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Abstract

This paper considers a broadcast multiple-input multiple-output (MIMO) network

with multiple users and simultaneous wireless information and power transfer

(SWIPT). In this scenario, it is assumed that some users are able to harvest

power from radio frequency (RF) signals to recharge batteries through wireless

power transfer from the transmitter, while others are served simultaneously with

data transmission. The criterion driving the optimization and design of the

system is based on the weighted sum rate for the users being served with data.

At the same time, constraints stating minimum per-user harvested powers are

included in the optimization problem. This paper derives the structure of the

optimal transmit covariance matrices in the case where both types of users are

present simultaneously in the network, particularizing the results to the cases

where either only harvesting nodes or only information users are to be served.

The tradeoff between the achieved weighted sum rate and the powers harvested

by the user terminals is analyzed and evaluated using the rate-power (R-P)

region. Finally, we propose a two-stage user grouping mechanism that decides

which users should be scheduled to receive information and which users should be

configured to harvest energy from the RF signals in each particular scheduling

period, this being one of the main contributions of this paper.

Keywords: user grouping; energy harvesting; simultaneous wireless information

and power transfer; multiantenna communications; multiuser communications
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1 Introduction

Currently, one of the main limiting factors of user terminals is the very limited

lifetime of their batteries. One of the solutions to enhance this lifetime is based

on energy harvesting technology, by means of which terminals can collect ambient

energy without being physically plugged in [2], [3]. This is especially important in

scenarios where the nodes are located in places where the replacement or recharge of

batteries is very difficult, costly, or even impossible (e.g., wireless sensor networks).

However, this is not the only scenario that can benefit from energy harvesting tech-

nology. For example, in cellular communications, the number of users has increased

exponentially, together with the rates of the communications, but the battery life-

times are very short. In this case, energy harvesting could play a beneficial role.

Wind and solar energy compose the classical and best known examples of sources

of energy harvesting, although other technologies could also be considered, such as

those applied to moving sensors (this may be the case for cellular phones) based on

piezoelectric technologies. In recent years, there have also been significant advances

in the use of radio frequency (RF) signals as a source of energy scavenging. Although

initial experimental measurements showed that the actual strengths of the received

electric fields were significant only when the distances between the transmitters and

the receivers are rather short [2], current technological developments (both in terms

of harvesting hardware and system features) allow for effectively taking advantage

of RF energy harvesting in new scenarios [4]. In fact, this is a trend that is being

adopted in the design of current and future networks based on short distances (e.g.,

femtocells [5]). Due to this, users will be able to be served with the higher bit rates

that newer applications require. These low distances will allow for mobile terminals

to be able to harvest power from the received radio signals when they are not

detecting information data. This is commonly termed wireless power transfer (see

[6] for an extensive review of this technique) and is one of the main topics of this

paper.

1.1 Related Work

The first work that introduced the concept of simultaneous wireless information

and power transfer (SWIPT) was [7]. In that work, it was proven, for the single-

antenna additive white Gaussian noise (AWGN) channel, that the data rate and
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power transfer are related in a nontrivial way. The extension of the previous conclu-

sion to the frequency-selective single-antenna AWGN channels was addressed later

in [8]. Much effort has been put forward lately to come up with beamforming design

strategies for the SWIPT framework. In [9], the authors considered a multiple-input

multiple-output (MIMO) system. In that paper, it was assumed that the transmit-

ter was able to simultaneously transmit data and power to a single receiver. Two

receiver architectures were considered able to combine both information and power

sources simultaneously. In [10] and [11], the authors considered an MIMO network

consisting of multiple transmitter-receiver pairs with co-channel interference. The

study in [10] focused on the case with two transmitter-receiver pairs, whereas in

[11], the authors generalized [10] by considering that k transmitter-receiver pairs

were present. In [12], the authors considered an MIMO system with single-stream

transmission. In contrast to previous works, where the system rate was optimized,

the objective of the above authors was to minimize the overall power consumption

with minimum signal to interference and noise ratio (SINR) constraints and per-

user harvesting constraints. Multiuser broadcast networks can also be found under

the framework of multiple-input single-output (MISO) beamforming, as in [13] and

[14]. The main difference between our work and previous works is that we assume

a broadcast multiuser multistream MIMO network, which has not been considered

before.

Although, in this paper, we assume that the channel state information (CSI) is

known at the transmitter, there are some works that can be referenced in which

techniques for optimizing the training under the SWIPT framework are presented

[15], [16]. In particular, [15] studies the design of an efficient channel acquisition

method for a point-to-point MIMO SWIPT system by exploiting the channel reci-

procity. Additionally, a worst-case robust beamforming design was proposed in [17],

in which imperfect CSI at the transmitter was assumed. Another strategy is to over-

come this CSI feedback, as was done with implicit beamforming in [18].

In this paper, we propose some user grouping techniques in which, from frame to

frame, it is decided which users will receive information data and which users will

harvest energy from RF signals. There are some works in the literature that deal

with user scheduling in the SWIPT framework, but they consider a single-input

single-output (SISO) system. Therefore, the scheduling presented in those papers is
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purely the temporal scheduling of users. Among those works, [19] introduced time

scheduling between information and energy transfer and derived the optimal switch-

ing policy considering time-varying co-channel interference. The receiver therefore

replenished the battery opportunistically via wireless power transfer from the un-

intended interference and/or the intended signal sent by the transmitter. Then,

in [20], the authors studied downlink multiuser scheduling for a time-slotted sys-

tem with SWIPT. In particular, in each time slot, a single user is scheduled to

receive information, whereas the remaining users opportunistically harvest energy

from ambient signals. Finally, in [21], the authors considered a multiuser coopera-

tive network, where M source-destination SISO pairs communicate with each other

via a relay with energy harvesting capabilities. The key idea is to select a subset

of those M pairs to communicate through the relay. In contrast to those works,

in this paper, we present a spatial user grouping strategy since a multiuser MIMO

system is considered, and multiple users therefore can be served simultaneously at

each scheduling period. We also implement temporal scheduling, as those spatial

user groups change over time due to the dynamics of the batteries and the historic

user performance.

Finally, we want to mention that there are also several works in the literature deal-

ing with user grouping strategies in the multiple-antenna scenario, although none of

them has considered the general case addressed in this paper, that is, the problem

of grouping and scheduling users in a limited-energy system with SWIPT, a multi-

antenna transmitter and multiple multi-antenna receivers, and taking into account

the temporal evolution of the states of the batteries. For example, in [22], a group-

ing strategy is developed for the case of a multiuser system, with one multi-antenna

transmitter and single-antenna receivers (instead of multi-antenna receivers, as we

consider in our paper) based on zero-forcing (ZF) precoding but without consid-

ering power transfer and without including the effect of the batteries. To the best

of the authors’ knowledge, the most recent paper related to our work is [23]. That

paper addresses the same setup as [22], that is, one multi-antenna transmitter and

single-antenna receivers, where the transmitter is enabled with hybrid precoding

and the digital beamformers are designed according to the ZF criterion. The paper

designs the transmitter by simultaneously considering the transmission of data and

power through harvesting power splitting. Due to the complexity of the problem,
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[23] decouples the design of the user grouping (that is based on the correlation of

the equivalent channels), the beamformers, and the power/harvesting parameters.

The design of the power allocation and the power splitting parameters is addressed

through an optimization problem, aiming at maximizing the sum rate while requir-

ing minimum rates and harvested powers. Our paper generalizes the work of [23]

by considering multiple antennas at the receivers and by not decoupling the design

into several substages, which is a suboptimum approach. In this sense, we include

the design of the beamformers into the optimization problem, improve the user

grouping by considering the result of the optimization problem beyond the channel

correlation, and explicitly take into account the states of the batteries and their

time evolution in the grouping strategy. For these reasons, the techniques presented

in the previous papers cannot be compared with ours due to the fact that they

only consider single-antenna receivers and do not include the states of the batter-

ies. There are more papers in the literature, but they consider even more simplified

system assumptions than the previous two [22] and [23] and, therefore, are not cited

here for the sake of brevity.

1.2 Contributions

In this paper, we extend the previous works by addressing a multiuser multistream

MIMO system, where multiple information and energy harvesting receivers are

present and where we explicitly consider other power consumption sources in the

system design. The receivers are considered constrained by the system’s battery

dynamics, and in this sense, the batteries need to be recharged to increase their

lifetimes. In the multiuser MIMO SWIPT framework, there are two groups of users

to be served: one for power reception to recharge the batteries, and the other for

information reception. Thus far in the literature of MIMO beamforming techniques,

authors have considered that these two sets of users were predefined and fixed. In

this paper, we propose some user grouping techniques that may change frame to

frame to maximize the system throughput and/or fairness among users. Addition-

ally, only single-stream communications have been considered for the broadcast sce-

nario so far. The problem of maximizing the multistream sum rate for the multiuser

MIMO scenario is very difficult and nonconvex [24]. For this reason, we propose the

use of a conventional block-diagonalization (BD) [25] simplification used extensively
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in the literature [26] and generalize most of the works found in the literature by

considering multistream communications.

The alternative, that is, not forcing BD and allowing for the presence of interfer-

ence, results in a nonconvex highly complex problem that we have addressed in our

recent journal paper [27]. The complexity of that problem is such that the whole

paper is dedicated exclusively to the proposal of numerical algorithms to find a

local optimum of the nonconvex problem. In that paper, we assume that the user

grouping is fixed and known, and we do not consider the design of those user groups,

the performance evaluation of the temporal behavior of the system, the presence of

any scheduler, or the presence of user batteries.

Compared to the works presented in the previous section, the main contributions

of our work can be highlighted as follows:

• We consider a multiuser multistream MIMO broadcast transmission strategy

in which both the transmitter and receivers are provided with multiple an-

tennas. The system weighted sum rate with individual per-user harvesting

constraints is considered in the proposed transmission strategy design. We

also take into account the state of the batteries of the terminals in the pro-

posed strategy. We study particular cases in which only information users and

only harvesting users are present in the system.

