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Abstract
This paper proposes an efficient and robust algorithm for solving a physical orthotropy 
problem. The algorithm is based on choosing the most efficient restriction operator and on 
an incomplete LU decomposition suited for each orthotropy direction. Local Fourier Analysis 
(LFA) is carried out in order to increase the efficiency of the multigrid method. Pure diffusion 
with orthotropy aligned to the coordinate axis x is the model considered. Equations are 
discretized by Finite Difference Method with uniform grid and second-order numerical 
scheme. Problems are solved with geometric multigrid method, correction scheme, V-cycle 
and standard coarsening ratio. The asymptotic convergence factor is calculated for different 
multigrid components, such as restriction operators, prolongation operators and solvers. 
Based on the optimum components obtained by LFA, we carried out experiments to analyze 
the complexity and computational cost of the algorithm proposed. The main conclusion is 
that the methodology proposed is efficient for the resolution of problems with strong 
orthotropy.
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1. Introduction
Computational Fluid Dynamics (CFD) is a branch of 
Computational Science that studies numerical methods used for 
simulating fluid flow problems. It is known that these methods 
usually have a high computational cost. In general, this happens 
as the problems that have to be solved require the resolution of 
algebraic equation systems whose coefficient matrices are large 
and sparse [1].

Linear systems are obtained by discretizing the mathematical 
model, which consists in approximating, through algebraic 
equations, each term of the mathematical model for each grid 
node or point. This process leads to an algebraic equation 
system of the form

AT = b , (1)

where A ∈ RNxN  is the coefficient matrix, T ∈ RN  is the variable 
of interest and b ∈ RN  is the independent vector.

In CFD, the methods that are traditionally employed in this 
process are: Finite Difference Method (FDM) [2], Finite Volume 
Method (FVM) [3] and Finite Element Method (FEM) [4].

The algebraic equation system given by Eq. (1) can be solved 
using direct or iterative methods. In this work, iterative 
methods were employed due to the aforementioned 
characteristics of linear systems in CFD (sparse and large 
coefficients matrices), for which iterative methods are 
recommended. The multigrid method is one of the most 
effective methods to accelerate the convergence of iterative 
methods when solving linear or nonlinear systems, isotropic or 
anisotropic problems, among others [5-7].

Anisotropic problems are fairly common in Engineering and 
appear in many phenomena, such as when a material has 
different heat conduction behaviors in different directions. In 
this case, the coefficients of the differential equations are 
distinct among themselves and generate what is called physical 
anisotropy. Anisotropies can also appear from discretization of 
grids with different spacing in each direction, for instance, 
boundary layer problems. This is called geometric anisotropy 
[5,6]. The efficiency of the multigrid method has not yet been 
fully achieved for problems with strong anisotropy, either 
physical or geometric [8].

Physical anisotropic convection problems have been 
investigated by Rabi and de Lemos [9], who discretized two-
dimensional pure diffusion, pure advection and advection-
diffusion equations by applying the finite volume method. The 
multigrid method was employed using correction scheme and 
V- and W-cycles. The authors presented a study on the different 
speed ranges, number of grids, number of smoothing steps at 
each grid level and different solvers. They concluded that there 
was a significant reduction in the computational effort required 
for increasing the values of the components of the advection 
velocity.

Wienands and Joppich [10] presented an in-depth study on the 
Local Fourier Analysis (LFA) and its application on several 
problems, including anisotropic problems. The authors 
calculated the convergence factor of the multigrid method for 
an anisotropic diffusion equation with different solvers and 
restriction and prolongation operators.

Johannsen [11] solved an anisotropic diffusion problem using 
finite volume method for discretizing the equations and 9-point 
incomplete LU (ILU) decomposition for solving the systems of 
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linear equations. The author employed LFA to demonstrate the 
superior smoothing properties of ILU.

Oliveira et al. [8] evaluated geometric anisotropy for different 
grids and aspect ratios. They also assessed some components 
of the multigrid method, such as: solvers, type of restriction, 
number of levels and number of inner iterations, among several 
coarsening algorithms. They concluded that Partial Weighting 
(PW) had a good performance.

