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Abstract
The seismic response of tensile membrane structures (TMS) is investigated. To the authors 
knowledge, this is the first study on TMSs subjected to a seismic record reported in the 
literature. A type of membrane structures usually considered as a reference in other works 
are employed in the present study. The selected hyperbolic-paraboloid fabric structures, 
also referred as hypar TMSs, are subjected to an earthquake accelerogram from a relatively 
large earthquake recorded at Norcia, Italy. To obtain the TMSs seismic re-
 sponse, a finite element formulation reported in a previous study, and which accounts for 
wrinkling phenomena, orthotropic material modeling, and geometrical nonlinearity, is 
employed. The analyses are performed in two stages; first for the prestressed case and then 
the seismic loading is added. It is found that the seismic response of TMSs should not be 
disregarded by designers beforehand, since important increments in the dynamic response 
of the displacements produce an incremet of around 9% for stresses. However, a very 
important increment of around 80% for support reaction forces is computed, when 
compared with the static case. It is also found that the orientation of the frame-supporting 
structure has a significant impact on the computed seismic reactions.
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1. Introduction
The structural analysis and design of tensile membrane 
structures (TMS) is a subject that has become important in 
recent years and some methodologies and recommendations 
have arisen to cope with the complex behavior of these light 
weight structures with impressive designs. Noticeably, the TMS 
analysis and design concerns are focused on certain types of 
loads which are considered critical for fabric structures. Recent 
studies focus primarily in demands on TMS due to wind and 
snow loads to analyze the structures, to compute their reliability 
and to review other aspects (e.g., [1-8].

The seismic response of TMSs is virtually absent in the 
literature, and recommended guidelines (e.g., [9]) and formal 
code regulations are still under development in many countries 
(e.g., [10]). Even though the wind and snow loads seem to 
capture the attention of more designers and studies on TMSs, it 
will be seen in the present work that consideration of the 
earthquake forces may be relevant for some specific issues 
regarding the seismic response of TMSs and their supporting 
structures.

Recent literature dealing with the analysis of TMSs is based on 
the finite element method (FEM), however detailed information 
on the employed programs is not always reported or 
commercial software is used ([1,5,11]; this is important, since 
there is a wide variability of results when using FEM to analyze 
TMSs ([5]). In the present study an on-purpose own developed 
code which accounts for wrinkling phenomena, orthotropic 
material modeling, and geometrical non-linearity is used, which 
formulation and discretization is established in detail in ([12]) 
and references within. [13,14] used a similar formulation.

Although there are TMSs with different shapes reported in the 
literature, the hyperbolic paraboloid, nicknamed as hypar, has 
become some sort of benchmark for TMS studies and is used by 
several authors in recent works (e.g., [1,4,6,7,8]). Hypar TMSs 
with different supporting sub structures are considered in the 
present study. Considering the preceding paragraphs, the main 
objective of this study is to assess the seismic response of hypar 
TMSs and their frame-supporting structure subjected to 
earthquake loads using our referred FEM code.

2. Finite Element Formulation
The finite element analysis formulation to be used for the 
dynamic analyses of membrane structures is based on a 
previous study [12], which is used for the structures under 
analysis in this study. The curvilinear coordinate system used to 
formulate the membrane finite element is shown in Fig. 1.
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Figure 1: Membrane coordinate system

From [12], the internal forces given in curvilinear coordinates for 
membrane structures are

fiI
int = ∫Ω0

BαβiI
cur Sαβ dΩ0

(1)

where: i  is the global degree of freedom (dof), I  is the local 
element node, Ω0 is the reference configuration domain, and 
the Greek indices α , β  on the membrane mid-surface take on 
values of 1 and 2 in a plane stress state in the Euclidean space. 
Besides, S is the 2nd  Piola-Kirchhoff stress tensor, and the 
fourth-order strain-displacement tensor in curvilinear 
coordinates is given by

BαβiI
cur = 1

2 (NI ,α xi ,β
h + NI ,β xi ,α

h ) (2)

with

xi ,α
h = ∑

J =1

nnode

NJ ,α xiJ

(3)

where NI  denotes the shape function of node I  of the finite 
element. Using voigt notation to transform internal forces from 
tensorial to matrix notation, equation (1) yields,

fI
int = ∫Ω0

[BI
T ]cur {S}cur dΩ0

(4)

where the strain matrix BI
cur  is given by
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(5)

Following the details given in [12], the internal forces can be 
computed as indicated ahead to take into account the 
orthotropic material behavior.