• We develop an efficient algorithm that computes the optimal precoding ma-

trices for the multiuser MIMO broadcast network setup mentioned previously.

• The fundamental (multidimensional) tradeoff between system performance

and (per-user) harvested energy is studied and characterized, placing emphasis

on and giving specific closed-form expressions for some particular cases of

interest.

• We incorporate power consumption models at the transmitter and receivers.

In particular, we consider the decoding power consumption at the receivers

and its impact on system performance.

• Finally, we develop harvesting-constrained user grouping schemes that employ

a two-stage user scheduling mechanism that runs at different time scales. In

the first stage, a subset of users are grouped to be candidates for information

reception, and a subset of users are grouped to be candidates for harvesting

users. Out of these selected users, in the second stage, we perform the final user
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information and harvesting grouping, with the aim of enhancing the system

throughput and/or fairness among users.

The work developed in this paper extends our previous work presented in a con-

ference paper [1]. The main differences and new contributions with respect to that

conference version are summarized as follows. First, in this journal version, we have

assumed that the system evolves over time, and we therefore have considered a

generalized formulation and the inclusion of some power consumption sinks that af-

fect the battery dynamics. Second, we have assumed that user groups are not fixed

and known by the transmitter; hence, user grouping strategies have been derived,

resulting from the consideration of an optimization of the system performance over

time. Finally, we have included a full simulation section that evaluates the system

performance over time.

1.3 Organization of the Paper

The remainder of this paper is organized as follows. In Section 2, we present the

system model. In Section 3, we present the formulation of the most general user

grouping and resource allocation strategy. We formulate and justify the simplifi-

cations that we consider in this paper to solve such a complex problem. Section

4 covers the precoder design for simultaneous data and power transfer. We also

address the characterization of the fundamental tradeoff between data and power

transfer. In Section 5, we present a scheduling mechanism to decide which users

should be scheduled in each particular user set. The overall algorithm including

all the stages, that is, the user grouping and the resource allocation, is described

in detail in Section 6. Section 7 presents some numerical results of the proposed

techniques. Finally, conclusions are drawn in Section 8.

1.4 Notation Used in the Paper

The notation that will be used in this paper is detailed in Table 1.

2 System Model

2.1 Signal Model

We consider a wireless broadcast system consisting of one base station (BS)

transmitter equipped with nT antennas and a set of K receivers, denoted as
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Table 1 Notation used in the paper.

A set

A = {a1, a2, . . . } set A containing the elements {a1, a2, . . . }
|A| number of elements in set A
a ∈ A a belongs to set A
A \ a set resulting from subtracting a from set A
∅ empty set

A ⊆ B set A is included in or equal to set B
A ∩ B,A ∪ B intersection of sets A and B, union of sets A and B

a,A vector a, matrix A

aT ,AT transpose of vector a, matrix A

aH ,AH Hermitian (transpose conjugated) of vector a, matrix A

Tr(A),det(A) trace of matrix A, determinant of matrix A

A � 0 matrix A is positive semidefinite

||a|| norm-2 of vector a

Cm×n set of complex matrices of size m× n
In identity matrix of size n× n
E[·] expectation

=,,, 6= equal, equal by definition, different

>,≥, <,≤ higher, higher or equal, lower, lower or equal

log(·), exp(·) = e(·) logarithm, exponential

n! factorial of n∑
summation

min,max minimum, maximum

(x)ba (x)ba = min{max{a, x}, b}
ab a to b

∀ for all

maximizex1,x2,... maximization with respect to variables x1, x2, . . .

minimizex1,x2,... minimization with respect to variables x1, x2, . . .

x? optimum value of x

f−1(·) inverse function

x← y x is updated with y

UT = {1, 2, . . . ,K}, where the k-th receiver is equipped with nRk
antennas, as

depicted in Fig. 1.

We index frames by t ∈ T , {1, . . . , T} with a duration of Tf seconds each. We

assume block fading channels, that is, the channels remain constant within a frame

but change from frame to frame. The equivalent baseband channel from the BS to

the k-th receiver is denoted by Hk(t) ∈ CnRk
×nT . It is also assumed that the set of

matrices {Hk(t)} is known to the BS and to the corresponding receivers. The case

of imperfect CSI is beyond the scope of the paper.
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The set of users is partitioned into two subsets, as mentioned in the introduction.

One of the sets contains the users that receive information, denoted as UI(t) ⊆

UT and |UI(t)| = N , and the other set, UE(t) ⊆ UT , |UE(t)| = M , contains the

users that harvest energy from the power radiated by the BS, which is used to

transmit signals to the information receivers. Note that the previous sets depend

on t, as the specific users in each of them may change from frame to frame. The

numbers of users in each set, N and M , may change from frame to frame as well,

as will be explained later in the paper. We assume that a given user is not able

to simultaneously decode information and harvest energy. This forces a user to

either receive information or harvest energy during the whole frame, i.e., during the

scheduling period, which is a reasonable choice if the scheduling periods are short.

That translates into disjoint subsets, i.e., UI(t) ∩ UE(t) = ∅, |UI(t)|+|UE(t)| ≤ K.[1]

To simplify the notation when needed, we will assume that the indexing of users is

such that UI(t) = {1, 2, . . . , N} and UE(t) = {N + 1, N + 2, . . . , N +M}.[2] We will

assume that nT > nR −mink{nRk
} is fulfilled, being nR =

∑
k∈UI nRk

.[3]

As far as the signal model is concerned, the received signal for the i-th information

receiver at the n-th time instant within the t-th frame can be modeled as

yi(n, t) = Hi(t)Bi(t)xi(n, t) + Hi(t)
∑

k∈UI(t)
k 6=i

Bk(t)xk(n, t) + wi(n, t) ∈ CnRi
×1, (1)

∀i ∈ UI(t).

In the previous notation, Bi(t)xi(n, t) represents the transmitted signal for user

i ∈ UI(t), where Bi(t) ∈ CnT×nSi is the precoder matrix, and xi(t) ∈ CnSi
×1 rep-

resents the information symbol vector. nSi
denotes the number of streams assigned

to user i ∈ UI(t), and we assume that nSi
= min{nRi

, nT –(nR–nRi
)} ∀i ∈ UI(t) is

fulfilled[4]. The transmit covariance matrix is Si(t) = Bi(t)B
H
i (t) if we assume, with-

out loss of generality (w.l.o.g.), that E
[
xi(n, t)x

H
i (n, t)

]
= InSi

. wi(n, t) ∈ CnRi
×1

[1]Let us assume for the moment that not all users must be in any group. As will be shown later,
some of the users may not be selected for any group in a given scheduling period.
[2]At the beginning of each frame, once the groups have been decided, the users are indexed again
in such a way that the first N users are information users and the following M users are harvesting
users.
[3]This assumption corresponds to a necessary constraint to be applied when block diagonalization
(BD) is used [25], as will be explained in more detail in Section 4.
[4]In fact min{nRi

, nT − (nR − nRi
)} is an upper bound for the actual number of active streams.

Such a number will be obtained from the solution of the corresponding optimization problems
presented in this paper (in Section 4).
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denotes the receiver noise vector, which is considered white and Gaussian with

E
[
wi(n, t)w

H
i (n, t)

]
= InRi

[5]. Note that the middle term of (1) is an interference

term usually known as multiuser interference (MUI).

Let x̃(n, t) = B(t)x(n, t) denote the signal vector transmitted by the BS, where

the joint precoding matrix is defined as B(t) = [B1(t), . . . ,BN (t)] ∈ CnT×nS , where

nS =
∑N
i=1 nSi

is the total number of streams of all information users, and the

data vector is x(n, t) =
[
xT1 (n, t), . . . ,xTN (n, t)

]T ∈ CnS×1. x̃(n, t) must satisfy

the power constraint formulated as E[‖x̃(n, t)‖2] =
∑N
i=1 Tr(Si(t)) ≤ PT , where

PT represents the total radiated power at the BS, assuming that the information

symbols of different users are independent and zero-mean.

Let us model the total power harvested by the j-th user during the t-th frame,

denoted by Q̄j(t), from all receiving antennas to be proportional to that of the

equivalent baseband signal, i.e.,

Q̄j(t) = ζj
∑

i∈UI(t)

E[‖Hj(t)Bi(t)xi(n, t)‖2], ∀j ∈ UE(t), (2)

where ζj is a constant that accounts for the loss in the energy transducer when

converting the harvested power to electrical power to charge the battery. Note that,

for simplicity, in (2), we have omitted the harvested power due to the noise term or

other external RF sources since they can be assumed negligible. Based on this, (2)

can be written as

Q̄j(t) = ζj
∑

i∈UI(t)

Tr(Hj(t)Si(t)H
H
j (t)), ∀j ∈ UE(t). (3)

For the sake of clarity, we will drop the time and frame dependence whenever

possible.

2.2 Power Consumption Models

The energy consumed by the transceiver can be modeled as the energy consumed

by the front-end plus the energy consumed by the coding/decoding stages (omitting

for the moment the power radiated by the transmitter).[6] Although other works

[5]We assume that noise power σ2 = 1 w.l.o.g.; otherwise, we could simply apply a scale factor at
the receiver and rescale the channels accordingly.
[6]We consider a reference system, where the energy spent by the terminals is only driven by the
power used for the communication (RF chains and decoding). It is true that we do not consider
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consider battery imperfections in their models [28], we do not consider them in our

work for the sake of simplicity. Note, however, that the strategy and formulation

presented in this paper could be extended easily to incorporate those imperfections.

In the following, we will comment briefly on the generic abstract approach followed

in this paper to make the proposed strategies independent of the concrete model.

1 Front-end Consumption: as far as the transmitter is concerned, the compo-

nents that consume energy are the high-power amplifier (HPA), the mixers,

the filters, and other elements of the RF chain. Concerning the receiver, the

front-end consumption usually depends on the condition on the channel, i.e.,

the signal to noise ratio (SNR) (in practice, the receiver should adapt the

front-end according to the received power [29], an operation that requires

some additional power). In the following, however, we assume that the com-

ponent of the receiver front-end consumption that depends on the SNR is

negligible, as it can be concluded from experimental measurements and is

adopted in most works [29]. We denote the energy consumed by the front-end

at the transmitter and the receiver by P txc and P rxc , respectively.