Vinogradova and Krukier [12] solved a three-dimensional 
advection-diffusion problem with intermediate anisotropy using 
FDM for discretizing equations and ILU for the resolution of the 
linear systems. They concluded that the proposed methodology 
is efficient, however, the coefficients of the mixed derivatives 
present limitations, which is a disadvantage and has no physical 
significance.

Vassoler-Rutz et al. [13] analyzed the effect of physical 
anisotropy on the multigrid method for two anisotropic 
diffusion problems. They used FAS scheme, V-cycle as well as 
Modified Strongly Implicit (MSI) and Gauss-Seidel (GS) solvers. 
They concluded that, for strong anisotropies, the complexity 
order of the multigrid method is not suitable. 

Several works on the implementation of the multigrid method 
found in the literature demonstrate that the choice of the 
multigrid components is crucial for the convergence or not of 
the method. Trottenberg et al. [6] state that this choice is 
difficult and thus small changes can considerably improve 
convergence. In this sense, LFA can help this choice as it allows 
to predict the performance of the multigrid method, since it 
provides estimates of the convergence rates based on the 
variation of the multigrid method components.

Pinto et. al. [14] solved an anisotropic diffusion problem using 
ILU in triangular grids. They used LFA to highlight the good 
smoothing properties of the solver and the asymptotic 
convergence of the multigrid.

Franco et. al. [15] performed LFA in transient problems and 
obtained the critical value of the parameter that represents the 
level of space-time anisotropy for 1D and 2D Fourier equations.

Oliveria et. al. [16] solved an 2D anisotropic diffusion equation. 
The equation was discretized by the Finite Difference Method 
(FDM) and Central Differencing Scheme (CDS). Correction 
Scheme (CS). An xy-zebra-GS smoother was proposed, which 
proved to be efficient and robust for the different anisotropy 
coefficients. They concluded that, the convergence factors 
calculated empirically and by LFA are in agreement.

A particular case of anisotropy is denominated orthotropy, 
which happens when the anisotropy occurs in orthogonal 
directions. In this work, an efficient and robust method for 
solving physical orthotropy problems using LFA is proposed. A 
two-dimensional diffusion mathematical model is considered, in 
which physical orthotropy appears in the coefficients and it will 
be denominated diffusion orthotropy. Equations were 
discretized using FDM with second-order central difference 
scheme.

The asymptotic convergence factor (ρloc ) of the multigrid 
method was calculated by assessing the ILU solver in different 
directions [7] as well as several restriction and prolongation 
operators. The results obtained via LFA were used to assess the 
influence of the diffusion orthotropy on the computational cost 
and took into account the CPU time and number of operations 
in each V-cycle and at the restriction step.

The remainder of this work is organized as follows: section 2 

presents the mathematical and numerical models; section 3 
discusses considerations regarding the LFA used; section 4 
presents the results of the convergence analysis and complexity 
analysis; and section 5 presents the conclusion.

2. Mathematical and Numerical Models
For the problem presented below, the calculus domain used is 
given by 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 and the discretization of the 
equations is done using a uniform grid with a number of points 
given by N = Nx . Ny  , where Nx  and Ny  are the number of points 
in the directions x  and y , respectively, including the boundaries.

2.1. Mathematical Model and Discretization
A model that exemplifies physical and geometric anisotropy for 
a two-dimensional diffusion equation is given by Trottenberg et 
al. (2001) as shown below,

− |g2 + ε w2| uxx + 2(1 − ε )g w uxy − |w2 + ε g2| uyy = S (2)

where g = cos(α ), w = sen (α ), 0 ≤ α ≤ π
2  and 0 < ε << 1 or 

ε >> 1.

For α = π
2 , it is considered that the expression given by Eq. (2) is 

aligned with the axis of the coordinate y, so it becomes

− ε uxx − uyy = S . (3)

From here, the diffusion orthotropic problem will be assessed 
by means of the two-dimensional diffusion equation given by 
Eq. (4) [5,6]

{ − εTxx − Tyy = S
T (0, y ) = T (x , 0) = T (x , 1) = T (1, y ) = 0

(4)

where T is the temperature, Txx  is the second derivative of T as a 
function of x , Tyy  is the second derivative as a function of y  and 
ε > 0.

The source term S and the analytical solution T are given by

S = 2[ε (1 − 6x2 )y2 (1 − y2 ) + (1 − 6y2 )x2 (1 − x2 ) ]  and 
T (x , y ) = (x2 − x4)(y4 − y2).

