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Abstract
This article is focused on the study of a micro-macro LaTIn based Domain Decomposition 
Method (LaTIn-DDM) for the prediction of the nonlinear behavior of slender composite 
structures subjected to bending, buckling and delamination. Previous studies have shown 
that an adequate selection of the iterative parameters (search directions and macroscopic 
space) allow to improve the convergence rate and ensure scalability (i.e. number of 
iterations is independent of the number of subdomains) of the iterative schema. To obtain 
precise solutions, only the size reduction of the subdomains' discretization has been 
addressed (h-refinement), disregarding the option of increasing the polynomial degree of 
the finite elements (p-refinement) and ignoring their underlying effects on the information's 
transmission through the interfaces between subdomains. In this work and using linear and 
quadratic finite elements, h and p refinements on the subdomains and local h-refinement 
only along the edges of the subdomains were investigated. It is conclude that the p-
refinement in the whole subdomain not only enables to reach more exact solutions than 
using global or local h-refinement, but also the convergence rate is improved. These 
enhancements allow more complex simulations but using less degrees of freedom and less 
calculation time, even up to 97% faster.
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1. Introduction
Since the middle of the last century, composite materials have 
been widely used in several industrial applications, showing 
advantages over materials such as steel and aluminum due to 
their specific properties. Furthermore, scientists and engineers 
have made efforts to understand their behavior and to predict 
them [1,2]. The usage of models which are defined at micro-
length scales would be ideal, but numerical complexity and 
computational limitations (memory and time) appear when 
simulations are performed [3]. Instead, Domain Decomposition 
Methods (DDM) [4,5,6] are suitable to face these issues taking 
advantage of the power of parallel and distributed 
computations (high performance computing). By partitioning 
the structure into smaller subdomains connected by interfaces, 
these algorithms lead with local problems defined in each 
subdomain and a condensed interface problem. Then 
computational limitations are overcome because they are 
numerically cheaper and adapted to the parallel architecture of 
hardwares. The scalability of these methods (i.e. convergence 
rate does not depends on the number of subdomains) is often 
managed using a coarse problem ensuring a global 
communication between subdomains (i.e. a second calculation's 
scale) [7,8,9].

The LaTIn method [10] is in principle a non-incremental schema 
to solve non-linear problems; however its extension as a 
multiscale mixed DDM has been easily done [11]. Contact [12], 

crack propagation [13,14,15], buckling-delamination interaction 
[16,17] and heterogeneous structures [11] are among the 
different nonlinear and complex problems solved with this 
method. It distinguishes the no-linear equations defined on the 
subdomains from the non-linear ones defined on the interfaces, 
in order to define two groups of partial solutions over which a 
fixed point is applied to reach the intersection of them at 
convergence. This algorithm is configured with two search 
directions linking the force to the displacement distributions on 
the interfaces (i.e. mixed or Robin conditions). The LaTIn 
method aims to improve its convergence rate by introducing a 
second space scale at the interface level (classically called the 
“macroscopic problem” in contrast to the local problems solved 
in each subdomain which are called “microscopic problems”). 
For this reason, the global equilibrium over the structure is 
enforced in a few interface's unknowns by defining a 
macroscopic basis of the interface's displacements. Additionally, 
the Robin conditions need to be optimized (large-wavelength 
components converge rapidly whereas small-wavelength 
components converge slowly) as shown in [18,19,20].

Delamination is one of the main degradation mechanisms of 
laminated composite materials. This phenomenon is generally 
initiated by large interlaminar stresses and can be accelerated 
under geometric instabilities as buckling, leading eventually to a 
structural failure. For simulating the buckling-delamination 
interaction in composite laminates, the work of [18] uses the 
mesoscopic scale defining two constituents: the plies (3D 
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elements) and the interfaces (2D elements), which are naturally 
linked to the domain partitioning. The geometrically nonlinear 
evolution is handled through a total Lagrangian formulation as 
proposed by [16], while delamination is modeled using a 
Cohesive Zone Model (CZM) which are based on damage 
mechanics [21]. Conditions of unilateral contact are considered 
to avoid interpenetration between delaminated surfaces.