2 Coding/Decoding Consumption: it is reasonable to consider the energy con-

sumed by the coding stage at the transmitter negligible compared to the

energy consumed by the front-end. This is illustrated and commented on in

papers such as [30]. For this reason, we will not include coding consumption

in our models. On the other hand, the decoding consumption must be in-

cluded in the models since, as shown in [31], [32], such energy consumption is

not negligible and can affect importantly the lifetime of the mobile terminal.

There is a consensus about the fact that the decoding consumption increases

with the data rate Ri(t), Pdec,i(Ri(t)). In [33], the authors presented different

models for Pdec,i(Ri(t)), but for the sake of generality, we will consider it a

general function.

Given the previous models, the total consumption at the transmitter (omitting

for the moment the radiated power) only includes the front-end consumption as

other sinks of energy consumption, such as the energy consumed by the application layer. In case
we would want to include those, we could simply add the corresponding additional terms.
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mentioned previously, and it therefore is denoted as

P txtot = P txc . (4)

On the other hand, the total power consumption at the i-th receiver is expressed

as

P rxtot,i(Ri(t)) = Pdec,i(Ri(t)) + P rxc . (5)

Note that the power consumption at the receiver is limited by the current bat-

tery level, which in the following will be denoted by Ci(t) for user i. According to

this, the data rate of a given information user (user i) during one frame must be

constrained in order not to consume more energy when decoding than the current

energy available at the battery Ci(t). Hence,

Tf (Pdec,i(Ri(t)) + P rxc ) ≤ Ci(t), (6)

which can be written in terms of a maximum rate constraint as

Ri(t) ≤ Rmax,i(Ci(t)), (7)

where Rmax,i(Ci(t)) = P−1
dec,i

(
Ci(t)
Tf
− P rxc

)
.

2.3 Battery Dynamics

We consider that each user terminal is provided with a finite battery capacity, the

level of which decreases accordingly when the user receives and decodes data. The

terminals are also able to recharge their batteries by means of collecting the power

dynamically coming from the BS.

The battery at the beginning of the t-th frame of the i-th information user served

with a data rate Ri(t− 1) during the previous frame is denoted as

Ci(t) =
(
Ci(t− 1)− TfP rxtot,i(Ri(t− 1))

)Ci
max

0
, ∀i ∈ UI(t), (8)
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where (x)ba is the projection of x onto the interval [a, b], i.e., (x)ba = min{max{a, x}, b},

Cimax is the maximum battery level, and the function P rxtot,i(Ri(t− 1)) was defined

in (5). Note that Ci(t) has units of Joules.

On the other hand, the battery at the beginning of the t-th frame of the j-th

harvesting user is denoted as

Cj(t) =
(
Cj(t− 1) + Tf Q̄j(t− 1)− TfP rxc

)Cj
max

0
, ∀j ∈ UE(t), (9)

where Q̄j(t− 1) is the power harvested during the frame t− 1.

The receivers must inform the BS about their battery level status to make deci-

sions on whether to serve that user with information or with power. In this paper,

we assume that the feedback channel is ideal and not rate-limited.

The power consumption and battery dynamics models, which are based on the

state of the art and existing literature, were also used in a similar way by the same

authors of this paper in their previous work [33].

3 Joint Resource Allocation and User Grouping Formulation

In this section, we formulate the joint design of the covariance matrices Si(t), the

data rates Ri(t), and the user grouping UI(t), UE(t), based on the maximization

of the weighted sum rate with individual power harvesting constraints for all time

instants t ∈ T . Given this, the problem is formulated through the following opti-

mization problem (this formulation generalizes the problem defined in our previous

conference paper [1]):

maximize
{Ri(t),Si(t)}∀i∈UI (t),

UI(t),UE(t)

∑
t∈T

∑
i∈UI(t)

ωi(t)Ri(t) (10)

subject to
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C1 :
∑

i∈UI(t)

Tr(Hj(t)Si(t)H
H
j (t)) ≥ Qj , ∀j ∈ UE(t), ∀t ∈ T

C2 :
∑

i∈UI(t)

Tr(Si(t)) + P txc ≤ Pmax, ∀t ∈ T

C3 : Ri(t) ≤ log det
(
I + Hi(t)Si(t)H

H
i (t)

)
, ∀i ∈ UI(t), ∀t ∈ T

C4 : Ri(t) ≤ Rmax,i(Ci(t)), ∀i ∈ UI(t), ∀t ∈ T

C5 : Hk(t)Si(t)H
H
k (t) = 0, ∀k 6= i, k, i ∈ UI(t), ∀t ∈ T

C6 : Si(t) � 0, ∀i ∈ UI(t), ∀t ∈ T

C7 : Ci(t) =
(
Ci(t− 1)− TfP rxtot,i(Ri(t− 1))

)Ci
max

0
, ∀i ∈ UI(t), ∀t ∈ T

C8 : Cj(t) =
(
Cj(t− 1) + Tf Q̄j(t− 1)− TfP rxc

)Cj
max

0
, ∀j ∈ UE(t), ∀t ∈ T ,

where the weights ωi(t) ≥ 0 can be set to assign priorities to achieve fairness among

the different users[7], Ri(t) ≤ log det
(
I + Hi(t)Si(t)H

H
i (t)

)
denotes the achievable

data rate of the i-th user when considering linear precoding following a BD strategy

[25], Qj =
Q̄min

j

ζj
, where {Q̄min

j } is the set of minimum power harvesting constraints,

and Pmax is the available power at the BS. In fact, BD is applied through constraint

C5, which forces the complete cancellation of the MUI, making the whole problem

more tractable (as will be shown later in the paper). Notice that constraint C1 is

associated with the minimum power to be harvested for a given user. In the case

that another external energy harvesting source was available and the amount to be

harvested could be estimated (or was fully known in advance), we could subtract

such value from Qj accordingly. Constraint C4 assures that the information users

do not spent more energy decoding the message than the current energy available

at the battery.

As we have already noted, we have assumed a linear precoding approach in the

system formulation. Note that the optimum transmission policy in an MIMO broad-

cast channel is the well-known nonlinear dirty paper coding strategy [24]. Never-

theless, that strategy has high computational demands and cannot be implemented

in real time. Instead, much simpler linear transceiver designs have also been shown

to achieve high capacities using much lower computational resources (see [34] for

[7]A further discussion on how the weights ωi(t) ≥ 0 can be set to provide fairness will be introduced
later in Section 5.
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more details). Thus, for simplicity in the transmitter design, in this work, we force

the precoder to be linear.

Two main difficulties arise when attempting to solve (10). First, note that the

solution for all time instants has to be found jointly. The reason is that resource

allocation decisions at frame t have an impact not only on that frame but also on

future frames. Some researchers have attempted to solve harvesting (time-coupled)

problems by assuming that the whole channel and harvesting realizations are known

a priori, giving rise to offline approaches that are not implementable in real scenarios

[35], [36]. As we assume that only causal knowledge of the channel and the harvest-

ing is available, we would have to resort to dynamic programming (DP) techniques

[37] to find the optimal solution of problem (10). However, these techniques usu-

ally require the implementation of extremely high complexity algorithms that are

impractical in scenarios, where the set of variables to be optimized is large, and

DP techniques therefore have been applied only in cases where the optimization

variables are scalars [38], [39]. The second difficulty that we find is that the user

grouping must also be optimized jointly with the covariance matrices and the data

rates. The user grouping variables are discrete, and the problem therefore becomes

combinatorial. The optimum solution has to be found by applying some sort of com-

binatorial search among all possible user groups, increasing the overall complexity

exponentially.

Because we are interested in low-complexity solutions, we have to make some

simplifications to problem (10) to make it more tractable, with the hope of finding

a good suboptimum solution that is close to the global optimum solution of problem

(10).

The first assumption that we consider is to decouple the problem in time and

propose a separate per-frame optimization approach. With this approach, we solve

the optimization problem at the beginning of each frame t, making decisions based

on the current and past information on the battery levels. The optimization to

solve is (we omit the time dependence for the sake of simplicity in the notation

even though all these variables, including the information and harvesting users sets
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UI and UE , change at each frame) as follows:

maximize
{Ri,Si}∀i∈UI

,
UI ,UE

∑
i∈UI

ωiRi (11)

subject to C1 :
∑
i∈UI

Tr(HjSiH
H
j ) ≥ Qj , ∀j ∈ UE

C2 :
∑
i∈UI

Tr(Si) + P txc ≤ Pmax

C3 : Ri ≤ log det
(
I + HiSiH

H
i

)
, ∀i ∈ UI

C4 : Ri ≤ Rmax,i(Ci), ∀i ∈ UI

C5 : HkSiH
H
k = 0, ∀k 6= i, k, i ∈ UI

C6 : Si � 0, ∀i ∈ UI .

Problem (11), which generalizes the one addressed in our previous paper [1], as

weights are included to take into account the time evolution of the achieved rates,

is still very difficult to solve, as it involves continuous and integer variables. Note

that for a fixed set of groups, UI and UE , problem (11) is convex with respect to

{Ri,Si} and can be solved using standard optimization techniques. The optimum

solution can be found by solving problem (11) for all possible combinations of user

groups, that is, an exhaustive search should be implemented. Consider for example

that |UI | = 4 and |UE | = 4 and that K = 10. Then, problem (11) (for a fixed

UI and UE) should be solved K!
|UI |!|UE |!(K−|UI |−|UE |)! = 3.150 times. Clearly, the

optimum solution is impractical, even for a system with a small number of users.

In that sense, any technique aside from the exhaustive search may be suboptimal.