(5)

Eq. (4) was discretized using FDM with CDS, resulting in

aP TP + aW TW + aN TN + aE TE + aS TS = bP , (6)

 where T  is the unknown of the system.

Figure 1(b) depicts the notation of the grid points in Figure 1(a). 
The points P (central), W (west), E (east), N (north) and S (south) 
in Figure 1(b) correspond to the points (i , j ), (i − 1, j ), (i + 1, j ), (i ,
j + 1), (i , j − 1) in Figure 1(a), respectively.
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Figure 1. Points of a uniform two-dimensional grid.

The classic 5-point finite difference is not convergent for cases 
of general anisotropy, such as the example given by the full 
tensor

(k11 k12

k21 k22) .

Therefore, this methodology cannot be generalized to any type 
of anisotropic problem. In this paper, we analyze a specific case 
of anisotropy given by the tensor

(ε 0
0 1) ,

which represents a case of orthotropy.

 The discretization of Eq. (4) results in Eq. (6), and for the inner 
points, considering hx = 1

Nx − 1  and hy = 1
Ny − 1

aP = ( 2ε
hx

2 + 2
hy

2 ) , aW = aE = − ε
hx

2 , aN = aS = − 1
hy

2 , bP = SP .
(7)

For the boundaries north, south, east and west,aP = 1, aW =
aE = aN = aS = 0.

2.2. Multigrid Method and Computational 
Details
The multigrid method accelerates the convergence rate of 
iterative methods. It consists in employing a group of grids with 
different refinement levels. At each refinement level of the grid, 
the more oscillatory errors are smoothed, and only low 
frequency errors remain. After passing to another grid, the 
remaining low frequency errors become more oscillatory. The 
efficiency of this process, called smoothing, depends on the 
choice of a suitable solver.

For employing multigrid, besides a solver with good smoothing 
properties, grid transfer operators are required (restriction and 
prolongation).

In [8] and [17], restriction through partial weighting in the 
directions x and y, henceforth denoted by PWx and PWy, 
respectively, applied in problems involving geometric 
anisotropy was proposed. These operators are given in stencil 
notation as

PWx : Ih
2h = 1

4 [0 0 0
1 2 1
0 0 0]

h

, PWy : Ih
2h = 1

4 [0 1 0
0 2 0
0 1 0]

h

.
(8)

In this work, such restriction was combined with 7-point 
incomplete LU decomposition (henceforth denoted by ILU). 
According to [18], this decomposition has a better convergence 
factor than 5-point incomplete LU decomposition for 
orthotropic problems.

In Eq. (4), discretized using FDM, the stencil for the 5-point 
Laplacian operator is given by

Lh = [ 0 − 1 0
− ε 2 + 2ε − ε
0 − 1 0 ]

h

.
(9)

The ILU decomposition of the same operator will be given by

Lh = [ f g 0
c d q
0 a b ]

h

,
(10)

 note that in this case, b = f = 0.

Thus, the ILU decomposition is represented by:

L h = Lh Uh − Rh , (11)

where Lh  is the stencil of a lower triangular matrix, Uh  is the 
stencil of an upper triangular matrix and Rh  is the residual 
matrix.

The iterative process for solving Eq. (4) can be:

rm = b − ATm , 

Lh ym = rm ,

Uh σm = ym ,

Tm +1 = Tm + σm .

(12)

Depending on the ordination of the grid points, different 
directions can be obtained for the ILU decomposition. In 
lexicographical order, ILUEN [18], is given by

Lh = [ 0 0 0
γ δ 0

0 α β ]
h

, Uh = [ζ η 0
0 δ μ
0 0 0 ]

h

, Rh =

[p2 0 0 0
0 p3 0
0 0 0 p1

]
h

.

(13)

Another example of ordination for ILU, ILUNE [18], is given by

. 

Lh = [ ζ 0 0
γ δ 0
0 α 0]

h

, Uh = [0 η 0
0 δ μ

0 0 β ]
h

, Rh = [
p1

0 0 0
0 p3 0
0 0 0

p2
]

h.

(14)

The linear system given by Eq. (1) was solved using geometric 
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multigrid method [5,6] with correction scheme (CS), V-cycle and 
zero initial guess.