The simulations previously carried out need a large amount of 
degrees of freedom (dof) to correctly capture the different local 
and global phenomena. Until now, the strategy has privileged to 
use sufficiently refined meshes (h -refinement), but this has 
implyied expensive computations. The other classical technique 
to reach more exact solutions rather than dividing elements into 
smaller ones is to increase the polynomial degree of the finite 
element approximation (p -refinement), as proposed in [22,23] 
for problems using direct solvers (without parallel 
computations). Therefore, this work studies the influence of the 
p -refinement not only on the accuracy of the results, but also on 
the iterative solver (LaTIn-DDM). The numerical implementation 
is made using the C++ research code MULTI developed at the 
Laboratoire de Mécanique et Technologies de Cachan1 using 
MPI and METIS libraries for the parallel assignments.

This work proposes to use second order finite elements in the 
LaTIn-DDM and to study their effects on the convergence rate 
and on the calculation time with respect to the LaTIn-DDM 
previously defined in [18]. To achieve this goal, Section 2 shows 
the general aspects of the multiscale strategy, then the 
reference problem, the domain partitioning, governing 
equations and the multiscale iterative algorithm are detailed. 
Subsequently, in Section 3, different h - and p -refinements are 
compared in 3D beam problems: bending, buckling and 
delamination. Finally, the conclusions and ongoing work are 
presented in Section 4.

 (1) LMT-Cachan (ENS Paris-Saclay/CNRS/Université Paris-Saclay)

2. The micro-macro LaTIn based Domain 
Decomposition Method

Let us consider a laminate composite (see Figure 1) occupying 
the domain Ω bounded by ∂Ω in the current configuration, and 
consisting of NP  plies. Each ply P  is connected to an adjacent ply 
P′ through the interface ΓP P′. The structure is subjected to an 
external surface traction field F_d  on the part ∂ΩFd

 and to a 
displacement field U_d  on the complementary part ∂ΩUd

. The 
body force per unit of mass is written f_d . The relevant 
quantities are described in reference to the undeformed 
configuration using the index ⋅0. The geometrically nonlinear 
evolution is handled through a total Lagrangian formulation 
and delamination (damageable interfaces) is modeled using 
CZM and unilateral contact conditions. For the sake of simplicity, 
an extensive description of the CZM is found in [24], while [25] 
describe contact inequalities.

To propose the partitioned problem, the whole domain Ω is split 
into subdomains which are connected by interfaces with 
mechanical behaviors. Two possibilities are considered: 
“material” interfaces between plies with localized non-linearities 
(damage, contact) that are compatible with the mesomodeling, 
and “numerical” interfaces (the perfect ones) within the plies to 
conceive smaller problems that are suited for parallelism, as 
schematized in Figure 1. A subdomain S0  defined in the 
undeformed domain ΩS0

 is connected to an adjacent 
undeformed subdomain S′0 through an undeformed interface 
ΓS0S′0

= ∂ΩS0
∩ ∂ΩS0′

. The surface entity ΓS0S′0
 applies force 

distributions F_S0
, F_S0′

 and displacement distributions W_S0
, 

W_S′0
 to S0  and S′0 respectively (see Figure 2). Let us define ΓS0

=
∪S′0∈EΓS0S′0

. For a subdomain S0  such that 
ΓS0

∩ (∂ΩFd0
∪ ∂ΩUd0

) ≠ ∅, the boundary condition (F_d0
, U_d0

) is 

applied through a boundary interface ΓSd0
.