It is important to mention that fabric manufacturers usually do 
not provide in their catalogs the thickness of their membrane 
products, and they report only the tensile stiffness. This last 
parameter is enough to perform a static or quasi-static analysis. 
If the tensile stiffness is given and the formulation given in [12] 
is going to be used, some changes must be carried out. Because 
both alternatives could be of interest for researchers, and 
because the formulation given by [12] is versatile enough to 
implement any of the alternatives, a brief description is given in 
the following when no thickness is directly available.

First, it is noted that in [12] the internal forces are obtained by 
means of

f int = A0 t BT QT Tσ S (6)

where: A0 is the element surface in reference configuration, t  is 
the membrane thickness, B is the nonlinear strain-displacement 
matrix, Q is the transformation matrix from a curvilinear system 
to a rectangular one, Tσ  is the rotation matrix from fiber axes to 
local axes, and S is the 2nd  Piola-Kirchhoff stress vector (force 
per unit area). In equation (6), the stresses are computed as

S = C ⋅ E (7)

where: E is the Green-Lagrange strain vector, and the 
constitutive equation C is expressed as

C = E
1 − ν2 [

1 ν 0

ν 1 0

0 0 1 − ν
2

]
(8)

In equation (8), E  is the Young modulus and ν  is the Poisson 
coefficient. Since material properties given in most 
manufacturers' catalogs neither give a value for the thickness t  
nor for the Young modulus E , then the internal forces for 
membrane analysis must be evaluated using

f int = A0 t BT QT Tσ Sl (9)

where: Sl  is the 2nd  Piola-Kirchhoff stress vector (force per unit 
length), and

Sl = D ⋅ E (10)

with
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D = Ets

1 − ν2 [
1 ν 0

ν 1 0

0 0 1 − ν
2

]
(11)

where: Ets  is the tensile stiffness of the material, given in units 
of force per unit length (as usual in manufacturers of 
membrane materials). It is remarked that the tensile stiffness of 
the material is numerically equivalent to the Young modulus 
times the thickness, Ets = E t , therefore the thickness is no 
longer required as stated in the original formulation as given in 
[12].

For the case when an orthotropic material is modelled, two 
directions of the tensile stiffness must be given, which are Ew  
for the warp direction and Ef  for the fill direction. Consequently, 
in the orthotropic plane stress constitutive equation, Ex  must be 
replaced by Ew , and Ey  must be replaced by Ef . If desired, these 
changes would allow us to solve other problems, for instance 
the numeric examples given in [5].

Unfortunately, the previous simplification is only valid for static 
or quasi-static analyses. For a dynamic seismic analysis to 
explicitly determine the thickness, t , is necessary. Consequently, 
the original formulation in [12] is used, so that the right 
structure mass is accounted for and a consistent analysis 
assessing the internal forces given by equation (6) can be 
performed, which allows to complete the formulation with

f int + Ma = f ext (12)

here, the external forces f ext  are given by the 2nd  Newton's law, 
by considering the seismic record as the acceleration for the 
studied site which is defined later. It is noteworthy that the 
formulation in [12] is of a wide applicability, and since it was 
originally developed to cope with dynamic analyses, it can be 
used to analyze the TMS under seismic excitations given below.

The algorithm used to solve equation (12) from a known 
solution time at step n  (e.g., displacement un , velocity u̇n  and 
acceleration ün ), take into account the generalised − α  time 
integration scheme leading to

f int (un +αf
) + αm

β Δt2 Mun +1 − f ext

= M[ αm

β Δt2 un + αm
β Δt

u̇n + ( αm
2β − 1

ün ) ]

(13)

where

un +αf
= (1 − αf )un + αf un +1 (14)

Low-frequency dissipation is optimal with

ρ∞ ∈ [0, 1] , αf = 1
1 + ρ∞

, αm = 2 − ρ∞
1 + ρ∞

(15)

and when

β = 1
4 (1 + αm − αf )

2 (16)

the method is second-order accurate and posses high frequency 
dissipation.

3. Examples

3.1 Structure 1
In this study a tensile-structure supported on a sub-structure is 
investigated. The geometry of the tensile-structure, as well as 
the surrounding cable along the perimeter, are shown in figure 
2.

Figure 2: Membrane geometry and surrounding cable

In table 1 the values of the geometry of the tensile-structure 
and the surrounding cable are listed.