The coarsening ratio is given by r = 2 (standard coarsening) 
[18]. The grid transfer operators employed were: Injection 
Restriction (INJ), Half Weighting (HW), Full Weighting (FW) (see 
[6]), Partial Weighting in x  (PWx ), Partial Weighting in y  (PWy) 
as well as prolongation by bilinear interpolation and 7-point 
interpolation. The systems of equations obtained by means of 
discretization were resolved using 7-point ILU solvers in 
different directions (ILUEN, ILUNE, among others).

The stop criterion used to interrupt the iterative process is 
based on the nondimensionlized residual norm. The residual of 
the system of algebraic equation is defined by

rm = b − ATm , (15)

where Tm  is the solution of the unknown in the iteration m .

Considering Lm = ∥ rm ∥1 and L0 = ∥ R0 ∥1, if Lm

L0 ≤ tol  the 

iterative process is interrupted if tol = 10−10 .

Double precision arithmetic was used for the simulations. The 
numerical codes were implemented in the Fortran 2003 
language, using the Intel 9.1 Visual Fortran application. All 
numerical results were obtained in a computer with Intel Core i7 
2.66 GHz processor, 16 GB RAM and Windows 8 operating 
system, 64-bit version.

3. Local Fourier Analysis

LFA allows to predict the performance of the multigrid method 
as it supplies estimates of the convergence rate of its 
components. Therefore, LFA becomes a powerful tool in 
quantitative analysis and in the research of efficient multigrid 
methods.

In order to perform the LFA, general discrete linear operators 
with constant coefficients are considered, which are defined in 
an infinite grid Gh  , where the influence of the boundaries can 
be dismissed [6].

Consider the grid functions of the form of

ϕh (θ , x ) = eiθx /h  , with θ = (θ1, θ2) ∈ R2 , (16)

where x  varies in the infinite grid Gh  and θ  is a parameter that 
characterize the frequency of the function concerning to grid 
Gh  .

For − π ≤ θ < π  , every function of the grid ϕh (θ , x )  are 
eigenfunctions of a discrete operator that can be written as a 
stencil.

Thus,

Lh ϕh (θ , x ) = L~ h (θ )ϕh (θ , x ) , (17)

where

Lh (θ ) = [sk ]h , L~ h (θ ) = ∑
k

sk ei θ k
(18)

and sk  is the stencil notation of the operator, were k ∈ {( − 1, −
1), ( − 1, 0), ( − 1, 1), . . . , (1, − 1), (1, 0), (1, 1)} for the 5-point 
stencil.

In order to smooth as well as to analyze the two grids, it is 
necessary to distinguish between components of low and high 
frequency of Gh  and G2h  .

It is known that [6] only

ϕh (θ , x )  with − π
2 ≤ θ < π

2 , (19)

 are visible in Gh  .

For each θ̄ ∈ [ − π
2 , π

2 ) × [ − π
2 , π

2 ) , three other frequency 
components ϕh (θ , x )  with θ ∈ [ − π , π ) × [ − π , π ) coincide in 
G2h  with ϕh ( θ̄ , x )  and are not visible in G2h  . Therefore, the low- 
and high-frequency components are defined as follows:

ϕ  is a low-frequency component ⇔ θ ∈ Tlow = [ − π
2 , π

2 ) × [ −
π
2 , π

2 )
ϕ  is a high-frequency component ⇔ θ ∈ Thigh = [ − π , π ) × [ −
π , π )∖[ − π

2 , π
2 ) × [ − π

2 , π
2 )  (see Figure 2).

Figure 2. Low- (inner white area) and high-frequency (hatched area) areas.

 Considering the frequencies

θ̄ i := { θi + π , if θi < 0
θi − π , if θi ≥ 0

,
(20)

the correction operator of the coarse grid is given by Kh
2h  ans is 

represented by a 4x4 matrix K̂ h
2h

 , as follows

K̂ h
2h

(θ ) = Î h − ( Î 2h
h

(θ ) ) ( L̂ 2h (2θ ) )−1 ( Î h
2h

(θ ) )y L̂ h (θ )  
with θ ∈ Tlow ,

(21)

where Î h  is represented by a 4x4 identity matrix.

