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Abstract
A new numerical model for the structural assessment of gravity dams by means of a semi-
discrete approach is proposed. Gravity dams are massive structures, which their stability 
depends on the gravity loads applied into the structure. Mainly, its structural assessment is 
performed by means of a gravity approach. However, this approach is too conservative and 
mostly does not reflect the real structural behaviour of the dam. In this context, there is the 
need of models that are simplified enough to allow a simple and fast parametric analyses. 
The proposed model idealizes the dam as a set of rigid elements, where the damage and 
the deformation are concentrated in the contact sides between adjacent elements. Thus, 
the elements are rigid, but the material is considered as deformable. As the proposed 
model is semi-discrete, it can detect separation or sliding between elements. However, 
initial contacts do not change during the analyisis and a relative continuity among elements 
exists, in order to simplify the computational effort. The effective performance of the 
proposed model is demonstrated by numerical validation and by comparisons with some 
numerical models presented in the literature.
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1. Introduction
Gravity dams are massive structures, which their stability 
depends on the gravity loads applied to the structure [1]. 
Mainly, the structural assessment of gravity dams is performed 
by means of a gravity approach, where the resultant of all 
forces acting on the dam must lie in the third middle of the 
base. Generally, the hypothesis of no tension material is 
assumed [2]. Sometimes, this approach is too conservative and 
mostly does not reflect the real structural behaviour of the dam 
[2-4].

The gravity approach is based on the calculation of the [1]: a) 
Position of the resultant force, where the resultant force must 
lie in the middle third of the base; b) Inclination of the resultant 
force, in order to evaluate the shear forces and the possible 
sliding of the dam; and c) Compressive stresses, in order to 
avoid the crushing of the material. Figure 1 depicts the forces 
acting on the dam; where PH is the hydraulic pressure 
(v=vertical, h=horizontal and e=downstream), Pp is the own 
weight, Ps is the uplift pressure, PA is the earth pressure, S is the 
seismic loads (V=vertical, H=horizontal) and PO is the 
hydrodynamic pressure.

Figure 1. Forces acting on the dam

 There are several authors whom have proposed different 
analytical and numerical models. For example, Bennati and 
Lucchesi [5] proposed an analytical model for the minimal 
section of a masonry dam with triangular cross section; while 
Calayir et al. [6] used the Lagragian and Euleran approaches to 
study the earthquake response of gravity dams. The Finite 
Element Method has been widly used for the study of gravity 
dams by several authors [7-11]. Leclerc et al. [12] used the 
gravity mehod using rigid body equilibrium and beam theory to 
perform stress analyses, compute crack lengths and safety 
factors. Recently, some authors [13-15] have used the Discrete 
Element Method (DEM), which it is suitable to model 
discontinuous media.

In general, the Finite and Discrete Element Models requires a lot 
of resources and expertise to obtain reliable results [16]. In this 
context, there is the need of models that are simplified enough 
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to allow a simple and fast parametric analyses, but they should 
also take into account the peculiar behavior of the material. Few 
simple models to study of gravity dams can be found in the 
literature [12, 16]. Therefore, the study of gravity dams by using 
simple models is still an open problem. Consequently, in this 
paper a new simplified numerical model for the structural 
assessment of gravity dams by means of a semi–discrete 
approach is presented.

2. Semi-Discrete Approach

A Semi-Discrete Element Model (SDEM) is proposed to study the 
structural behaviour of gravity dams, in which the dam is 
idealized as an ensamblage of rigid elements. Three devices 
(springs) connect the common side between two rigid elements 
or restrained sides, in the spirit of Rigid Body Spring Models 
(RBSM) [17-19].

In this study, only the in–plane deformations are considered. 
The elements have the kinematics of rigid bodies with two linear 
displacements and one rotation (Fig. 2). These connections are 
two axial devices, separated by a distance 2b that take into 
account a flexural moment, and one shear device at the middle 
of the side. The material is considered deformable but this 
deformation is concentrated in the connecting devices, while 
the element is not deformable. This means that the springs 
represent the mechanical characteristics of the material; 
whereby, the stresses and deformations of the springs 
represent the average stresses and strains that taking place at 
the inner of each element, according to a volume of pertinance.