This fact motivates our second simplification: we decouple the decision of resource

allocation and user grouping and propose a two-stage design strategy in which the

user grouping is found based on suboptimal but less complex techniques. In other

works, at the beginning of each frame, we first find the user groups UI and UE ,

and then, for those fixed user groups, we solve the following convex optimization
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problem:

maximize
{Ri,Si}∀i∈UI

∑
i∈UI

ωiRi (12)

subject to C1 . . . C6 of problem (11).

Note that due to C5, problem (12) is convex; otherwise, the objective function, i.e.,

the weighted sum rate, would not be convex due to the MUI.

In the next section, we are going to present a method to solve problem (12) for

different settings. Later, in Section 5, we will present the user grouping techniques.

4 Weighted Sum Rate Maximization with Harvesting Constraints

The problem presented in (12) is convex and can be solved using numerical inte-

rior point methods [40]. However, those methods usually have high computational

complexity, and since we aim at finding a low-complexity solution, a customized

algorithm should be developed. In some cases, it is possible to obtain the structure

of the transmit covariance matrices in closed form and then develop an efficient

algorithm based on that structure. Unfortunately, it is not possible to find the

closed-form expression of the optimal transmit covariances for the previous prob-

lem due to the constraint C4. However, as we will show later, it is possible to find

the transmit covariance structure of problem (12) if C4 is not active.

To guarantee that constraint C4 is not active, we will assume that the set of

information users is selected by the scheduler in a first stage in a way that they have

enough battery such that R?i (t) < Rmax,i(Ci(t)), ∀i ∈ UI can be guaranteed in that

particular scheduling period (later, we will comment on what to do in the unlikely

event of violating the previous requirement). This is a reasonable assumption since

users who have very low batteries should not be selected to receive information but

to harvest energy. Due to the previous simplifying assumption, constraint C4 will

not be active, and we therefore do not consider it in the optimization problem. This

assumption considerably simplifies the resolution of the problem.

Note that constraint C5 from the original problem (12) forces the precoder matrix

Bi to lie in the right null space of H̃i = [HT
1 . . . HT

i−1 HT
i+1 . . . HT

N ]T ∈

C(nR−nRi
)×nT [25]. Computing the SVD of H̃i yields H̃i = ŨiΛ̃i[Ṽ

(1)

i Ṽ
(0)

i ]H ,

where Λ̃i is a diagonal matrix containing the singular values, and Ṽ
(0)

i ∈
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CnT×(nT−nR+nRi
) contains the right-singular vectors in the null space of H̃i. Thus,

Bi can be written as Bi = Ṽ
(0)

i B̃i (with B̃i ∈ C(nT−nR+nRi
)×nSi ), and then,

Si = Ṽ
(0)

i S̃iṼ
(0)H

i , where S̃i = B̃iB̃
H

i . Now, the optimization problem can be

rewritten in terms of the new optimization variables {S̃i}. Let Ĥi = HiṼ
(0)

i and

Ĥji = HjṼ
(0)

i . Note that if constraint C4 is not present in (12), constraint C3 is

tight at the optimum, i.e., R?i = log det
(
I + ĤiS̃

?

i Ĥ
H

i

)
, and thus, the objective

function is directly expressed as
∑
i∈UI ωi log det

(
I + ĤiS̃iĤ

H

i

)
. Then, problem

(12) (without considering C4) is reformulated as

maximize
{S̃i}∀i∈UI

∑
i∈UI

ωi log det
(
I + ĤiS̃iĤ

H

i

)
(13)

subject to C1 :
∑
i∈UI

Tr(ĤjiS̃iĤ
H

ji) ≥ Qj , ∀j ∈ UE

C2 :
∑
i∈UI

Tr(S̃i) + P txc ≤ Pmax

C3 : S̃i � 0, ∀i ∈ UI .

The problem above can be checked to be convex since the objective function is

concave and the constraints define a convex set. As a consequence, there exists a

global optimal solution that can be obtained numerically by means of, for example,

interior point methods [40]. However, due to the fact that (13) is convex and satisfies

Slater’s conditions [40], the duality gap is zero, and the problem, therefore, can be

solved using tools derived from the Lagrange duality theory, and the optimal struc-

ture of the transmit covariance matrices {S̃i} can be revealed. Let λ = {λj}j∈UE be

the vector of dual variables associated with constraint C1 and µ be the dual variable

associated with constraint C2. The optimal solution of problem (13) is given by the

following theorem in terms of λ? and µ?.

Theorem 1 The optimal solution of problem (13) has the following structure:

S̃
?

i (λ
?, µ?) = A

−1/2
i V̂iD̂iV̂

H

i A
−1/2
i , (14)

where matrix Ai = µ?I −
∑
j∈UE λ

?
jĤ

H

jiĤji, V̂i ∈ C(nT−nR+nRi
)×nSi is ob-

tained from the reduced SVD of matrix Ĥ
H

i A
−1/2
i = ÛiΣ̂

1/2
i V̂

H

i , with Σ̂i =
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diag(σ̂1,i, . . . , σ̂nSi
,i), σ̂1,i ≥ σ̂2,i ≥ · · · ≥ σ̂nSi

,i > 0, and D̂i = diag(d̂1,i, . . . , d̂nSi
,i),

with d̂k,i = (ωi/ log(2)− 1/σ̂k,i)
∞
0 , ∀i ∈ UI and k = 1, . . . , nSi

.

Proof See Appendix A.

Note the similarities in the precoder structure between the result presented in

(14) for the multiuser case and the result found in [9] for the single-user case. In

the multiuser case, we have to find a set of multipliers associated with the per-user

harvesting constraints, which makes the problem more complex to solve. Finally,

the optimum data rate achieved by user i is thus

R?i = log det
(
I + ĤiS̃

?

i Ĥ
H

i

)
=

nSi∑
j=1

log(1 + σ̂j,id̂j,i), ∀i ∈ UI . (15)

However, the above process is still pending the computation of the optimal dual

variables since we assumed in the previous development that the dual variables were

given (in Theorem 1, matrix Ai depends on the optimal values of the Lagrange mul-

tipliers). As long as we have a closed-formed expression of the covariance matrices

S̃i(λ, µ) as a function of the dual variables, we can solve the dual problem of (13) by

maximizing the dual function g(λ, µ) subject to λ � 0, µ ≥ 0, and Ai � 0 ∀i. This

can be addressed by applying any subgradient-type method, such as, for example,

the ellipsoid method [41]. It can be shown that the subgradient of g(λ, µ), denoted

as t, is given by [t]m = QN+m−
∑
i∈UI Tr(Ĥ(N+m)iS̃iĤ

H

(N+m)i) for 1 ≤ m ≤M and

[t]M+1 = Tr(S̃i) − (Pmax − P txc ) [42], which represents the subgradient of g(λ, µ)

with respect to λm and µ, respectively ([t]k denotes the k-th entry of vector t), and

S̃i is computed as in (14) for a given λ and µ (for each step of the algorithm, we

compute S̃i just by replacing, in expression (14), the optimal values of the Lagrange

multipliers by their current values). Since the duality gap is zero, when we obtain

the optimal dual variables (λ? and µ?) with the ellipsoid method, the optimal so-

lution S̃
?

i (λ
?, µ?) converges to the primal optimal solution of problem (13). As a

summary, the algorithm that solves problem (13) is described in Table 2 (this table

was already presented in [1] but is included here for the sake of completeness).
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Table 2 Algorithm for Solving Problem (13)

1: initialize λ � 0, µ ≥ 0 such that µI−
∑
j∈UE λjĤ

H

jiĤji � 0, ∀i

2: repeat

3: compute S̃i(λ, µ) ∀i using (14)

4: compute subgradient of g(λ, µ):

5: [t]m = QN+m −
∑
i∈UI Tr(Ĥ(N+m)iS̃iĤ

H

(N+m)i) for 1 ≤ m ≤M

6: [t]M+1 = Tr(S̃i)− (Pmax − P txc )

7: update λ, µ using the ellipsoid method [41] subject to the following:

λ � 0, µ ≥ 0 and µI−
∑
j∈UE λjĤ

H

jiĤji � 0, ∀i

8: until dual variables converge

4.1 Particular Cases: Scenario with Only One Type of User

There exists a couple of particular cases of the problem presented before in which

only one type of user is present in the system. Such simplified scenarios are found in

real systems and will yield simpler optimization problems with lower computational

complexity in the resolution of the resource allocation algorithm. For the sake of

ease of readability of the paper, the mathematical developments of both particular

cases have been moved to App. C.

4.2 Tradeoff Analysis Between Weighted Sum Rate and Power Constraints

In this section, we analyze the multidimensional tradeoff between the objective

function, that is, the weighted sum rate, and the set of power harvesting constraints.

For simplicity, let us consider that Ci(t) ∀i ∈ UI is high enough so that it could

be assumed that R?i < Rmax,i and R?i = log det
(
I + ĤiS̃

?

i Ĥ
H

i

)
. We would like

to emphasize that, as the noise and channels are normalized, we will refer to the

powers harvested by the receivers in terms of power units instead of Watts. Given

this approach, we propose to use the Rate-Power (R-P) region to characterize all

the achievable sum rates (in bit/s/Hz) and power harvesting (in power units) M+1-

tuples under a given power constraint as in [9]. The R-P region of problem (13) is
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defined as

CR-P((Pmax − P txc ), {ωi}) , (16){
(SR; {Qj}) | ∃ {S̃i} with SR ≤

∑
i∈UI

ωi log det
(
I + ĤiS̃iĤ

H

i

)
,

∑
i∈UI

Tr(ĤjiS̃iĤ
H

ji) ≥ Qj ,
∑
i∈UI

Tr(S̃i) + P txc ≤ Pmax, S̃i � 0 ∀j ∈ UE , ∀i ∈ UI
}
.