Table. 1 Membrane geometry

Node x-Coord y-Coord z-Coord
1 0.0 0.0 0.0
2 3.0 0.3 5.0
3 6.0 0.0 6.0
4 5.7 3.0 5.0
5 6.0 6.0 4.0
6 3.0 5.7 5.0
7 0.0 6.0 6.0
8 0.3 3.0 5.0
9 − 0.30945 − 0.30945 3.8299

10 6.30945 − 0.30945 6.1701
11 6.30945 6.30945 3.8299
12 − 0.30945 6.30945 6.1701

From the coordinates listed in table 1, it can be observed that 
the highest points for the membrane correspond to nodes 3 
and 7, while the highest points for the cables correspond to 
nodes 10 and 12. The direction along the highest points is 
coincident with the principal direction of the fiber reinforcement 
of the membrane, i.e. the warp direction, also indicated in figure 
2.

In figure 3 the nodes of the supporting sub-structure are 
shown.
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Figure 3: Nodes and plan view of the supporting sub-structure

Coordinates for the geometry of the supporting sub-structure 
shown in figure 3 are listed in table 2.

Table. 2 Sub-structure geometry

Node x-Coord y-Coord z-Coord
13 1.1048 1.1048 0.0
14 4.8952 1.1048 0.0
15 4.8952 4.8952 0.0
16 1.1048 4.8952 0.0
17 − 2.30945 − 0.30945 0.0
18 − 0.30945 − 2.30945 0.0
19 6.3095 − 2.3095 0.0
20 8.3095 − 0.30945 0.0
21 8.3095 6.3095 0.0
22 6.3095 8.3095 0.0
23 − 0.30945 8.3095 0.0
24 − 2.3094 6.3094 0.0

The resulting mesh by using the previous listed membrane and 
support coordinates are depicted in figure 4 and, as it can be 
observed in the figure, consists of linear triangles with a 20 × 20 
mesh for the membrane. The cables and posts are defined by a 
two-noded unidimensional element. Both mentioned types of 
elements are Total Lagrangian non-linear geometric elements. 
Also, in figure 4 the control points A, B and C used for obtaining 
the displacements and stresses to be discussed later are shown.

Figure 4: Mesh and reference points for the studied structure

The material properties of the membrane, after [5], are listed in 
table 3, where a thickness for the membrane has been added.

Table. 3 Membrane properties

Tensile stiffness warp direction, Ew 600.0 kN /m

Tensile stiffness fill direction, Ef 600.0 kN /m

Shear stiffness, G 30.0 kN /m
Poisson, vwf = vfw 0.1

Thickness, t 1.0 mm

Density, ρ 1800.0 kg /m3

The cable, tensors and posts material properties can be found 
in table 4. Note that we denote post as a compression member 
in the supporting sub-structure (purple elements in figure 4), 
and tensor as a tension member of the supporting sub-
structure (cyan elements in figure 4).

Table. 4 Sub-structure properties

Young modulus Cross section Density

Cable 210 GPa 0.127 × 10−3m2 7800 kg /m3

Tensor 210 GPa 0.127 × 10−3m2 7800 kg /m3

Post 210 GPa 4.748 × 10−3m2 8500 kg /m3

The structure is subjected to two load stages, and the wrinkling 
model described in [12] is used in both phases. The first stage 
corresponds to prestress, which is applied as per the values 
indicated in table 5.

Table. 5 Prestress properties

Membrane prestress: warp=fill 3.0 kN /m

Cable prestress 2.36 MN /m2

Tensor prestress 1.18 MN /m2

The prestress stage is explained in what follows:

Prestress.- A quasi-static analysis is carried out by applying 
the prestress linearly with a step time increment Δt = 0.01.
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The second load stage corresponds to the seismic loads, which 
are applied by using as input the accelerations of the 6.6 
magnitude (Richter scale) earthquake recorded at Northern 
Norcia, Italy, on October 30, 2016 and shown in figure 5,[15].

Figure 5: Accelerogram form the Norcia, Italy earthquake

The seismic loading is added to the resulting prestressing state 
in the second stage as follows:

Seismic load.- A seismic undamped dynamic analysis with a 
time step increment Δt = 0.005 s  is performed up to a total 
of 8000 time steps equivalent to a duration of 40 s  of the 
earthquake record. In particular, the global X direction was 
analyzed by considering that the 100% of the earthquake 
acted along this direction

It is pointed out that for the case of a geometric non-linear 
dynamic analysis, Newmark's dynamic method does not provide 
a right solution; therefore, α − methods like the HHT [16], WBZ 
[17] or Generalized-α  [18] are required.

The results from the dynamic analysis highlight important 
issues to be considered for these kinds of structures. To 
elaborate on this, first consider the largest displacement 
component at control point A depicted in figure 6. At this point 
the displacement due to prestress leads to a descend of the 
structure to a maximum of 2.9 mm, and from there the 
maximum absolute displacement during the earthquake further 
increases to a maximum of 10.9 mm. This is equivalent to a 
375% increase, if the prestress displacement is used as 
reference. Even though such increase is significant in 
percentage, is not critical from a serviceability point of view for 
the structure, since the lowest point in the membrane is located 
at a 4 m height.