Figure 2. Forces and displacements

 Each connecting device is independent of the behavior of the 
others connecting devices and depends only on the Lagrangian 
displacements. In other words, the connecting device 
represents the elastic and post–elastic mechanical 
characteristics of the material and, at the same time, represents 
the capacity of the model to take into account the separation or 
the sliding between elements.

The proposed model was developed as a semi–discrete element 
model (SDEM). Therefore, it can detect separation and sliding of 
the elements. However, initial contacts do not change during 
the analysis and a relative continuity among elements exists, in 
order to simplify the computational effort. Thus, overlapping, 
separation or sliding between adjacent elements can occur. 
Numerically, these mean compression, tension or shear in the 
connecting devices. The semi–discrete model can be though as 
an analysis technique that combines the advantages of the 
discrete analysis techniques (e.g. it considers the relative 
motion among elements) with the computational advantages of 
the continuous analysis technique (e.g. no new contacts update 
is necessary).

3. Mathematical Formulation
The dam is considered as two–dimensional plane solid model Ω, 
partitioned into m quadrilateral elements ωi such that no vertex 
of one quadrilateral lies on the edge of another quadrilateral. 
The global Cartesian coordinate frame {O, x, y} is placed in order 
to have the gravity acceleration g applied in the negative y–axis 
direction. A local reference frame {oi, ξi, ηi}, whose axes are 
initially parallel to the global reference frame, is fixed in each 
element’s barycenter oi. These elements are rigid, so the 
displaced configuration of the discrete model is described by 
the position of these local reference frames, as shown in Figure 
2b. Given the local coordinate of a point (ξi, ηi), the 
displacements (Δxi, Δyi) in the x − y plane are evaluated as 
follows:

{Δxi

Δyi } = [1 0 ηi

0 1 − ξi ] { ui

vi

ψi
}

(1)

 The translation components ui, vi and the rotation angle ψi 
associated with each element i, are collected into the vector of 
Lagrangian coordinates {u}. The loads are condensed into three 
resultants associated with each element: the forces pi and qi 
applied to the element centroid considering the initial 
undeformed geometry, and the couple μi. They are assembled 
into the vector of external loads {fe} which is conjugated in 
virtual work with {u} as follows:

{u}T = {u1, v1, ψ1, u2, v2, ψ2, ..., um, vm, ψm} (2)

{fe}
T = {p1, q1, μ1, p2, q2, μ2, ..., pm, qm, μm} (3)

 The elements are interconnected by connecting devices (line 
springs) placed along each side, in correspondence of three 
points named P, Q and R, as shown in Figure 3. Three average 
strain measures are associated with these connecting devices: 
the axial strains, εP and εR are associated with the volumes of 
pertinence VP and VR, while the shear strain εQ is associated with 
the volume VQ = VP + VR. Considering a discrete model with r 
sides which connect all the elements (interfaces), the vector of 
generalized strain {ε} and the diagonal matrix of volumes of 
pertinence [V] (Fig. 4) are defined as follows:

{ε}T = {εP
1, εQ

1, εR
1, εP

2, εQ
2, εR

2, . . . , εP
r , ε

Q
r, ε

R
r} (4)

[V] = Diag{VP
1 , VQ

1, VR
1, VP

2, VQ
2, VR

2, ..., VP
r, V

Q
r, V

R
r} (5)
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Figure 3. Assembly of rigid elements

Figure 4. Volume of pertinence: material (left) and rigid elements (right)

 Under small rotation assumption, the strain-displacement 
relation can be expressed by considering a 3r x 3m matrix [B] as 
follows:

{ε} = [B]{u} (6)

 For the interface i-j between elements i and j, matrix [B] is:

[B ] =

1
hi + hj [ cos αi sin αi [sin (αi − ϑ )di + b ]

− sin α‴i cos αi [cos (αi − ϑ )di ]
cos αi sin αi [sin (αi − ϑ )di − b ]

− cos αj − sin αij − [sin (αj − ϑ )dj + b ]
sin αj − cos αj − [cos (αj − ϑ )dj ]

− cos αj − sin αj − [sin (αj − ϑ )dj − b ] ]
(7)

 Where αi is the angle of the connection side of element i 
referring to ξ–axis and ϑ is called distortion angle (Fig. 5). di is 
the distance from the baricenter of element i to the center of 
the interface i-j ahd hi is the minimum distance between the 
baricenter of element and the interface i-j.

