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UNSUPERVISED ENSEMBLE CLASSIFICATION
WITH CORRELATED DECISION AGENTS

Margarita Cabrera-Bean, Senior Member, IEEE, Alba Pagès-Zamora, Senior Member, IEEE, and Carles Dı́az-Vilor

Abstract—Decision-making procedures when a set of individual
binary labels is processed to produce a unique joint decision can
be approached modeling the individual labels as multivariate in-
dependent Bernoulli random variables. This probabilistic model
allows an unsupervised solution using EM-based algorithms,
which basically estimate the distribution model parameters and
take a joint decision using a Maximum a Posteriori criterion.
These methods usually assume that individual decision agents are
conditionally independent, an assumption that might not hold in
practical setups. Therefore, in this work we formulate and solve
the decision-making problem using an EM-based approach but
assuming correlated decision agents. Improved performance is
obtained on synthetic and real datasets, compared to classical
and state-of-the-art algorithms.

Index Terms—Correlated Bernoulli Distribution, Crowdsourc-
ing, Unsupervised Ensemble Learning, Correlated Decision
Agents.

I. INTRODUCTION

W ITH the advent of crowdsourcing, ensemble learning
has recently regained interest as a useful methodology

to rate annotators and to combine the data they provide,
accordingly. In particular, unsupervised ensemble classifica-
tion refers to the problem of designing a meta-learner to
classify objects without the help of training data and based
only on labels provided by individual decision agents [1].
Applications are found in diverse areas such as medicine and
biology, e.g. [2][3] where decision agents are either algorith-
mic techniques or individuals, respectively; team decision-
making strategies [4]; and 5G communication systems [5],
where decision agents are sensors.

Based on the seminal paper of Dawid and Skene [6], a
vast majority of recent works, e.g. [7],[8],[9], estimate the
statistics of the decision agents by different means, and use
these estimates either to solve a Maximum Likelihood (ML)
detection problem or to run the Expectation-Maximization
(EM) algorithm in [6] initialized with these estimates. In [10],
a Maximum a Posteriori (MAP) approach is adopted to solve
a multi-class ensemble classification problem using moment-
based estimates of the confusion matrices of the decision
agents. Interestingly, an upper bound of the expected error
rate is derived in [11][12] for the EM algorithm and MAP
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criterion in terms of the number of decision agents and their
accuracy parameters.

Following the problem setup in [6], a broadly adopted
assumption is to consider conditionally independent agents,
meaning that there is no communication among them. Under
this assumption, the likelihood function of the individual labels
breaks down into factors so that the number of parameters of
the likelihood function is reduced and the ensemble classi-
fication problem becomes more doable. Still, a solution that
considers correlated agents can be more appropriate in real
applications where agents might be known to share common
features. For instance, applications where agents are the same
algorithm but with different parameters; agents are trained with
the same training data or are specialist from the same school
of thought; or even problems with colluding adversaries. The
identification of which agents are correlated and which not is
out of this work, and interested readers are referred to [13][14].

Existing ensemble classification works that allow for cor-
related agents are somehow scarce and propose setups with
significant differences. A classical approach can be found
in [15] where a supervised method to identify a writer by
extracting binary correlated features of handwritten text is
presented. Indeed, a Neyman-Pearson test is used in which
conditional probabilities of all possible observations are es-
timated using training data. More recently, the usefulness of
social learning schemes in ensemble learning, where agents
make decisions sequentially based on the observed object and
precedent decisions of previous agents, is assessed in [4].
Worthy to mention is [13] where correlation between decision
agents is modeled through the use of a set of intermediate
latent variables, and the parameters required to build the meta-
classifier are estimated using the covariance matrix between
pairs of decision agents. Similarly, [14] estimates the agents’
error probabilities and provides an strategy to estimate the
truth labels even in the presence of colluding adversaries.

In this paper we present a binary unsupervised ensemble
classification method suited for correlated decision agents. The
labels provided by the agents are modeled using a correlated
multivariate Bernoulli distribution as in [16], which is ex-
pressed in terms of a set of probability parameters. Following
an EM-based algorithm, these parameters are inferred and a
final classifier is built. The proposed ensemble classifier is
evaluated experimentally both with synthetic and real data sets.