Figure 6: Displacement in the Z direction for control point A

To further elaborate on the discussion, the largest displacement 
component for control point B is shown in figure 7, where it can 
be observed that the structure raises to a maximum of 1.4 mm 
due to the prestress, and from there it further reaches a 
maximum absolute displacement of 5.9 mm during the 
earthquake. This is equivalent to a 421% increase, is the 
prestress displacement is used as reference.

Figure 7: Displacement in the Z direction for control point B

It is noted that by employing the same scale as in the previous 
two figures, the largest displacement component for control 
point C is in the X direction; however, for a consistent 
comparison (i.e. in the same direction as in the previous two 
figures) the displacement in the Z direction for control point C is 
shown in figure 8. At this point the displacement due to 
prestress leads to a descend of the structure to a maximum of 
5.3 mm; during the earthquake the absolute maximum 
displacement is 4.5 mm.
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Figure 8: Displacement in the Z direction for control point C

The displacement in the X direction for control point C is 
observed in figure 9; it is shown that the displacement due to 
prestress is practically zero (exactly 7.3x10-5 mm), and it 
reaches an absolute maximum of 5.5 mm during the 
earthquake.

Figure 9: Displacement in the X direction for control point C

From the previously described results it could be natural to 
expect similar increments in the membrane stresses. However, 
the stress increments in the membrane are not as significant; 
this is evidenced in figures 10 and 11. For the warp stress, the 
maximum increment due to the dynamic loads is located at 
point C and is equal to a static value of 1.76 kN/m, while the 
maximum dynamic value is equal to 1.92 kN/m. This means that 
the stress increase is in the order of 9.0%, considering the static 
value as reference. For the fill stress similar trends are found, 
being the maximum increase of the order of 8.5% located at 
point C (with static and dynamic values of 1.64 kN/m and 1.78 
kN/m, respectively). In figures 10 and 11 the stresses at the 
other control points (A and B) are also indicated; similar trends 
can be observed but they are not included since their 
increments are lower than those of point C.

Figure 10: Stresses in the warp direction

Figure 11: Stresses in the fill direction

With the results discussed so far, one may think that the 
quantitative values of stresses and displacements due to 
earthquake loads are not that relevant for design purposes 
when membrane structures are considered (as opposed to the 
usually more critical values resulting from wind loading). 
However, a different story could be found if the design is 
focused on the foundation supports (anchorage) as will be 
discussed shortly after, and consequently care should be 
exercised by the designer in such a case.

In figures 12, 13 and 14 the most critical behavior at the 
structure foundation supports, corresponding respectively to 
nodes 16, 23 and 24 in figure 3, is shown. In figure 12, the static 
reaction in the Z direction is 57.8 kN, and the corresponding 
dynamic value is 63.1 kN; it means an increment of 9.1% in the 
compression force on the support.



https://www.scipedia.com/public/Valdes-Vazquez_2018a
7

J. Valdes-Vazquez, A. García-Soto and A. Hernández-Martínez, Dynamic Analysis of Hypar Membrane Structures 
Subjected to Seismic Excitations, Rev. int. métodos numér. cálc. diseño ing. (2019). Vol. 35, (1), 11

Figure 12: Reactions at major post

Figure 13: Reactions at major tensor 1

Figure 14: Reactions at major tensor 2

In figure 13 the maximum response in the Z direction is exhibit, 
which is a tension force and is given by a negative value in the 
reaction; the static value of such response is -22.3 kN, while 
maximum absolute dynamic response is -31.5 kN, meaning that 
an increase of tension of 41% is found. Likewise, figure 14 
shows that the maximum response is, one more time, a tensile 
force in the Z direction; this time the static value of such 
response is -22.3 kN, while maximum absolute dynamic 
response is -31.2 kN (i.e., a 40% increment).

Figure 15 shows the norm of the major reactions on the 
structure, which corresponds to node 23 in figure 3. It can be 
observed that the static response value is 23.5 kN, while the 
maximum dynamic response is 33.1 kN; a 40.9% increment. This 
increase is significant, since the usual design load factors do not 
cover such a large increment in terms of force.

Figure 15: Norm of reactions at major tensor 1

3.2 Structure 2
The increment in the reaction at the foundation supports during 
an earthquake may be generated by the horizontal component 
of the compression post due to the transmission of seismic 
horizontal forces to the structure. To investigate further this 
issue, the structure response is obtained by considering that 
the posts are not inclined, but oriented in the vertical direction. 
The new geometry with the changed nodes is shown in figure 
16, and they are the nodes 13, 14, 15 and 16.