Figure 1: The reference problem, the mesomodel and its partitioning 
[18]

Figure 2: Subdomains and interfaces [16]

 The purpose of the method is to find the subdomain fields u_S0
 

(displacement) and π__S0
 (second Piola-Kirchhoff stress), and the 

interface fields W_S0
 (displacement) and F_S0

 (inter-forces), 
where the index ⋅S0

 ranges over all subdomains. After 
partitioning, the governing equations are separated into two 
groups:

1. Non-linear equations in subdomains and macroscopic 
admissibility of interfaces, whose solutions are elements of the 
manifold Ad:

non-linear kinematic admissibility of the subdomains:

E__ S0
= 1

2 (∇u_ S0
+ t ∇u_ S0

+ ∇u_ S0
t ∇u_ S0 ) , onΩS0

(1)

u_ S0|∂ΩS0
= W_ S0|ΓS0

, on ΓS0S′0 (2)

non-linear static admissibility of the subdomains:

∀(u_ S0
⋆ , W_ S0

⋆ ) ∈ US0
0 × WS0

0 such that u_ S0
⋆

|∂ΩS0
= W_ S0

⋆
|ΓS0

,

∫ΩS0
π__ S0

: Ė__ (u_ S0
⋆ )dΩ0 = ∫ΩS0

ρS0
f_ d ⋅ u_ S0

⋆ dΩ0 + ∫ΓS0
F_ S0

⋅

W_ S0
⋆ dΓ0

(3)

where Ė __(u_S0
⋆ ) = 1

2 (∇u_S0
⋆ + t ∇u_S0

⋆ + t ∇u_S0
∇u_S0

⋆ + t ∇u_S0
⋆ ∇u_S0

).

behavior of the subdomains:

π__ S0
= ∂ψ

∂E__ S0

, on ΩS0
,

(4)

where ψ  is the stored energy function per unit of undeformed 
volume. For this work, ψ = 1

2 KS0
E__S0

:E__S0
 has been used.

macroscopic admissibility of the interfaces (after the 
linearization of the previous equations), which is a partial 
verification of the action-reaction principle:
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∀W_ S0
M ⋆ ∈ WS0 S′0

M , ∫ΓS0S′0
(F_ S0

+ F_ S0′
) ⋅ W_ S0

M ⋆ dΓ0 = 0 ,
(5)

where the subspace WS0 S′0
M  of interface macroscopic admissible 

displacements is a parameter described in Section 2.1.

2. Local (non-linear) equations in the interfaces whose solutions 
belong to the manifold LΓ:

constitutive equation RS0 S′0
([W_ S0

] , F_ S0
, F_ S0′

) = 0_ over
ΓS0S′0

∈ ΓS0
,  where [W_S0

] = W_S′0
− W_S0

 is the interface 
displacement gap.

boundary behavior RSd0
(W_S0

, F_S0
) = 0_ over the boundary ΓSd0

. The relation RS0 S′0
= 0_ can be made explicit for:

- Perfect interface:  {F_S0
+ F_S0′

= 0_

[W_S0
] = 0_

- Cohesive interface:  { F_S0
+ F_S0′

= 0_

AP P′([W_ S0
] , F_ S0

) = 0_

- Unilateral contact interface:  {
F_S0

+ F_S0′
= 0_

n_ ⋅ [W_S0
] ≥ 0 or n_ ⋅ F_S0

≥ 0

(n_ ⋅ [W_S0
])(n_ ⋅ F_S0

) = 0

PF_S0
= PF_S0′

= 0_

where n_ is the unit normal to ΓS S′ and P is the corresponding 
tangential projection operator.

The algorithm consists in seeking the interface solution sref  
alternatively in these two spaces: first, one finds a solution s =
(sS0

)S0 ∈E = (W_S0
, F_S0

)S0 ∈E in Ad, then a solution ŝ =

( ŝ S0 )S0 ∈E = (Ŵ _S0 , F̂ _S0 )S0 ∈E in LΓ. In order for the two 
problems to be well-posed, two search directions k+ and k−, 
which link the solutions s  and ŝ  during the iterative process, 
are introduced. The converged interface solution sref  is such 
that sref ∈ Ad ∩ LΓ. A complete description of this iterative 
method can be found in [16].