L̂ h (θ ) is the 4x4 matrix:
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L̂ h = (L~ h (θ(0,0))

L~ h (θ(1,1))

L~ h (θ(1,0))

L~ h (θ(0,1))
)  ,

(22)

where L~ h  are eigenvalues, evaluated by L~ h (θ ) = ∑
κ

sκ ei θα κ , and 

sκ ∈ R  are stencil coefficients. (see [7])

The discrete Laplace operator given by Eq. (9) is represented by:

L̂ h = (L~ 1

L~ 2

L~ 3

L~ 4
) ,

(23)

where L~ 1 = (2 + 2ε ) − 2(εcos(θ1) + cos(θ2)), L~ 2 = (2 + 2ε ) −
2(εcos(θ̄ 1) + cos(θ̄ 2)), L~ 3 = (2 + 2ε ) − 2(εcos(θ̄ 1) + cos(θ2)) and 
L~ 4 = (2 + 2ε ) − 2(εcos(θ1) + cos(θ̄ 2)).

The restriction operator Î h
2h

(θ ) is a 1x4 matrix, and is given by:

Î h
2h

= ( I~h
2h (θ(0,0) ) I~h

2h (θ(1,1) ) I~h
2h (θ(1,0) ) I~h

2h (θ(0,1) ) ) , (24)

For the INJ restricion operator, I~h
2h (θα ) = 1, for the HW 

restriction operator, I~h
2h (θα ) = 1

4 (2 + cosθ̄ 1 + cosθ̄ 2), for the FW 

restriction operator, I~h
2h (θα ) = 1

4 (1 + cosθ̄ 1)(1 + cosθ̄ 2), for the 

PWx (see Eq.(8)), I~h
2h (θα ) = 1

2 (1 + cosθ̄ 1) and for the PWy (see 

Eq.(8)), I~h
2h (θα ) = 1

2 (1 + cosθ̄ 2).

The prolongation operator Î 2h
h

(θ ) is a 4x1 matrix, and is given 
by:

Î 2h
h

(θ ) = ( I~2h
h (θ(0,0) )

I~2h
h (θ(1,1) )

I~2h
h (θ(1,0) )

I~2h
h (θ(0,1) ) ) ,

(25)

For the bilinear prolongation operator, I~2h
h (θα ) = (1 +

cosθ̄ 1)(1 + cosθ̄ 2) and for the 7-point prolongation operator, 
I~2h

h (θα ) = (1 + cosθ̄ 1 + cosθ̄ 2 + cos(θ̄ 1 − θ̄ 2) )  [10].

The operator of the grid coarse ( L̂ 2h (2θ ) )−1
 is a 1x1 matrix, and 

for the discrete Laplace operators, L~ 2h  is represented by 

L~ 2h (2θ ) = ∑
k

sk ,2h ei 2 θ k or L~ 2h =

(2 + 2ε ) − 2(εcos(2θ1) + cos(2θ2))
2h2 .

A representation for the operator of two grids Mh
2h  can be 

obtained by a matrix M̂ h
2h

(θ ) of the form

M̂ h
2h

:= ( Ŝ h (θ ))
v2

K̂ h
2h

(θ ) ( Ŝ h (θ ))
v1

, (26)

where K̂ h
2h

(θ ) is given by Eq. (21) and Ŝ h (θ ) is a 4x4 matrix and 
represents the smoothing operator Sh (θ ) given by:

Ŝ h = ( S~ h (θ(0,0))

S~ h (θ(1,1))

S~ h (θ(1,0))

S~ h (θ(0,1))
) .

(27)

 In order to perform the LFA using the ILU solver, the smoothing 
operator Sh , according to [6], is given by

Sh ϕ (θ , x ) = S~ h ϕ (θ , x ), − π ≤ θ < π , (28)

with

S~ h (θ ) := λh
R (θ )

λh (θ ) + λh
R (θ )

.
(29)

where λh (θ ) = 1, for ILUEN, λh
R (θ ) = p1e

i (2θ1−θ2)
+ p3 + p2e

i (−2θ1+θ2)
 

and for ILUNE, λh
R (θ ) = p1e

i (−θ1+2θ2)
+ p3 + p2e

i (θ1−2θ2)
. .