Figure 5. Interface i-j

A measure of stress, work–conjugated to the strain, is assigned 
to each connecting device, and is assembled into the vector {σ} 

as follows:

{ σ }T = { σ P1, σ Q1, σ R1, σ P2, σ Q2, σ R2, . . . , σP
r , σ

Q
r, σ Rr} (8)

where σP and σR are the axial stresses in the connection point P 
and R, and σQ is the shear stress in Q. Forces are related by:

{fe} = [B]T{σ} (9)

The constitutive law correlates the strains and stresses:

{σ} = [D]{ε} (10)

where [D] is the tangential stiffness matrix of the connection 
side:

[D] =Diag [kP, kQ, kR] (11)

Replacing Equation 6 in Equation 10 and this in Equation 9, it 
obtains:

{fe} = [B]T[D][B]{u}=[K]{u} (12)

4. Mechanical Characteristics of the Interfaces

4.1 Elastic properties

The elastic characteristics of the connecting devices are 
assigned with the criterion of approximating the strain energy 
of the corresponding volumes of pertinence in the case of 
simple deformation (Fig. 6). The overlapping of neighbouring 
rigid elements in the case of relative compression should not be 
interpreted as material interpenetration. In fact, it should be 
seen as the overall mutual approaching of the element 
barycentres according to the deformation (or crushing) of 
materials due to compression of the volume of pertinence [19].

(a)  
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(b)  

(c)  

(d) 

Figure 6. Simple deformation of rigid elements and the volume of pertinence: (a) tensile 
volume, (b) compressive volume, (c) shear volume, (d) sliding volume.

 For an orthotropic material in plane deformation, the matrix of 
elasticity is given by:

[A ] = [A11 A12 0
A21 A22 0
0 0 A33

]
(13)

 Where A11=A22=E/(1-v2), A12=A21=vE/(1-v2), A33=2G=E/(1+v2); E is the 
Young modulus, v is the Poisson’s coefficient and G is the shear 
modulus.

On the other hand, the stress Σ and the strain Η vectors are:

{Σ}T = {Σ11, Σ22, Σ12} (14)

{Η}T = {Η11, Η22, Η12} (15)

The siffness of the elastic devices is obtained by equating the 
strain energy of the material Πm and the strain energy of the 
connections Πc:

Πm = 1
2 {ϵ }T [A ] {ϵ }Vol = 1

2 {u }T [k ] {u } = Πc (16)

 Thus, the axial and shear stiffness are:

kP = kR =A11 (17)

kQ = A33 (18)

In addition, the two axial devices are separated from the middle 
point of the side by a length b in order to take into account the 
bending momento, where b=l/(2√3).
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a)  

b)

Figure 7. Constitutive laws: (a) axial, (b) shear

4.2 Strength and Plastic properties

The monotic constitutive laws are assigned to the connecting 
devices adopting a phenomenological approach. These laws are 
based on experimental monotonic tests currently available in 
literature. Different rules are assumed for the axial devices and 
for the shear device, as sketched in Figure 7. For the axial 
spring, the skeleton curve under compression is given by:

σ = E0exp ( −ϵ
ϵc ) (19)

 Where E0 is the initial elastic modulus and εc is the strain at the 
peak compression strength σc. Along this skeleton curve, the 
spring stiffness (kP, kR) for compression loading is:

kP = kR = E0(1 − −ϵ
ϵc )exp ( −ϵ

ϵc ) (20)

 The tensile axial response is defined by a tri-linear skeleton 
curve identified by the couples of points (σt, εt) and (σr, εr) which 
correspond to the peak and residual strengths. The plastic 
response of each axial connection is independent from the 
behaviour of any other connection device.

Symmetric stiffness and strength have been attributed to the 
shear connections. The skeleton curve is tri-linear, defined by 
four parameters: the initial shear stiffness G, the softening 
stiffness Gs, the maximum shear strength τ and the residual 
shear strength τr. The shear strength is related to the stresses 
of the axial connections according with Mohr-Coulomb criterion:

τ = c - σ tan(ϕ) (21)

where c is the cohesion, σ is the axial stress and ϕ is the internal 
friction angle.

5. Validation
In general, the structural analysis is performed by an 
idealization of reality. Obviously, it is necessary that the chosen 
idealizations are appropriate to the problem under 
consideration, so that the proposed model will be able to 
represent the reality that it is simulating. Thus, numerical 
models can be validated by comparing the results with: 
experimental tests, already calibrated numerical models or 
damage in the structure.