In order to evaluate the convergence, a criterion based on the 
verification of the constitutive laws of the interfaces quantities 
issued from the admissibility stage has been implemented, as 
proposed by [26].

2.1 Separation of the micro-macro scales

The definition of the macroscopic quantities is done through an 
orthogonal projector Π for each interface ΓS0S′0

, such as the 

macroscopic fields are F_S0
M  =  ΠF_S0

 and W_S0
M  =  ΠW_S0

. 
Consequently, the microscopic spaces, WS0 S′0

m  and FS0 S′0
m , are 

orthogonal to the macroscopic spaces, WS0 S′0
M  and FS0 S′0

M , with 

respect to the inner product L2(ΓS0S′0
), so the scales can be 

uncoupled with respect to the interface virtual work as follows:

F_ S0
M = ΠF_ S0

; W_ S0
M = ΠW_ S0

F_ S0
m = (I − Π)F_ S0

; W_ S0
m = (I − Π)W_ S0

(6)

∫
ΓS0S′0

F_ S0
⋅ W_ S0

dΓ0 = ∫
ΓS0S′0

(F_ S0
M + F_ S0

m ) ⋅ (W_ S0
M + W_ S0

m ) dΓ0

= ∫
ΓS0S′0

(ΠF_ S0
+ (I − Π)F_ S0

) ⋅ (ΠW_ S0
+ (I − Π)W_ S0

) dΓ0

= ∫
ΓS0S′0

F_ S0
M ⋅ W_ S0

M dΓ0 + ∫
ΓS0S′0

F_ S0
m ⋅ W_ S0

m dΓ0

(7)

In order to ensure the scalability of the iterative scheme, a 
global linear coarse grid problem 5 has been introduced. It is 
fully characterized by the set of interface macroscopic spaces 
(WS0 S′0

M ) which is a parameter of the method as well as its dual 

(FS0 S′0
M ). Usually, a common macroscopic basis for both the 

traction and displacement macroscopic fields is chosen so that 
the uniqueness of the micro-macro descomposition is ensured. 
Classically, the macroscopic space contain at least the affine 
part of the interface displacements; this corresponds to verify 
the balance of the first moments of forces at the interface. 
However, if complex structures are involved, the geometry and 
its partitioning degrade the convergence rate. To palliate this 
problem, [18] propose to find an optimized search direction 
instead to enrich the macroscopic space.

In this paper, simulations have been carried out using the 
standard linear macroscopic space and the local search 
direction previously used in [16].

2.2 Discretization
To solve both equations' sets of the multiscale algorithm, 
interfaces and subdomains are discretized in space using 
classical finite elements. At an interface ΓS0S′0

, the displacements 
W_S0

 and forces F_S0
 belong to the approximation spaces 

WS0 S′0,h  and FS0 S′0,h . These spaces are chosen such that the 
bilinear form (in the sense of the interface mechanical work) is 
non-degenerate. Additionally, a wrong discretization for FS0 S′0,h  
could generate spurious oscillating modes leading to numerical 
instability. These inconveniences can be evaded using a 
common space for the displacements and forces and including 
a local refinement of the mesh near the boundary (over-
discretization) of the subdomains (approximation space US0

). 
Two manners are possible: to increase the number of elements 
(h -version) or to use a higher degree of approximation (p
-version) for the field u_S0

 near to the interface, as illustrated in 
Figure 3 [27]. Classically, the code MULTI has considered linear 
elements P1 with local h -refinement along the subdomain's 
boundary, while the spaces WS0 S′0,h  and FS0 S′0,h  are piecewise 
constant functions P0.