The asymptotic convergence factor ρ (Mh
2h )  can be calculated by

ρ (Mh
2h ) = sup {ρ (M̂ h

2h
(θ ) ) : θ ∈ Tlow , θ ∉ Λ} , (30)

where Λ = {θ ∈ Tlow : L~ h (θ ) = 0 or L~ 2h (θ ) = 0}  and ρ (M̂ h
2h

(θ ) )  

is the spectral radius of the 4x4 matrix M̂ h
2h

(θ ).

 In this work, LFA was used to determine the asymptotic 
convergence factor of the multigrid method (ρ (Mh

2h ) = ρloc )  
combining ILU solvers in several directions (such as ILUEN and 
ILUNE), FW, HW, INJ, PWx and PWy restriction operators and 
bilinear and 7-point prolongation operators.

4. Numerical Results
An orthotropic diffusion equation was solved using 7-point ILU 
solver in different directions. Several restriction operators and 
two prolongation operators were employed. We proposed an 
algorithm that presents the lowest asymptotic convergence 
factor values and the lowest computational cost for the 
multigrid method.

Equation (4) was assessed for ε = 10κ  and ε = 10−κ , with 
κ ∈ K = {0, 1, 2, 3, 4, 5, 6, 7}. When ε = 10κ  or ε = 10−κ  in this 
work, there is symmetric orthotropy. For instance, ε = 102 is an 
orthotropy symmetric to ε = 10−2.

Section 4.1 presents the convergence analysis by means of LFA. 
Only the optimum components obtained via LFA will be used in 
the complexity analysis in section 4.2.

4.1. Convergence Analysis

Figure 3 depicts ρloc , given by Eq. (30), with ILU in the EN, NE, 
ES, SE directions, FW restriction, bilinear prolongation, number 
of inner iterations v = 2, ε = 10κ  and ε = 10−κ , with κ ∈ K .
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Figure 3. ρloc  versus orthotropy coefficients (ε ) with ILU in different directions.

 It is noticed that for 0 < ε << 1, ILUEN has a good performance. 
For ε >> 1, ILUNE also has a good performance, that is, ρloc << 1. 
By using ILU solvers in the ES and SE directions, the multigrid 
method did not present a good performance for any of the 
orthotropy coefficients studied.

For the analyses presented below, tests were carried out using 
only the solvers that had the best performances in previous 
analysis.

Figure 4 presents ρloc  using as solvers, ILUEN for 0 < ε << 1 and 
ILUNE for ε >> 1; ν = 2; FW restriction; 7-point and bilinear 
prolongation; ε = 10κ  and ε = 10−κ , with κ ∈ K .

Figure 4. ρloc  versus orthotropy coefficients (ε ) with different interpolation 
operators.

 It can be observed that the restriction|prolongation 
combinations FW|bilinear and FW|7-points had a good 
performance (ρloc << 1)  and presented very similar 
convergence factors.

Bilinear prolongation operator was used in the following 
analysis as it is easy to program and demands fewer memory 

resources. The asymptotic convergence factors were compared 
with different restriction operators.

Figure 5 presents ρloc  using as solvers, ILUEN for 0 < ε << 1 and 
ILUNE for ε >> 1; ν = 2; FW, HW, INJ, PWx and PWy restriction; 
bilinear prolongation; ε = 10κ  and ε = 10−κ , with κ ∈ K .

Figure 5. ρloc  versus orthotropy coefficients (ε ) with different restriction operators.

 Figure 5 demonstrates that for ε = 10κ  and ε = 10−κ , with κ ∈ K  
(symmetric orthotropies), ρloc  presents very similar values. It is 
noted that for orthotropic problems (κ ≠ 0) , the lowest values 
for ρloc  are achieved with FW and PWx restriction, which show 
very similar values.

Based on the results presented, we propose Algorithm 1, which 
combines ILU solver in different directions, with FW and PWx 
restrictions. The algorithm is presented below. The abbreviation 
REST, used in the algorithm represents any of the restrictions (
FW or PWx) previously defined.

Algorithm 1.
 _______________________________________________________

if ε >1 then

Apply ILUNE smoothing with REST restriction

else if ε =1 then

Apply ILUNE smoothing with FW restriction

else

Apply ILUEN REST restriction

end if
 _______________________________________________________

Remark 1: Pinto et. al. [14] solved an anisotropic diffusion 
problem using ILU in triangular grids and several anisotropies 
not aligned with x or y. The authors noted that ILUNE and ILUEN 
were efficient for some of the anisotropies, making it is possible 
to adapt this algorithm to an alternating form so it will work well 
for any anisotropy.