Figure 16: Updated geometry of the membrane and surrounding cable

For a better visual appreciation, the new structure can be 
observed in 3D in figure 17, where it can be readily observed 
that the posts are now vertical.
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Figure 17: Updated geometry of the membrane and surrounding cable

In figure 18 the norm of the major reactions is shown for the 
new structure. It corresponds to node 23 in figure 16 and it can 
be observed that the static response has a value of 24.3 kN, 
while maximum absolute dynamic response is 44.6 kN, which 
represents a surprising 83.5% increment with respect to the 
static response. This value is enormous, and it is considered 
that no common factor in codified design accounts for such a 
large increment.

Figure 18: Norm of reactions at major tensor 1 for new geometry

It can be concluded that the increase in the reactions of the 
membrane foundation supports is very significant, this should 
be considered when designing the supports and posts 
orientations in seismic prone regions.

From the previous description of displacements and stresses 
and the discussion along, it can be concluded that although the 
seismic response of TMSs seems not to be considered important 
in the literature, care should be exercised in seismic regions 
when designing these kind of structures, because the 
displacements and support reactions increments can be 
relevant, and this highlights the necessity to verify that critical 
cases due to earthquake load are not reached. It is also 
concluded that the orientation of the elements on the 
supporting structure (e.g., the posts) can have an impact on the 
obtained forces at the foundation. Further research to 

investigate other geometries (in the TMS as well as in the 
supporting structure) and other seismic loads, as well as a 
comparison with other types of loading (e.g., wind loading) is 
strongly recommended.

4. Conclusions
Although the structural analysis and design of tensile 
membrane structures (TMS) is a subject that has become 
relevant lately, it was found that recent studies are mainly focus 
on demands imposed to TMSs by wind and snow loads, and that 
the seismic response of TMSs is virtually absent in the literature. 
To the authors best knowledge, this is the first study dealing 
with seismic demands on TMSs using the described finite 
element formulation. The findings can be important, especially 
if it is considered that formal code regulations are still under 
development, and that the conclusions given in this section 
could be useful to code developers and practitioners, among 
others.

More specifically, the seismic response of hypar TMSs under 
seismic excitations is computed. A FEM which accounts for 
wrinkling phenomena, orthotropic material modeling, and 
geometrical non-linearity is employed for the dynamic analysis. 
Displacements, stresses and reactions are described for 
selected nodes. A record of a relatively large earthquake 
recorded at Northern Norcia, Italy, was used for the analyses. It 
is pointed out once more that the seismic response of TMSs is 
virtually absent in the specialized literature and that codes and 
standards are still under developments for these structures; 
therefore, it was decided to use methods and formulations 
known in the structural engineering field to perform the 
dynamic analysis with the described FEM and accelerogram.

It was found that important increments are obtained in terms of 
displacements when the dynamic loads are considered, 
compared to the prestressed static loads. Although stress 
increments are not as large, the supports reactions exhibit a 
significant increment of the order of 40% (always compared 
versus the static case). Moreover, if the geometry of the 
supporting structure orientations is varied (e.g., inclined posts 
versus vertical posts) the increase at the reactions can be even 
higher ( over 80% ). This means that special attention should be 
exercised when the supports are to be designed, since they are 
critical parts of the structures and if they do not withstand the 
seismic demands or do not perform adequately under seismic 
excitations, the whole structure could fail or not being 
serviceable anymore.

It is highlighted that the seismic response of TMSs should be 
checked in seismic regions, because the displacements and 
support reactions increments can be significant, and possible 
critical cases due to earthquake load should be inspected. The 
readers could think of a case when the wind and snow loadings 
are not that critical for a TMSs and the seismic loading could be 
significant. For instance, consider a hypothetical or real case of 
a TMS in a seismic-prone region, while at the same time located 
inside another larger structure preventing wind or snow loading 
(or simply an open location where snow in not present and wind 
velocities are not significant); previsions for such possibilities 
should be incorporated in codes and guidelines for TMSs, and 
the conclusions referred here can be an aid for such a purpose.

Finally, it is also pointed out that the orientation of the elements 
on the supporting structure (e.g., the posts) can have an 
important impact on the obtained forces at the foundation, as 
discussed in this study. Therefore, further studies considering 
other geometries in the TMS and in the supporting structure, 
other seismic loads and comparisons with other types of 
loading are strongly recommended to advance the knowledge 
of the response of TMSs under seismic excitations.
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