In this work, the p -refinement is also explored. Indeed, it is here 
proposed to use the second order approximation for u_S0

 not 
only in the boundary but in the whole subdomain.
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Figure 3: Modification of the classical approximations of the inter-force 
and local displacement along the edge of a subdomain: h -and p

-versions [13]

3. Influence of the discretization on the LaTIn-
DDM
This section analyses the influence of the subdomains' 
discretization for three different problems: bending, buckling 
and delamination. The following three meshes US0

 are 
considered:

i -version: linear six-node wedge elements of equal size in 
the whole subdomain (“initial” version without local over 
discretization, see Figure 3) ;

h -version: linear six-node wedge elements, where the 
elements along the subdomain's boundary are divided into 
three four-node tetrahedral elements as shown in Figure 4 
(local h  over discretization);
p -version: quadratic fifteen-node wedge elements of equal 
size in the whole subdomain (global p  over discretization).

For all cases, the approximation functions of the interfaces are 
P0. Displacements, convergence rate and time are used to 
compare the refinements.

Figure 4: before and after local h -refinement. (a) Wedge element. (b) 
Mesh of the subdomain's boundary (the inner mesh remains 

unchanged)

3.1 Bending

The problem consists of a thin 3D beam whose length is L = 160 
[mm] (x -direction), width is a = 120 [mm] (y -direction) and 
thickness is h = 4 [mm] (z -direction). Regarding the boundary 
conditions, the cantilever beam is embedded at one end and 
subjected to a surface load F_d0

= 0.1 [N/m2] on its upper face. 
Here, the hypothesis of small displacements is considered. First 
an isotropic material is studied, then an orthotropic one is 
analysed to study the influence of material heterogeneities.

3.1.1 Isotropic material

It is considered an elastic modulus E = 210 [GPa] and a poisson 
coefficient ν = 0.3 [-]. The geometry is partitioned into 64 
identical subdomains and 184 interfaces (see Figure 5); each 
subdomain has length Lsst = 20 [mm], width asst = 15 [mm] and 
thickness hsst = 4 [mm]. Five meshes are considered: two 

different initial discretization with their respective h -refinement 
while the last one is a p -version. Each subdomain has nx (ny ,nz ) 
elements in the x (y ,z )-direction, respectively, as shown in Table 
1 as well as the total number of elements and the total degrees 
of freedom used for each mesh. In order to estimate the 
solution's error (see Table 1), the maximum vertical 
displacement is compared with the theoretical elastic curve [28].

Figure 5: Partitioning of the geometry (bending problem with isotropic 
material)

Table 1. Results according to the discretization (bending problem with 
isotropic material); + ratio respect to simulation (b.1)

mesh discretization nx -ny -nz total total dof time+ displ.

/ element elements error [mm]

a.1) i / wedge 6 10-8-2 22 272 61 056 0.046 1.182

a.2) h / wedge 6 10-8-2 121 088 141 696 0.089 3.438

b.1) i / wedge 6 15-20-4 173 568 360 000 1 0.607

b.2) h / wedge 6 15-20-4 574 464 674 112 2.6 1.166

c) p / wedge 15 10-8-2 22 272 262 464 0.193 0.281

In Figure 6a, theoretical and numerical displacements of the 
neutral line are compared. As naturally expected, when 
increasing the number of linear elements in the thickness, the 
solution's error decreases, but the dof and the computational 
cost increase. However, it is important to notice that for the h
-refinements (a.2) and (b.2), the displacement's error and 
calculation time increase (see Table 1) while the convergence 
rate decrease respect to the corresponding i -versions (a.1) and 
(b.1). Even after 1000 iterations, the iterative LaTIn error for 
mesh (a.2) is twice the detention criteria. This phenomena could 
be explained by the fact that h -version has only a localized 
refinement along the edge of a subdomain, while the element's 
size inside the subdomain remains the same as the i -version. 
This choice could induce different stiffness through a 
subdomain, implying additional difficulties to transfer 
informationn between subdomains.

Finally, the mesh (d) (p -version) is twice more accurate, has 73% 
less dof and is 19,3% more quickly than mesh (b.1). Differences 
in the computation time (see Table 1) are mainly related to the 
mesh size, because convergence rates are similar, as shown in 
Figure 6b.