To be able to graphically show an example of the tradeoff, we restrict the cardi-

nality of the set of harvesting users and information users to be two, i.e., |UE | = 2

and |UI | = 2, and for simplicity, we consider that ωi = 1, ∀i ∈ UI . In such a case,

the tradeoff region between the sum rate and the two power constraints is a 3-

dimensional surface. The setup taken as an example for this section is a BS with

four transmit antennas and where all users have two antennas. The maximum trans-

mission power at the BS is Pmax −P txc = 10 W. The entries of the matrix channels

are generated independently from a complex circularly symmetric Gaussian distri-

bution with zero mean and variance equal to one.[8]

Fig. 2 depicts the 3-dimensional R-P region for the previous setup. As can be

appreciated, the optimal sum rate solution is jointly concave on Q1 and Q2, as

expected [40]. The values ofQ1 andQ2 for which the region is not defined correspond

to situations where problem (13) is infeasible. To characterize the surface accurately,

let us introduce the contour lines of the R-P region in Fig. 3. In the plot, when the

lines are close together, the magnitude of the gradient is large. There are also some

important boundary points marked in the 3-D plot of the surface. Those points

can be computed in a simple way and provide us with useful cases that will be

commented on in what follows.

Let us first start with the boundary point defined by (SRmax, 0, 0). The power

harvesting constraints for users 1 and 2 at this point are set to zero, and the solution

of the problem therefore can be obtained from problem (22) (or from problem (13)

with Q1 = Q2 = 0). SRmax represents the maximum sum rate that can be achieved

in this situation when no energy harvesting is imposed. The optimum covariance

matrices were obtained in Section 4.1 and are denoted here as S̃
?

SRi
for the i-th

[8]The plots in Figs. 2 and 3 contain some of the results already shown in [1], which are included
here for the sake of completeness.
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user. Following that notation, the maximum sum rate can also be expressed as

SRmax = log det
(
I + Ĥ1S̃

?

SR1
Ĥ
H

1

)
+ log det

(
I + Ĥ2S̃

?

SR2
Ĥ
H

2

)
.

Note that although when computing SRmax, we do not apply power harvest-

ing constraints, this does not necessarily mean that the actual harvested pow-

ers are zero. In this context, we have the boundary point (SRmax, Q
I
1, 0), where

QI
1 represents the power harvested by user 1 when the precoder matrices are

the ones that maximize the weighted sum rate, i.e., QI
1 = Tr(Ĥ11S̃

?

SR1
Ĥ
H

11) +

Tr(Ĥ12S̃
?

SR2
Ĥ
H

12). The same can be said for the boundary point (SRmax, 0, Q
I
2),

where QI
2 = Tr(Ĥ21S̃

?

SR1
Ĥ
H

21) + Tr(Ĥ22S̃
?

SR2
Ĥ
H

22). Then, there is a fourth point

that defines a flat surface (or tableland) of constant sum rate SRmax, which is the

combination of the two previous points, (SRmax, Q
I
1, Q

I
2). In other words, the table-

land of constant maximum weighted sum rate SRmax defines all possible values of

harvested power constraints for which constraints C1 are not active and thus do

not affect the optimum value of the weighted sum rate.

Now, let us consider the boundary points in terms of maximum harvested power.

On top of the figure, there is the point (SRE1, Q1,max, Q
1
2). This point corresponds

to the situation in which the power harvested by user 1 is a maximum or, in other

words, the maximum value of Q1 for which problem (13) is feasible, assuming no

constraint on the power to be harvested by user 2. To calculate Q1,max, we solve

the following optimization problem:

maximize
S̃E1

Tr(Ĥ11S̃E1Ĥ
H

11) (17)

subject to C1 : Tr(S̃E1) + P txc ≤ Pmax

C2 : S̃E1 � 0,

where S̃E1 represents the sum of the two covariance matrices for the information

users (note that in this problem, the objective function and the constraint depend

on such matrices through their sum), and the objective function is the power har-

vested by user 1. Now, by applying the result from Proposition 2, we obtain the

solution of problem (17) as follows. Let the reduced eigen-decomposition of Ĥ
H

11Ĥ11

be Û11Λ̂11Û
H

11 such that û11,max is the eigenvector associated with the maximum

eigenvalue λ̂11,max. Then, the solution to the previous problem is based on the
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following inequality: Tr(S̃E1Ĥ
H

11Ĥ11) ≤ λ̂11,max Tr(S̃E1) = λ̂11,max × (Pmax − P txc )

(since at the optimum Tr(S̃
?

E1) = Pmax − P txc ), where such inequality becomes

equality if S̃
?

E1 = (Pmax − P txc ) × û11,maxûH11,max. In this case, the maximum

harvested energy is accomplished by energy beamforming [9] (i.e., rank 1) to the

best eigenmode of the equivalent channel Ĥ
H

11Ĥ11. Then, we obtain Q1,max =

Tr(Ĥ11S̃
?

E1Ĥ
H

11) = (Pmax − P txc ) × λ̂11,max. According to this, the weighted sum

rate obtained by solving problem (13) and Q1 = Q1,max, Q2 = 0 (denoted as

SRE1) is SRE1 = log det
(
I + Ĥ1S̃

?

E1Ĥ
H

1

)
+ log det

(
I + Ĥ2S̃

?

E1Ĥ
H

2

)
. Note that,

even though we do not apply the power harvesting constraint of user 2 when com-

puting S̃E1, it does not mean that the actual power harvested by user 2 is zero.

In this context, we define the last coordinate of the point, denoted as Q1
2, which

represents the power harvested by user 2 when the covariance matrix is S̃
?

E2, i.e.,

Q1
2 = Tr(Ĥ21S̃

?

E2Ĥ
H

21). The same reasoning can be applied to obtain the last bound-

ary point (SRE2, Q
2
1, Q2,max) by interchanging the roles of users 1 and 2.

The remaining boundary points in the curve can be obtained by properly varying

the values of Q1 and Q2 (0 ≤ Q1 ≤ Q1,max, 0 ≤ Q2 ≤ Q2,max) in problem (13).

5 User Selection Policies

Thus far, we have assumed that the two groups of users, i.e., UI and UE , were

known. The goal of this section is to propose a grouping strategy to select which

users should go into each set in a way that the aggregated throughput over time is

maximized. As the channels and batteries fluctuate throughout time, the users in

each group may also change from frame to frame. In this section, we will assume

that the values of {Qj} are known and fixed. The management of these values

is beyond the scope of the paper (see the work in [43], where the authors propose

some procedures to adjust the values of {Qj}, considering the impact on the system

performance).

As previously noted, the optimal information and harvesting grouping should be

obtained by joint exhaustive search (see Section 3). This search is prohibitively com-

plex, and suboptimum techniques therefore should be derived. The case of having

only information users has been studied in the literature, and suboptimal techniques

that perform close to the optimum one have been proposed [44], [45]. In this paper,

[9]The concept of energy beamforming was already introduced in [9].
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to keep the overall complexity as low as possible without compromising the perfor-

mance of the system, we present suboptimal techniques for the user grouping for

both kinds of users, i.e., information and harvesting users. This is one of the major

contributions of our paper, that is, work with users that have different objectives.

Additionally, as we will show, the proposed greedy algorithms take into account

that the selection of the harvesting users impacts directly the performance of the

information users, that is, there is a coupling behavior between both aspects.

The overall user grouping strategy will be divided into two stages. In the first

stage (that will be known as super-grouping), we will provide a preselection of user

candidates to be in each set. This will depend primarily on the current energies

available at the batteries, and it will be run at a longer time scale, every few

scheduling periods or frames. For the second stage, known as grouping, we are going

to present two different user grouping strategies that will be run at every frame.

The strategy with the highest complexity provides a better performance than the

simpler strategy.

In the first (simpler) approach, we will split the user grouping further into two

stages. The first stage selects the information users, UI , from the super-grouping

set USI based on a greedy approach, whereas the second stage selects the harvesting

users, UE , based on the already selected information users. In the second approach,

we will develop a joint information-harvesting grouping strategy, which constitutes

an intermediate approach between the first simple approach and the optimum ap-

proach based on exhaustive search.

5.1 User Supergrouping Strategy

Recall that when we derived the optimal precoder matrix in Section 4, we assumed

that the optimal rates would fulfill R?i (t) < Rmax,i(t), ∀i ∈ UI for any particu-

lar frame, and therefore, constraints C4 in problem (12) were not active. This is

achieved by preselecting the users that are to be scheduled for data transmission

or battery charging. In our proposed approach, we first implement a selection of

candidates to be in UI and UE , known as USI and USE , such that UI ⊆ USI , UE ⊆ USE ,

and |USI | + |USE | = K, and we then select the users that finally go into the sets UI

and UE . The proposed supergrouping algorithm is presented in Table 3 and works

as follows: we set a threshold α such that 0 ≤ α ≤ 1. Then, we compute the ratio of
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Table 3 Algorithm to obtain the super-frame sets US
I and US

E

1: set a threshold 0 ≤ α ≤ 1

2: order the users increasingly with the following rule:
C1(t)
C1

max
≤ C2(t)

C2
max
≤ · · · ≤ CK/2(t)

C
K/2
max

≤ CK/2+1(t)

C
K/2+1
max

≤ · · · ≤ CK(t)
CK

max

3: if α <
CK/2(t)

C
K/2
max

4: users {1, 2, . . . ,K/2} go to USE
5: users {K/2 + 1,K/2 + 2, . . . ,K} go to USI
6: else

7: find the user m such that m = arg mini

∣∣∣Ci(t)
Ci

max
− α

∣∣∣
8: users {1, 2, . . . ,m} go to USE
9: users {m+ 1,m+ 2, . . . ,K} go to USI

10: end if

the current battery level and the battery capacity for all users, and we then order

these ratios increasingly. If the middle ratio of the previous list is greater than the

value of the threshold α, we then split the overall group by half and put half of the

users in USI and the other half in USE . On the other hand, if the middle ratio of the

previous list is lower than the value of α, we find the user with battery ratio closest

to the value of α and put all users with lower ratios than the one closest to α in the

harvesting set and the remaining users in the information set. The larger the value

of α, the greater the number of users that will be included in the harvesting set

USE . Note that the BS has to know the battery levels of all users, which implies that

receivers must send the battery levels through a feedback channel and, hence, the

battery levels must be quantized (in [33], we addressed the problem of quantizing

the battery levels and evaluated the effect on the overall system performance, and

we conclude that a few bits for quantization is enough to obtain good performance).