Remark 2: One of the biggest problems in the literature is the 
numerical resolution of the Navier-Stokes equation. Depending 
on its numerical formulation (simplec, projections [19]), a great 
computational effort is required at the numerical solution of the 
continuity equation, which can be represented by Poisson’s 
equation. Moreover, the algorithm depends on the mesh sweep 
and is independent of the complexity of the proposed problem 
equation. Therefore, this algorithm can be adapted to certain 
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orthotropic problems with a certain degree of complexity.

Next, the asymptotic convergence factor ρloc , calculated by LFA, 
and the empiric asymptotic convergence factor ρh , for different 
orthotropy coefficients, are presented.

Figure 6 shows Algorithm 1 with REST = PWx , ν = 2 and bilinear 
prolongation.

Figure 6. ρloc  and ρh  versus orthotropy coefficients (ε ).

 It is observed that ρloc ≈ ρh << 1 for every orthotropy 
coefficients assessed. Furthermore, ρloc  calculated by LFA is in 
accordance with ρh  calculated experimentally.

Figure 7 depicts the numerical asymptotic convergence factor 
ρloc  calculated by LFA and the experimental asymptotic 
convergence factor ρh , for different orthotropy coefficients for 
different grids. Algorithm 1 with REST = PWx, ν = 2 and bilinear 
prolongation was used. As the grid becomes more refined, 
ρh → ρloc  for every orthotropy coefficient analyzed, what 
demonstrates the robustness of the methodology assessed.

Figure 7. ρloc  and ρh  versus orthotropy coefficients (ε ) for different number of grid 
points.

 Some of the data presented in Figure 7 can be better visualized 

in Table 1.

Table 1. ρloc  and ρh  for some orthotropy coefficients (ε ) and different number of grid 
points.

ε ρh  (N =513×513) ρh  (N =
1025×1025)

ρh  (N =
2049×2049)

ρl oc

10−5 4.181939×10−4 0.006544947 0.01993340 0.02943536

10−4 0.01569827 0.025212810 0.02806990 0.02943000

10−3 0.02748596 0.028578500 0.02884448 0.022941390

10−2 0.02858316 0.028703710 0.02874592 0.02921000

10−1 0.02683346 0.026852440 0.02685995 0.02725823

 Next section presents the complexity analysis of multigrid. For 
the analysis, multigrid was built with the components that had 
the best convergence factors according to LFA. In addition, a 
comparison between partial weighting and full weighting will be 
presented.

4.2. Complexity Analysis

In order to assess the effect of the number of unknowns on CPU 
time, optimum components obtained via LFA were used. Figures 
8 (a) and 8 (b) show, for FW and PWx restrictions, respectively, 
that for the isotropic problem (ε = 1) , the tCPU  is not lower. As 
the problem becomes more orthotropic (0 < ε << 1 or ε >> 1) , 
the tCPU  decreases for every N value assessed. For every 
orthotropy coefficient assessed, the tCPU  with FW restriction is 
very similar to the tCPU  with PWx restriction, that is, 
tCPU (FW ) ≈ tCPU (PWx )  .

It is also observed for symmetric orthotropies (ε = 10−κ and
ε = 10κ )  with κ ∈ {1, 2, 3, 4}, that the values of tCPU  obtained 

are extremely similar.

Figure 8. CPU time versus number of nodes (N).

 In order to assess the performance of the multigrid method 
with different anisotropy coefficients, a curve adjustment of the 
form tCPU = cNp  [20] was made, where p  represents the 
complexity order of the solver, N is the number of grid points 
andN  c  is a constant that depends on the method. The closer 
the value of p  is to one, the better the performance of the 
method used. Ideally, multigrid presents p = 1, what means that 
the CPU time grows linearly with the increase of N. Results are 
shown in Table 2 for both restrictions assessedN  (FW and PWx).

One can observe in Table 2 that, for every orthotropy employed, 
the multigrid method has a good performance, since p ≈ 1 in 
every case. These results prove the efficiency and robustness of 
Algorithm 1, proposed in this work.