Figure 6: Bending problem with isotropic material. (a) Deflection. (b) 
Evolution of the iterative LaTIn error
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3.1.2 Orthotropic material

The precedent problem is now studied considering a composite 
laminate made of four plies [0o , 90o ]S , each 1 [mm] a thick. A 0o

-layer is transversely isotropic with the following elastic 
properties: E1 = 165 [GPa], E2 = E3 = 9 [GPa], ν12 = ν13 = 0.3 [-], 
ν23 = 0.5 [-], G12 = G13 = 5.6 [GPa] and G23 = 2.8 [GPa]. The 
geometry is divided into 256 identical subdomains of Lsst = 20 
[mm], asst = 15 [mm] and hsst = 1 [mm], generating 736 
interfaces. Therefore, for each ply there is one subdomain in the 
z -direction (four in total through the thickness). Table 2 
compares the different discretizations.

Table 2. Results according to the discretization (bending problem with 
an orthotropic material); + ratio respect to simulation (b.1)

mesh disc. / element nx -ny -nz total elements total dof time+

a.1) i / wedge 6 10-10-2 113 664 574 128 0.402

a.2) h / wedge 6 10-10-2 611 328 706 560 0.814

b.1) i / wedge 6 15-15-3 393 216 881 664 1

b.2) h / wedge 6 15-15-3 1 565 696 1 806 336 3.707

c) p / wedge 15 10-10-2 113 664 1 320 192 0.542

In Figure 7a is observed that the vertical displacement of the 
neutral axis is similar except for simulations (a.1) and (a.2). In 
these two cases, the iterative LaTIn error (see Figure 7b) is twice 
the detention criteria, even after 1000 iterations. Using the p
-version mesh (c), the LaTIn error is less than 10−5 in only 68 
iteraciones, less than half of the iterations made by the curve 
(b.1) to converge. If the upper stresses σxx  are compared 
respect to the theoretical ones (see Figure 8), it is possible to 
confirm that (a.1), (a.2) and (b.2) do not fit the desired solution.

Figure 7: Bending problem with orthotropic material. (a) Deflection. (b) 
Evolution of the iterative LaTIn error

Table 2 compares calculation time, total number of elements 
and total dof. It is verified that using p -version, mesh (c), it is 
possible to obtain the same results as in (b.1) but consuming 
only 54.2% of the time, even considering that the number of dof 
increases in a 50%. This is explained because (c) has the best 
convergence rate (see Figure 7b).

Figure 8: Results for the orthotropic material: normal stresses σxx

Similar to the precedent example, the local h -version does not 
ensure better results. Therefore, the meshes considered for the 

next examples will be i  and p -versions.

3.2 Buckling

The problem to be addressed is a slender 3D beam built-in at 
both ends, with one of them subjected to a negative 
displacement u_d  to produce uniaxial compression, while a 
perpendicular perturbation F_d  induces buckling out of the 
plane (see Figure 9a). The structure has the following geometry: 
length L = 10 [mm] (x -direction), width a = 1 [mm] (y -direction) 
and thickness h = 0.1 [mm] (z -direction). The properties of the 
material are E = 135 [GPa] and ν = 0.3 [-]. The geometry is 
divided into 100 subdomains and 156 perfect interfaces, 
therefore, each subdomain has Lsst = 0.2 [mm], width asst = 0.5 
[mm] and thickness hsst = 0.1 [mm]. Three meshes are 
considered, the first two are linear without over discretization (i
-version), while the mesh (c) is a p -refinement. More details of 
the meshes and their results are shown in Table 3.

Table 3. Results according to the discretization (buckling problem); + 
ratio respect to simulation (b)

mesh disc. / element nx -ny -nz total elements total dof time+

a) i / wedge 6 5-10-4 41 600 102 000 0.028

b) i / wedge 6 10-20-10 422 000 798 600 1

c) p / wedge 15 2-5-2 4 000 60 300 0.029

The simulation was performed in 1000 steps. Figure 9a shows 
the initial configuration and the final deformation at the last 
time step. The evolution of the compression axial load (P /Pcrit ) is 
obtained as a function of the transverse displacement in x =
L /2, as shown in Figure 9b.