 The proposed model was validated by using the discrete 
element model of the Guil1hofrei dam (Portugal) performed by 
Bretas et al. [15]. This is a masonry gravity dam, built in 1938, 
with a maximum height of 39 m and a total length of 190 m. The 
soil foundation of the dam is a granitic rock mass, of good 
quality (Fig. 8). Table 1 shows the mechanical properties of the 
masonry and the soil foundation. For details of the dam 
characteristics please refer to [15, 20]. Figure 9 shows the SDEM 
and the DEM meshes for the studied dam.

Figure 8. Guilhofrei dam [20]

(a)  (b) 
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Figure 9. Numerical models: (a) SDEM, (b) DEM [20]

Table 1. Mechanical properties of the materials [15]

Property Dam Foundation

Volumetric weight [kN/m3] 24 25

Elasticity modulus [GPa] 10 10

Shear modulus [GPa] 4 4

Poisson coefficient 0.2 0.2

Compressive strength [MPa] 10 Elastic

Tensile strength [MPa] 1 Elastic

Cohesion [MPa] 1.58 Elastic

Friction angle [grad] 55 Elastic

 Three different load cases were considered:

Load Case 1: Own weight (PoPo)

Load Case 2: Own weight plus hydrostatic pressure 
(PoPo + PH)

Load Case 3: Own weight plus hydrostatic pressure 
plus uplift pressure (PoPo + PH + Ps)

5.1 Load Case 1: Own weight

For the own weight analysis, only the volumetric weight of the 
dam was taken into account. Table 2 shows the results obtained 
by DEM [15] and the proposed model. It can be observed that 
the results are practically the same for both models. The own 
weight and the compression stress have error percentages are 
less than 10%. Although the error for displacements are around 
15%, the displacements are in mm. Thus, small variations give 
great errors.

Table 2. Results of the own weight analysis

Result DEM SDEM Error [%]

Own weight [kN] 9,700 9,500 2.0

Maximum compressive stress [MPa] 0.84 0.87 7.4

Maximum horizontal displacement [mm] 2.5 2.1 14.5

(a)  

(b) 

Figure 10. Own weight deformed: a) SDEM, b) DEM [20]
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(a)  

(b) 

Figure 11. Vertical axial stress maps due to own weight: (a) SDEM, (b) DEM [20]

 Figure 10 shows the deformation produced by the dam’s own 
weight, in which it can be observed that it deforms slightly 
upstream. This coincides with the real phenomenon, since most 
of the mass is on this side of the dam. So that when the 
hydrostatic pressure will apply, the forces remain in equilibrium. 
Figure 11 shows the stress maps for vertical axial stresses. It 
can be seen that the maximum compressive stress is located 
upstream at the foot of the dam, for both models.

4.2 Load Case 2: Own Weight plus Hydrostatic 
Pressure
Table 3 shows the obtained results. It can see that no tensile 
stresses are in the dam due to the own weight load (Fig. 12). The 
error percentages are around 15%. This can be explained in 
terms of the fundamental assumptions implied. The DEM model 
used by Bretas et al. [15] is a particular type of DEM with 
deformable blocks. In this case, the dam block is discretized into 
a mesh of 4-node elastic finite elements. Only the dam-rock joint 
is nonlinear. The errors reported are thus expectable, and can 
be considered acceptable.

Table 3. Results of the load combination 2

Result DEM SDEM Error [%]

Maximum tensile stress [MPa] 0.29 0.33 12.1

Maximum compressive stress [MPa] 0.96 1.10 14.5

Maximum horizontal displacement [mm] 4.0 3.4 15.0

(a)  
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(b) 

Figure 12. Vertical axial stress maps due to load case 3: (a) SDEM, (b) DEM [20]

(a)  

(b) 

Figure 13. Deformed mesh due to load case 3: a) SDEM, b) DEM [20]

5.3 Load Case 3: Own Weight plus Hydrostatic 
Pressure plus Uplift Pressure

This load case considers additionally to the own weight and the 
hydrostatic pressure, the uplift pressure and a flood of 5 m over 
the crown of the dam (failure load). The resultant of the uplift 
pressure load was equal to 1,015 kN. This type of combination 
loads are similar to the failure loads of the dam.