Table 2. Complexity order (p ) for different orthotropy coefficients (ε ).

ε p (PWx) p (FW)

10−4 1.07747 1.07733

10−2 1.05023 1.05894

1 1.05940 1.04380
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102 1.07255 1.06199

104 1.07627 1.07775

 The values obtained for the convergence factor, presented in 
section 4.1, and for the complexity order concerning to the PWx  
and FW restriction operators (Table 2) are quite similar and thus 
insufficient to decide which one results in a more efficient 
algorithm.

To complement the analysis, the number of arithmetical 
operations performed in each V-cycle and at the restriction step 
for each one of the operators was assessed.

These arithmetical operations concern to floating-point 
operations (flops) performed during the iterative process and 
are not affect by the hardware used. Each addition, 
multiplication and division operation correspond to 1 flop.

Tests were carried out for N10 = 10 (N10 is the number of points 
of the finest grid, considering a problem whose maximum 
number of levels is Lmax = 10) and for some values of ε . Table 3 
presents the ratio between number of flops of a V-cycle and 
number of points of the finest grid N10. Table 4 shows the ratio 
between number of flops performed in each restriction and the 
number of points of the finest grid N10.

Table 3. Ratio between number of flops of a V-cycle and the number of points of the finest 
grid.

ε flops(V-cycle|PWx)/N10 flops(V-cycle|FW)/N10

10−2 1510.221554 1543.296057

10−1 1798.299366 1837.988770

1 2368.277388 2126.896785

101 1860.997604 1900.687008

102 1564.958717 1598.033220

Table 4. Ratio between number of flops of the restriction and number of points of the finest 
grid.

ε flops(PWx)/N10 flops(FW)/N10

10−2 11.57607615 44.65057942

10−1 13.89129130 53.58069530

1 18.37833483 62.02688007

101 13.89129137 53.58069530

102 11.57607615 44.65057942

 According to Table 3, the multigrid cycle that requires the 
lowest number of flops is the cone with PWx operator, except 
for the isotropic case (ε = 1) . Considering only the restriction 
step, results presented in Table 4 show a great advantage of the 
PWx operator over the FW operator regarding the number of 
flops performed. For every case, the number of flops for PWx is 
roughly 75% lower than the number of flops for FW.

Remark 3: 75% of the reduction in the number of operations in 
the restriction was expected. However, this has little impact on 
the total cost of the cycle, which shows the great concentration 
of operations in the execution of the solver.

The remaining orthotropy coefficients assessed showed similar 
performances to those presented in Figure 5 and Tables 3 and 
4, what confirms the efficiency and robustness of the algorithm 
proposed, in addition to the low computational cost with the 
use of the PWx operator.

5. Conclusions
- For the ILU directions assessed (EN, NE, ES, SE) for standard 
multigrid method (FW restriction operator and bilinear 

prolongation), it is concluded that ρloc ≈ 0.02 when using ILUEN 
for 0 < ε << 1 and ILUNE for ε >> 1.

- With FW restriction, ILUEN for 0 < ε << 1 and ILUNE for ε >> 1, 
results showed that the 7-point and bilinear prolongation 
operators presented a similar performance, and for every value 
of ε  assessed, ρloc << 1 was obtained.

- With bilinear interpolation, ILUEN for 0 < ε << 1 and ILUNE for 
ε >> 1, the lowest values of ρloc  are obtained with FW and PWx 
restriction operators, and the values of ρloc  with these operators 
are very similar.

- Using Algorithm 1, ρloc ≈ ρh << 1 for every orthotropy 
coefficient assessed and ρh → ρloc  as the grid becomes more 
refined.

- The tCPU (FW) ≈ tCPU (PWx )  for every value of ε  assessed.

- The complexity order p  of the multigrid method with 
Algorithm 1 is close to one for every orthotropy assessed. For 
ε = 10−4, for example, p = 1.07747 with this algorithm.

- The computational cost of multigrid depends on the number 
of flops of the restriction in a V-cycle. Using Algorithm 1 with 
PWx restriction, the computational cost is 75% lower than with 
FW restriction.

- The Algorithm 1 with PWx restriction proposed in this work is 
efficient, robust and has low computational cost.
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