It is noticed that simulations (a) and (b) has respectively 8.68% 
and 2.61% of error in the critical load when the transverse 
displacement over L0 is 0.005 [-], while mesh (c) is the closest 
(only 1.46% of error at the same point). In addition, the time 
spent for mesh (c) is only the 2.9% used in (b).

Figure 9: (a) The initial configuration and the final deformation after the 
last time step. (b) The load-displacement curve

3.3 Delamination
In this section we study the effect of discretization when 
problems involve CZM. The example to be simulated is a 3D 
double cantilever beam (DCB), whose length is L = 20 [mm] (x
-direction), width a = 2 [mm] (y -direction), thickness h = 1 [mm] 
(z -direction) and pre-crack a0 = 10 [mm] located at the end of 
the beam along the x -direction (see Figure 11a). The properties 
of the material are E = 135 [GPa] and ν = 0.3 [-]; the cohesive 
interface parameters are kn = 100 ⋅ 103 [N/mm3], α = 1 [-], Yc =
0.4 [N/mm] and n = 0.5 [-].

The geometry is divided into 160 subdomains and 324 
interfaces such as each subdomain has Lsst = 0.5 [mm], width 
asst = 1 [mm] and thickness hsst = 0.5 [mm]. Four meshes were 
considered (see details in Table 4) and the simulation was 
performed in 50 time steps.
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Table 4. Results according to the discretization (DCB problem); + ratio 
respect to simulation (a)

mesh disc. / element nx -ny -nz total elements total dof time+

a) i / wedge 6 5-10-6 109 440 245 280 1

b) p / wedge 15 3-5-3 14 400 182 400 0.240

c) p / wedge 15 4-8-5 54 400 576 480 2.174

Results are compared to the theoretical solution [29] in Figure 
10. It is possible to observe three areas: the first is the bending 
mode (without delamination); the second zone appears for the 
crack's propagation (softening curve) and the third one is the 
second bending mode (when the beam has been completely 
delaminated). For bending, mesh (b) with three non-linear 
elements in the thickness is satisfactory, but it does not 
correctly represent delamination due to the visible zigzag. If the 
discretization (c) is studied, with a greater number of elements 
in the y -direction, the entire curve is correctly predicted, but the 
time used for the calculation is double that used for the linear 
discretization (a). The lack of accuracy in the response of mesh 
(b) could be related to the fact that the forces calculated to 
evaluate damage are performed at the interfaces which are 
discretize by constant functions P0 (see Figure 3), although 
subdomains have finite elements of higher order. Figure 11 
shows the crack's front at the beginning of the propagation.

Figure 10: The load-displacement curve of the DCB test

Figure 11: DCB problem. (a) Subdomains and interfaces. (b) Crack's 
front after the 11th  step where pre-crack is in black and d is the 
damage variable ranging from 0 (healthy point) to 1 (completely 

damaged interface point)

4. Conclusions
In this article, the influence of the discretization on a micro-
macro LaTIn-based Domain Decomposition Method have been 
investigated. Three subdomains's discretizations have been 
analyzed: initial linear mesh without localized over discretization 
on the boundary (i -version); linear mesh with local h -refinement 
on the boundary; and p -version with quadratic elements on the 
whole subdomain.

Bending results show that the h -refinement on the boundary 
elements increase the calculation time and decrease the 
convergence rate with respect to the meshes without over 
discretization (so-called initial version). The best results were 
obtained when using p -refinement on the whole subdomain, 
reaching even 97% faster simulations for the buckling example.

However, p -refinement is not enough to well represent 

delamination due to the P0 polynomial degree used for the 
approximation space of the interfaces. Therefore, to have a 
correct representation of the phenomenon, a greater number 
of elements are required in the crack's front (y -direction). A 
posible solution will be to use linear or higher order finite 
elements for the interfaces' discretization.
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