5.2 Disjoint Information and Harvesting User Grouping

This first approach is based on two stages. In the first stage, the selection of the

information users follows a greedy approach, in which each user is added at a time

and the maximization of the weighted sum rate without harvesting constraints is

evaluated for all possible candidate information users with the already selected

users. No harvesting users are considered at this stage.
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Table 4 Algorithm to obtain the set of information users UI

1: set UI = ∅, Qi ≥ 0, and ωi > 0, ∀i ∈ UT
2: find i1 = arg max∀i∈US

I
maxSi

ωi log det
(
I + HiSiH

H
i

)
subject to Tr(Si) ≤ PT , Si � 0

3: set ftemp = ωi1 log det(I + Hi1Si1H
H
i1 )

4: set UI ← UI ∪ {i1}, USI ← USI \ {i1}
5: for j = 2 to U

6: for every i ∈ USI
7: let U (i)

I = UI ∪ {i}
8: solve (13) without C1, and obtain R?m, ∀m ∈ U

(i)
I

9: compute fi =
∑
m∈U(i)

I

ωmR
?
m

10: end for

11: let ij = arg maxi∈US
I
fi

12: if fij < ftemp −→, go to 17 (break for)

13: else

14: UI ← UI ∪ {ij}, USI ← USI \ {ij}
15: let ftemp = fij

16: end if

17: end for

Let us assume, for simplicity, that every information user has the same number

of antennas, i.e., nRi
= NR, ∀i ∈ UT . The maximum number of simultaneous users

to be served following the BD strategy is then U = d nT

NR
e [25]. The algorithm for

selecting the information users is shown in Table 4; first, we select the user that can

achieve the greatest weighted rate[10]. Then, we incorporate one user at a time into

the set only if the accumulated weighted sum rate increases due to incorporating

such a user (weighted sum rate evaluated with the already selected users). The

algorithm ends when there is no improvement in the weighted sum rate or when

the maximum number of users to be scheduled (U) is reached.

[10]A way to calculate the weights ωi can be based on the achieved average rate as in the propor-
tional fair (PF) scheme [46], [47], [48]. In that case, the weights are computed as ωi(t) = 1

Ti(t)
, being

that Ti(t) is the exponentially averaged rate calculated as Ti(t) =
(

1− 1
Tc

)
Ti(t−2)+ 1

Tc
Ri(t−1),

where Tc is the effective length of the impulse response of the exponential averaging filter, and
Ri(t − 1) is the rated assigned to the i-th user in the (t − 1)-th frame. Note that if the i-th
user was not selected to be in UI during the (t − 1)-th frame, then R?

i (t − 1) = 0. Otherwise,
Ri(t − 1) = R?

i (t − 1), i.e., the rate Ri(t − 1) corresponds to the solution of problem (13) dur-
ing the (t − 1)-th frame. Note that many other fairness criteria could be introduced by properly
adjusting the weights.
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Table 5 Algorithm to obtain the set of harvesting users UE

1: input: UI taken from algorithm in Table 4, S? =
∑
i∈UI S

?
i ,

2: evaluate mj = Tr(HjS
?Hj)−Qj , ∀j ∈ USE

3: decreasingly order mj

4: construct UE with the users corresponding to the first M ordered terms of mj

Note that the distances from the BS to the users are taken into account implicitly

in the algorithm since, in step 2 and step 8 of Table 4, we select users according to

the rates. These rates depend on the channel matrices {Hi}, and the components

of these matrices, of course, will be small if the distances are large. Therefore, the

distances will have a direct impact on the selection of users.

Once we have selected the information users, we continue with the selection of

the harvesting users in the second stage of this grouping strategy. The idea is to

select the harvesting users so that when the resource allocation strategy is executed,

they affect (reduce) the system performance as little as possible (see Section 4.2).

Let S? =
∑
i∈UI S?i , where UI and {S?i }i∈UI are the information user set and the

optimum covariance matrices obtained from the algorithm detailed in Table 4, re-

spectively. The algorithm works as follows. For each harvesting user j, we evaluate

and decreasingly order Tr(HjS
?Hj) − Qj and select the first M harvesting users

according to this order. Note that in the previous expression, we are evaluating how

the optimum covariance matrices of the selected information users transmit power

in the geometrical direction of the channels of the harvesting users. We also take

into account the minimum required power to be harvested Qj to ensure feasibility

of the solution of the resource allocation problem. The algorithm is presented in

Table 5.

5.3 Joint Information and Harvesting User Grouping

In this second approach, the selection of the information and harvesting users is

coupled. Due to this joint approach, the system performance will be degraded less

by the effect of having harvesting users in the system compared with the previ-

ous decoupled approach. However, the computational complexity increases as more

combinations need to be evaluated.

The algorithm for selecting the information users is based on the same greedy

approach that we presented before. The difference is that, now, instead of selecting
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the information users and then the harvesting users, we select both types of users

simultaneously. For simplicity in the formulation, let us consider that M is an

integer multiple of U and define k = M
U (we will comment later on how we could

apply the algorithm if that was not the case). The idea behind the algorithm is as

follows. We select one information user q and obtain its optimum covariance matrix

S?q . Then, we find the best k harvesting users based on the principle developed in

Table 5. After that, we select another information user and repeat the same process

until there is no improvement in the objective function. Due to the fact that the

grouping is coupled, we consider the impact of having selected harvesting users on

the future selection of information users. The specific details of the joint algorithm

are presented in Table 6.

The main difference with the algorithm in Table 5 is that, now, we solve prob-

lem (13) with constraints C1, that is, with harvesting users, which increases the

complexity of the overall grouping procedure. As addressed before, if M is not an

integer multiple of U , we can introduce more harvesting users in step 21 in Table 6

in some iterations, e.g., if M = 7 and U = 3, we first select 3 harvesting users and

then 2 harvesting users in the other 2 iterations.

6 Overall User Grouping and Resource Allocation Algorithm

In the following, we present a summary of the overall algorithm that consists of the

user supergrouping, the user grouping, and the resource allocation stages presented

in the previous two sections. Note that the user supergrouping is carried out every

few frames, whereas the user grouping is executed at each frame. If, for some reason,

the supergrouping algorithm fails in fulfilling R?i (t) < Rmax,i(t), ∀i ∈ UI (an event

that would be unlikely to happen), then for those users for which R?i (t) ≥ Rmax,i(t),

we just transmit information in some channel accesses of the frame until their

battery is over. The overall algorithm is detailed in Table 7.

7 Results and Discussion

In this section, we perform some numerical analysis of the proposed grouping and

resource allocation strategies. The system comprises one transmitter with 8 anten-

nas and 30 users (|UT | = 30) with 2 antennas each. The maximum radiated power is

Pmax = 11 W, and the transmitter front-end consumption is P txc = 1 W. Front-end

power consumption at the receiver is P rxc = 100 mW, and the model used for de-
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Table 6 Algorithm to jointly obtain the set of information and harvesting users UI , UE

1: set UI = ∅, Qi ≥ 0, and ωi > 0, ∀i ∈ UT
2: find i1 = arg max∀i∈US

I
maxSi

ωi log det
(
I + HiSiH

H
i

)
subject to Tr(Si) ≤ PT , Si � 0

3: set ftemp = ωi1 log det(I + Hi1Si1H
H
i1 )

4: set UI ← UI ∪ {i1}, USI ← USI \ {i1}
5: evaluate mj = Tr(HjS

?
i1Hj)−Qj , ∀j ∈ USE

6: find the k users with highest value of mj . Put them in set H
7: set UE ← UE ∪H, USE ← USE \ H, H = ∅
8: for j = 2 to U

9: for every i ∈ USI
10: let U (i)

I = UI ∪ {i}
11: solve (13), and obtain R?m, S

?
m, ∀m ∈ U

(i)
I

12: compute fi =
∑
m∈U(i)

I

ωmR
?
m

13: end for

14: let ij = arg maxi∈US
I
fi

15: if fij < ftemp −→, go to 23 (break for)

16: else

17: UI ← UI ∪ {ij}, USI ← USI \ {ij}
18: let ftemp = fij

19: end if

20: evaluate mj = Tr(Hj

∑
i∈UI S

?
iHj)−Qj , ∀j ∈ USE

21: find the k users with highest value of mj . Put them in set H
22: set UE ← UE ∪H, USE ← USE \ H, H = ∅
23: end for

coding is exponential, i.e., Pdec(R) = c1ec2R, where c1 = 30, and c2 = 0.75 [33]. The

frame duration is equal to Tf = 100 ms, and the super-frame duration is equal to 3 s.

The channel matrices are generated randomly with i.i.d. entries distributed accord-

ing to CN (0, 1). The noise power is normalized to 1. The effective window length

for the PF scheme is Tc = 5. The percentage used for supergrouping is α = 0.1.

The battery capacities are generated randomly from 3,000 to 10,000 energy units.

As we mentioned previously, we assume that all the harvesting constraints are the

same for all users and fixed for all periods to Qj = 50 power units, unless stated

otherwise. A strategy on how to manage and dynamically adjust the values of the

{Qj} was proposed in [43] and is beyond the scope of this paper.



Rubio and Pascual-Iserte Page 30 of 45

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

Table 7 Overall user grouping and resource allocation algorithm

beginning of a super-frame:

1: run user supergrouping algorithm in Table 3: obtain sets USI and USE
beginning of each frame (two options):

option 1:

2a: run information user grouping algorithm in Table 4: obtain set UI
2b: run harvesting user grouping algorithms in Table 5: obtain set UE
2c: run resource allocation algorithm in Table 2

option 2:

3a: run joint information and harvesting grouping algorithm in Table 6:

obtain sets UI and UE
3b: run resource allocation algorithm in Table 2

end of each frame:

4: update batteries:

Ci(t) =
(
Ci(t− 1)− TfP rxtot,i(R

?
i (t− 1))

)Ci
max

0
, ∀i ∈ UI

Cj(t) =
(
Cj(t− 1) + Tf Q̄j(t− 1)− TfP rxc

)Cj
max

0
, ∀j ∈ UE

5: update weights (e.g., using a PF approach):

wi(t) = 1
Ti(t)

, Ti(t) =
(

1− 1
Tc

)
Ti(t− 2) + 1

Tc
R?i (t− 1)

In the simulations, we compare our proposed two methods with two other schemes.

