores for each genome wide cluster label

Graph learning

Cluster labels Cluster size (bins) A/B score median HIV insertions HIV insertion av-
erage density

0 151221 -3.2 10328 0.035
1 151092 -29.61 19062 0.060
2 151193 27.33 8244 0.025
3 23198 -37.04 254 0.005
4 56524 27.32 14406 0.13

Table 3.4: Graph learning based spectral clustering: HIV insertion average density and medians
of A/B scores for each genome wide cluster label
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Conclusions and future work

In this work, the 3D structure of the genome of a human Jurkat cell is characterized through a

graph theoretic approach, by using spectral clustering methods, of the Hi-C available data. The

Hi-C data describes the intra-chromosomals and inter-chromosomals interaction networks and

serves as the starting point for modelling the 3D spatial organization of the genome. A two-step

procedure is carried out to detect the genome-wide communities present in the nucleus of the cell,

where most of DNA chromatin lies. Then by analyzing the resulting genome-wide communities,

the overall 3D cluster structure turns out to be not so distinguished but for a relatively small

number of clusters, results partially confirm a widely known assumption, the integration of HIV

virus in the human genome is non-random. The provirus preferentially targets gene-rich chromo-

somes, chromatin regions that are transcriptionally active. The 3D spatial organization for the

genome is known to have a major role on the behaviour of the HIV virus and understanding this

relationship could be key to design a cure for it. The main obstacle to cure HIV is the presence

of latent or silent virus in infected patients, the mechanisms of latency are far more complex

than the mechanisms of HIV integration, but they may also be induced by chromatin structure

context. Thus the expression sites of HIV do not exactly correspond with the insertion sites

of HIV. In general, these insights may help construct better antiretroviral therapies (ART), the

standard method to suppress HIV, and others strategies. Current therapies are able to suppress

HIV replication mechanisms to undetectable levels in the blood, however reservoirs of silent virus

are invisible to this treatment and HIV can rapidly bounce back into replicating. In summary, the

HIV latency/expression patterns (from silent to active or reverse) are far from being understood

with this simple analysis of the 3D genome context.

Future work could follow many lines of research, but if the focus is put on mathematical

modelling, the most promising are:

• Construct a different approach, instead of clustering intra-chromosomal Hi-C maps, cluster

the inter-chromosomals Hi-c maps at a lower resolution, so that the interaction maps are

less sparse, to detect the genome-wide communities.

• Explore different normalization procedures to enhance the Hi-C matrices. The pre-processing

51
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of the Hi-C data is a fundamental step of this whole analysis.
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