The maximum compressive stress at the base of the dam 
downstream was equal to 1.81 MPa for the DEM [15] and 2.1 for 
the SDEM (16% of error). Figure 14 shows the deformed mesh 
and the failure mechanism of the dam. The dam overturns 
downstream, since the tensile stresses at the base of the dam 
are overpassed.
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(a)  

(b) 

(c)  

(d)

Figure 14. Deformed mesh (a) SDEM, (b) DEM [20]; and failure mechanism (c) SDEM, (d) 
DEM [20] due to load case 3.

6. Numerical Analysis of El Cajón Dam

El Cajón dam was built in 1880 by farmers. Actually, the dam is 
used for recreation and for irrigation (Fig. 15). It is located in 
Queretaro City, Mexico. The material of the dam is irregular 
stone masonry. It has a total height of 15.5 m and a length of a 
spillway crest of 187.6 m. Table 4 shows the mechanical 
properties of the materials [21].

Figure 15. El Cajón Dam (dimensions in meters)

Table 4. Mechanical properties of the material [21]

Property Value

Volumetric weight [kN/m3] 20

Elasticity modulus [GPa] 2

Shear modulus [GPa] 0.8

Poisson coefficient 0.2

Compressive strength [MPa] 3

Tensile strength [MPa] 0.2

Cohesion [MPa] 0.2

Friction angle [grad] 37

 Firstly, the dam was analysed with the gravity approach, where 
the resultant of all forces acting on the dam must lie in the third 
middle of the base and a non tension material is considered. 
The hydrostatic pressure was applied up to the crown of the 
dam and the silt up to two thirds of the total height of the dam.

Figure 16 shows the position of the pressure line along the 
height of the dam. It can see that the resultant force lies out of 
the middle third. This means that the entire dam at upstream 
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side should presents tensile damage distributed along the 
height of the dam. However in the reality, this dams does not 
have any structural problem. It does not presents cracks or 
water filtration. It has been working for 100 years without any 
problem. Thus, in order to understand the structural behaviour 
of the dam, it was analysed with the SDEM.

Figure 16. Position of the pressure line.

 Figure 17 shows the damage maps, while Figures 18 and 19 
shows the stress maps and the deformed shape of the dam, 
respectively. It can see that the tensile damage is present at the 
base of the dam upstream. Additionally, diagonal compression 
damage is presented at the downstream of the dam. This 
damages is due to the flexural behaviour of the dam due to the 
hydrostatic pressure. However, there are no evidence of 
damage in the real dam. Thus, it means that the tensile 
strength of the material must be higher than the assumed in 
this analysis.

Figure 17. Deformed shape.

'Figure 18. Damage maps: a) compression, b) tension, c) shear.

Figure 19. Stress maps: a) normal horizontal, b) normal vertical, c) shear.

 A parametric analysis has been performed in order to study the 
influence of the tensile strength in the structural behaviour of El 
Cajón dam. The results show that for a non tensile strength, the 
entire dam at upstream presents tensile damage distributed 
along the height of the dam (as the gravity approach reports). 
No compression damage is observed; although there is 
diagonal tension damage (shear) down-stream (Fig 20). When 
the tensile strength is equal to 1 MPa, the structural behaviour 
of the dam changes completely. Because the tensile damage is 
presented only at the base of the dam, as well as the shear 
damage is reduced due to the less deformation of the dam (Fig. 
21).
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Figure 20. Maps for non tensile strength: deformed shape (left), tension damage (center), 
shear damage (right).

Figure 21. Maps for tensile strength equal to 1 MPa: deformed shape (left), tension damage 
(center), shear damage (right).

7. Final Remarks
In this paper, a new model for the structural assessment of 
gravity dams by means of a semi–discrete approach is 
presented. This model can detect sliding, separation, 
overturning, crushing, tensile and shear damage. Thus, the 
proposed model can detect the different collapse mechanism of 
the dams, mainly: overturning and sliding.

It was validated by comparing with a discrete element model of 
a dam. The validation of the model was taking into account 
different load cases. One advantage of the proposed model is 
that it is no necessary the mechanical properties of the 
interfaces required in a discrete element model. The mechanical 
properties of the material are concentrated in the connecting 
devices between adjacent elements.

Parametric analyses show that the tensile strength of the 
material is the property of greater influence on the structural 
behaviour; since the damage pattern and the type of failure of 
the dam change as the tensile strength changes.
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