As there are no proposals in the literature for user scheduling in the SWIPT frame-

work, we compare our approaches with traditional schemes. In one of the schemes,

we assume that the supergrouping and grouping are implemented with a round

robin strategy. We will denote this strategy RR-SF/RR-F. In the other scheme,

we consider that random selection of users is implemented at both levels as well.

This strategy will be denoted by Ra-SF/Ra-F. On the other hand, the proposed

supergrouping strategy (Table 3) will be denoted by LB, and the grouping will be

denoted according to the algorithm: DHS for the decoupled approach presented in

Section 5.2 (Tables 4 and 5) and CHS for the approach presented in Section 5.3

(Table 6).

7.1 Time Evolution Simulations

Fig. 4 depicts the evolution of the battery levels of all users in the system. We

can observe that for the round robin scheme, users reach their maximum battery

capacity. This is because the data rates achieved are low, and thus, users use little

energy for decoding. Then, in the top-right figure, we have the case where random
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scheduling is considered. In this case, we see how the battery evolutions of all users

evolve randomly because new users are scheduled in a random fashion in each frame.

Due to the battery overflows that some users experience and the randomness in the

selection, this approach, as will happen with the round robin scheme, will not be very

efficient in terms of aggregate throughput. The last two figures depict the battery

evolution of the two proposed schemes. We observe that in both cases the battery

levels of the users are substantially lower than the ones observed in previous schemes.

This reduction in battery levels is related with the large throughput achieved by

the users, as will be apparent later. It is difficult to assess from these figures which

proposed scheme provides better performance.

Fig. 5 presents the average sum rate of the system (computed as SR(τ) =

1
τ

∑τ
t=1

∑
i∈UI Ri(t)). This metric is an estimation of the expected throughput of

the system. From the figure, we see that the sum rate of the round robin and random

schemes provides a stable average throughput over time but the magnitude of the

throughput is not so high. Then, we see how the proposed schemes notably outper-

form the previous benchmarking strategies. The simpler approach, DHS, performs

similar to the more complex strategy, CHS. We also plot, as benchmarks, two cases.

The first one, called ’no harvesting management’, refers to the case in which the

harvesting users are selected jointly with data users following the CHS approach,

but their harvesting constraints are set to zero, Qj = 0, ∀j, that is, harvesting

users collect energy without imposing a constraint. In this case, the rate achieved

is higher at the beginning, but the energy collected by the users is lower, having

an impact on the performance as time goes on. The second case considers that no

power transfer (no SWIPT) is available, and users therefore cannot recharge their

batteries. In this case, the users run out of battery, and the expected sum rate

therefore tends to zero.

Fig. 6 shows the cumulative distribution function (CDF) of the individual data

rates of the users in the system. The CDF of the no SWIPT case has a particular

shape due to the fact that many users obtain zero data rate as they run out of

battery. In this figure, we clearly see the benefits of the proposed user selection

schemes compared to the other approaches, such as low data rate percentiles and

high data rate percentiles being much better for the proposed strategies.
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Finally, in Fig. 7, we depict the average evolution of the harvested power. It is

interesting to note how all users tend to converge to a certain point (or the vicinity

of a point). This is due to the fact that if a user is receiving much power, then

its battery will increase, which will make the user more eligible to receive data,

making the harvesting decrease, whereas if a user has low energy in its battery,

then it is directly selected to be included in set USE . We observe that the more

complex approach, CHS, is able to provide the users with larger harvested power

compared to the less complex approach, DHS.

7.2 System Performance Simulations

In the next figures, we will show the performance of the system obtained once the

algorithms have converged (i.e., after 1500 frames). The first two figures, Fig. 8

and Fig. 9, show the system performance, considering that half of the users are

at a relative distance to the BS greater than for the other half of the users. In

particular, Fig. 8 presents the sum of the expected sum rate for the four schemes

for four different relative distances. As expected, the sum rate decreases as the

distance to the BS increases. On the other hand, Fig. 9 shows the sum of the

expected harvested power as a function of the relative distance. We see that if half

of the users are four times farther away from the BS, the loss in harvested power is

from 25% to 50%, and the relative loss is lower for the proposed schemes.

The last two figures, Fig. 10 and Fig. 11, show the performance of the system

when the size of the harvesting group increases in relative terms when compared

to the size of the information group, i.e., when M
U increases. This phenomenon is

interesting to evaluate since the harvesting users appear in the constraints and they

negatively affect the aggregated sum rate (see tradeoff in Section 4.2). However, if

many users are introduced in the harvesting set, then their batteries will recharge

faster, and they will be able to receive higher data rates. This is the compromise

that is analyzed in the figures. First, in Fig. 10, we see the expected aggregated sum

rate. As we see, for the two benchmarking approaches, Ra and RR, the sum rate

decreases as M
U increases. This is because the harvesting users are selected without

considering the impact that they have on the objective function, and therefore, if

more harvesting users are considered in the optimization problem, a lower sum rate

will be achieved. In those cases, the optimization problem turns out to be infeasible
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many times, and therefore, the energy collected by all users also decreases–see Fig.

11. On the other hand, the aggregated sum rate increases a bit for M
U = 2 for the

proposed strategies. This is due to the fact that harvesting users are selected very

efficiently, and thus, the constraints associated to them are not active, i.e., they

do not affect the optimum value of the objective function. Additionally, as more

users are able to recharge their batteries (see Fig. 11), they can decode higher rates

in future frames. Nonetheless, from a given size M
U on, the system sum rate starts

to decrease as the harvesting constraints become active, although the problem is

always feasible, and users recharge their batteries, as is indirectly depicted in Fig.

11.

7.3 Computational Complexity

An analytic evaluation of the computational complexity of the proposed techniques

for each scheduling period is extremely difficult since these algorithms are iter-

ative, each iteration involves the numerical solution of an optimization problem,

there are discrete variables related to the grouping of users, and the solution and

convergence times depend on the concrete channels associated to the users in the

scenario. Because of this, we have performed a numerical evaluation of the computa-

tional complexity of the different algorithms by performing many simulations over

random channels and averaging the convergence times at each scheduling period

obtained in the simulator. Fig. 12 shows a set of bars comparing the complexities

needed for convergence of the different algorithms that require grouping, that is,

RR-SF/RR-F, Ra-SF/Ra-F, LB-SF/CHS-F, and LB-SF/DHS-F. The highest bar

corresponds to the algorithm requiring the highest computational complexity, which

is LB-SF/CHS-F and has been labeled as the 100% reference. The other bars show

the complexities associated to the other algorithms, taking as relative reference, the

complexity of LB-SF/CHS-F.

8 Conclusions

This paper has studied the performance of a proposed scheduling algorithm in a

multiuser MIMO broadcasting system, where wireless power transfer from BS has

been considered a potential technique for energy harvesting taken from radio signals.

We derived the particular structure of the optimal transmit covariance matrices and

particularized the scenario where only information or harvesting users were present
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in the system and where both types of users coexist in the system. If only harvesting

users were considered, the problem was reformulated as a feasibility problem, and

we provided some proposals to be applied in case that the original problem was

infeasible. Then, we addressed the multidimensional tradeoff between the sum rate

and the harvesting constraints in the general case. We showed that energy beam-

forming was optimal in the case that the power harvested by one particular user was

to be maximized. Finally, we presented some user grouping techniques that allow

for the BS to select the users better suited for information and those for battery

replenishment in each particular frame for the case, where both types of users are

present in the system. We proposed two different scheduling techniques based on a

different level of computational complexity. In the first approach, we selected the

information and the harvesting users separately. In the second approach, the selec-

tion of both types of users was performed jointly. The simulation results show that

the aggregated throughput can be considerably improved if the proposed grouping

strategy is implemented when the results are compared with those of traditional

scheduling approaches.

Appendix A

The Lagrangian of problem (13) is

L({S̃i};λ, µ) =−
∑
i∈UI

ωi log det
(
I + ĤiS̃iĤ

H

i

)
(18)

+
∑
j∈UE

λj

(
Qj −

∑
i∈UI

Tr(ĤjiS̃iĤ
H

ji)

)
+ µ

(∑
i∈UI

Tr(S̃i)− PT

)

where we have omitted constraint C3. The previous Lagrangian can be manipulated

and transformed into

L({S̃i};λ, µ) = −
∑
i∈UI

ωi log det
(
I + ĤiS̃iĤ

H

i

)
+
∑
i∈UI

Tr
(
AiS̃i

)
+G, (19)

where G =
∑
j∈UE λjQj−µPT , and Ai = µI−

∑
j∈UE λjĤ

H

jiĤji. The dual function

of problem (13) is defined as g(λ, µ) = minS̃i�0 L({S̃i};λ, µ).
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Proposition 1 To have a bounded solution of the dual function g(λ, µ), matrix

Ai must be Ai � 0 ∀i; otherwise, g(λ, µ) is unbounded below, i.e., g(λ, µ) = −∞.

Proof See Appendix B.

Due to the fact that matrices {Ai} are positive definite, we can assure that they

can be decomposed as Ai = A
1/2
i A

1/2
i and that they always have inverses. Thus,

by calling Ŝi = A
1/2
i S̃iA

1/2
i , the dual function can be expressed as

g(λ, µ) = min
Ŝi�0

{
−
∑
i∈UI

ωi log det
(
I + ĤiA

−1/2
i ŜiA

−1/2
i Ĥ

H

i

)
+
∑
i∈UI

Tr
(
Ŝi

)
+G

}
.

(20)

The dual function in (20) can be recognized to be equivalent to the dual function

of the classical maximization of the sum rate with a power constraint, where the

optimum covariance matrix Ŝi diagonalizes the equivalent channel ĤiA
−1/2
i [26],

i.e., Ŝi = V̂iD̂iV̂
H

i , where D̂i is the power allocation matrix, and its components

are computed following the water-filling policy [49]. Finally, it is straightforward to

show that the precoder Bi matrix with dimensions nT × nSi
corresponding to such

covariance matrix is

B?
i = Ṽ

(0)

i A
−1/2
i V̂iD̂

1/2

i . (21)

Appendix B

Let the eigen-decomposition of Ai be ŪiΓ̄iŪ
H
i , where Γ̄i contains the eigenval-

ues in decreasing order w.l.o.g. Then, the second term of the Lagrangian in (19)

is
∑
i∈UI Tr

(
Γ̄iŪ

H
i S̃iŪi

)
. Now, calling S̄i = Ū

H
i S̃iŪi, (S̄i � 0 ⇐⇒ S̃i � 0),

and ˆ̄Hi = ĤiŪi, we have g(λ, µ) = minS̄i�0−
∑
i∈UI ωi log det

(
I + ˆ̄HiS̄i

ˆ̄HH
i

)
+∑

i∈UI Tr
(
Γ̄iS̄i

)
+G. Let us take the particular structure for the covariance matrix

S̄i as being diagonal, with all the elements equal to 0, except the last one, which

is equal to P , i.e., S̄i = diag(0, . . . , P ). Then, denoting Li = nT − nR + nRi , the

first term of the dual function becomes −
∑
i∈UI ωi log

(
1 + P‖[ ˆ̄Hi]:,Li

‖2
)

, where

[ ˆ̄Hi]:,Li
denotes the Li-th column of ˆ̄Hi. Since matrix ˆ̄Hi is formed by unitary ro-

tations of a random matrix with i.i.d. entries, we can assure with probability equal
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to 1 that ‖[ ˆ̄Hi]:,Li‖2 6= 0. As a conclusion, the first term of the Lagrangian is nega-

tive and decreases without bound as P increases. Let us have a look at the second

term. If matrix Ai is not positive definite, i.e., if the lowest element (and, thus, the

last component) in the diagonal of Γ̄i is not positive, then the second term of the

Lagrangian either is negative and decreases without bound as P →∞ or is zero. In

both cases, and taking into account the behavior of the first term of the Lagrangian

as P tends to infinity, it is concluded that the dual function is equal to −∞. Thus,

the only possible solution so that g(λ, µ) 6= −∞ is that Γ̄i has diagonal elements

that are all strictly positive and, thus, Ai � 0.

Appendix C

C.1 System with only information users

Let us consider first the broadcast scenario with only users to be served with infor-

mation and no energy harvesting users, i.e., UE = ∅. In this case, problem (12) can

be expressed as

maximize
{Ri,Si}∀i∈UI

∑
i∈UI

ωiRi (22)

subject to C2 . . . C6 of problem (11).

Without going into too much detail, let us say that the optimal solution to the

above problem was presented in [33] and is omitted due to space limitations.

C.2 System with only harvesting users

Let us now consider the case where there are only users who want to harvest energy,

i.e., UI = ∅. In this case, since there is no objective function, the optimization

problem becomes a feasibility problem [40] that can be expressed as[11]

find S (23)

subject to C1, C2, C6 of problem (11).

[11]The case of not having information users is special as the harvesting users cannot take advantage
of the spurious signals intended for the information users to recharge their batteries. Only in this
case, we allow for the base station to send a specific signal to the harvesting users and those whose
covariance matrix is defined by S.
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Note that constraints C3, C4, and C5 from problem (12) have no effect since the

set UI is empty. Notice also that, without loss of optimality, we have changed the

optimization variable from a set of precoding matrices {Si} to a single precoder

matrix S. In the following, we will present a necessary condition for feasibility of

(23).

Proposition 2 ([50]) Let λmax(X) ≥ λ2(X) ≥ · · · ≥ λmin(X) be the eigenvalues of

the positive semidefinite matrix X. Then, for any two semidefinite positive matrices,

A and B, we have

λj(AB) ≤ λmax(B)λj(A) and λj(BA) ≤ λmax(B)λj(A), ∀j, (24)

λj(AB) ≥ λmin(B)λj(A) and λj(BA) ≥ λmin(B)λj(A), ∀j. (25)

Note that the previous lemma can be generalized as Tr (AB) ≤ λmax(B) Tr(A)

since Tr(A) =
∑
j λj(A). The inequality is attained when A has rank 1 and is built

with the eigenvector associated with the maximum eigenvalue of B, (emax(B)), i.e.,

A = k emax(B)emax(B)H .

Proposition 3 Let HH
j Hj = VH,jΣH,jV

H
H,j be the reduced eigenvalue decom-

position of matrix HH
j Hj with ΣH,j = diag(σ1,j , . . . , σnRj

,j) and σ1,j ≥ σ2,j ≥

· · · ≥ σnRj
,j > 0. Then, a necessary condition for the feasibility of problem (23) is

(Pmax − P txc )σ1,j −Qj ≥ 0, ∀j.

Proof Just as we considered before, if the problem is feasible, at least one solu-

tion fulfills Tr(S) = Pmax − P txc , and the maximum value that Tr(HjSHH
j ) can

take, based on Proposition 2, is (Pmax − P txc )σ1,j (Tr(AB) ≤ λmax(B) Tr(A)) with

S = (Pmax − P txc )vnRj
,jv

H
nRj

,j , where vnRj
,j is the eigenvector associated with the

maximum eigenvalue σ1,j of HH
j Hj .

Generally, as we are not able to provide a necessary and sufficient condition, we

need to solve the following convex optimization problem to test the feasibility of
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problem (23):

minimize
S,P̄max

P̄max (26)

subject to C2 : Tr(S) + P txc ≤ P̄max

C1, C6 of problem (11).

The above problem is categorized as a semidefinite optimization problem. There is

no closed-form solution for the above problem, but the optimum solution can be

obtained efficiently with the application of interior point methods [40]. Let us denote

the optimum solution of the problem above as P̄ ?max. Now, it only remains to check

whether P̄ ?max ≤ Pmax (which means that the problem is feasible) or P̄ ?max > Pmax

(which implies infeasibility). If the problem is feasible, the optimum covariance

matrix obtained in (26) is the matrix that fulfills all the harvesting power constraints

with the minimum transmitted power. If the problem is infeasible, one possible

solution would be to reduce all the power harvesting constraints {Qj} such that

constraints C1 become looser until the problem becomes feasible.

List of abbreviations

AWGN Additive White Gaussian Noise

BD Block-Diagonalization

BS Base Station

CDF Cumulative Density Function

CSI Channel State Information

DP Dynamic Programming

HPA High Power Amplifier

MIMO Multiple-Input Multiple-Output

MISO Multiple-Input Single-Output

MUI Multiuser Interference

PF Proportional Fair

R-P Rate-Power

RF Radio Frequency

SINR Signal to Interference plus Noise Ratio

SISO Single-Input Single-Output

SNR Signal to Noise Ratio

SR Sum Rate

SVD Singular Value Decomposition

SWIPT Simultaneous Wireless Information and Power Transfer

w.l.o.g. Without Loss of Generality



Rubio and Pascual-Iserte Page 39 of 45

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

Methods/Experimental

The aim of the work presented in this paper is to develop a dynamic grouping mechanism that decides which users

should be scheduled to receive information and which users should be configured to harvest energy. The design also

includes the derivation of the optimal transmission covariance matrices.

The design is based on a theoretical modeling of the scenario and the signal, the definition of a mathematical

optimization problem, and the proposal of an algorithm to find a suboptimal solution to that problem that can be

implemented.

Finally, numerical computer simulations have been carried out to evaluate the performance of the proposed strategy

based on the mathematical modeling of the setup.
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Figure 1 Schematic representation of the downlink broadcast multiuser communication system.

Note that each user can switch from an information decoder receiver to an energy harvester

receiver. This switching can be implemented technologically, as mentioned in papers such as [51].
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Three-dimensional R-P region

Figure 2 Representation of the three-dimensional R-P region of problem (13). The figure

represents the existing tradeoff between the optimal solution of the problem, i.e., the weighted

sum rate, and the two power harvesting constraints.

Contour lines of the three-dimensional R-P region

Q2 [Power units]
5 10 15 20

Q
1
[P
ow

er
u
n
it
s]

10

20

30

40

50

Area of constant sum-rate

(SRmax, Q
I
1, Q

I
2)(SRmax, Q

I
1, 0)

(SRmax, 0, 0)

(SRmax, 0, Q
I
2)

(SRE2, Q
2
1, Q2,max)

(SRE1, Q1,max, Q
1
2)

Figure 3 Contour lines of the three-dimensional R-P region of problem (13). Note that the

density of lines increases with the gradient of the surface, and the color indicates the value of such

a surface. Note also that some important boundary characteristic points have been marked.
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Time evolution of the battery levels
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Figure 4 Time evolution of the battery levels of all users in the system for the different

approaches.

Time evolution of the average sum rate
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Figure 5 Time evolution of the average sum rate of the system for the different approaches.
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Figure 6 CDF of the individual data rates of all the users in the system for the different

approaches.
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Time evolution of the average harvested power
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Figure 7 Time evolution of the average harvested power of all the users in the system for the

different approaches (in power units).
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Figure 8 Expected system sum rate as a function of the distance to the BS.
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Figure 9 Sum of the expected harvested powers by all users (in power units) as a function of the

distance to the BS.
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Expected system sum rate vs relative size of the harvesting user group
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Figure 10 Expected system sum rate as a function of the relative size of the harvesting user group.

Sum of expected harvested powers by all users vs relative size of the harvesting user group
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Figure 11 Sum of the expected harvested powers by all users (in power units) as a function of the

relative size of the harvesting user group.
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Figure 12 Average computational complexities of each algorithm needed for convergence at each

scheduling period relative to algorithm LB-SF/CHS-F.
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