The work is organized as follows. The data model is
described in Section II, and Section III presents the ensemble
classification method for correlated decision agents. Section
IV is devoted to experimental results and finally Section V
concludes the work.
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II. PROBLEM SETUP WITH CORRELATED AGENTS

Let’s consider R decision agents who provide binary labels
on M objects and that we want to take a decision on whether
each object is positive or negative based on these individual
labels. The binary latent variables V := {vm}Mm=1 denote the
ground truth. We also define the set Y := {y1,...,yM}, where
vector ym is an R-dimensional vector with the binary labels
given by the R agents to classify object mth. Each one of these
binary labels is modeled as a Bernoulli r.v. We further assume
agents can be arranged into G disjoint groups, so that agents
belonging to the same group are correlated whereas those
of different groups are not. Labels of correlated agents are
modeled using a correlated multivariate Bernoulli distribution
as in [16]. We denote by Rg the number of agents who belong
to group g; therefore, R =

∑G
g=1Rg and ym = [y1

m; ...;yGm]
where ygm is an Rg × 1 vector for g= 1,...,G. Note that ygm
can take Lg := 2Rg different values, which are denoted by
zgl for l = 0,...,Lg − 1, so that zgl is the vector form of the
decimal to binary conversion of integer l.

Since decisions of different groups are assumed condition-
ally independent, the probability mass function (pmf) of the
R binary r.v.’s in ym conditioned on the ground truth is

P (ym,p1) :=Pr(y=ym|vm=1) =
G∏
g=1

Lg−1∏
l=0

(p1g,l)
Bg

l (y
g
m)

P (ym,p0) :=Pr(y=ym|vm=0) =

G∏
g=1

Lg−1∏
l=0

(p0g,l)
Bg

l (y
g
m)

(1)
where png,l = Pr(ygm = zgl |vm = n) for n ∈ {0, 1}; pn ∈ RL
is a vector which entries are equal to the set of parameters
{png,l; g = 1,...,G; l = 0,...,Lg − 1} with L =

∑G
g=1Lg; and

Bgl (·) is the following indicator function

Bgl (y
g
m) =

{
1 if ygm = zgl
0 otherwise (2)

for g = 1, ..., G. In order to guarantee that P (ym,pn) in (1)
are valid pmf’s, the parameters {png,l}

Lg−1
l=0 should lie on a

probability simplex, i.e. 0 ≤ pnl,g ≤ 1 and
∑Lg−1
l=0 png,l = 1;

for n ∈ {0, 1}.
It is worthy to note that the distribution in (1) is more

general than if we had assumed conditionally independent
agents, albeit at the cost of a greater number of parameters, i.e.,
in our model the set of unknown parameters is θ := {π,p1,p0}
where π:=Pr(vm=1). The size of θ is 2L+1, where L increases
exponentially with the size of the largest group of correlated
agents, instead of 2R+1 with conditionally independent agents.

III. DETECTION ALGORITHM

Given the dataset Y and the pmf’s in (1), it is well
known that the classification criterion that minimizes the error
probability is the MAP rule given by

v̂MAP
m =argmax

n∈{0,1}

(
Pr(vm=n)P (ym,pn)

)
;m∈{1,...M} (3)

This rule requires the knowledge of the probability parameters
{png,l}

Lg−1
l=0 and prior probabilities Pr(vm = n) for g=1,...,G

and n ∈ {0, 1}, which can be substituted by the ML estimates.
In order to do so, we need the likelihood function of the data
set Y which, assuming M independent objects, is equal to a
mixture of two R× 1 correlated Bernoulli distributions, i.e.

f(Y; θ) =
M∏
m=1

(
πP (ym,p1) + (1− π)P (ym,p0)

)
(4)

However, since there is no closed-form maximization of
f(Y; θ), we resort to the well-known EM algorithm [17].

A. EM Algorithm for correlated data
The EM algorithm requires the likelihood function of the

complete set of r.v.’s , i.e. Y and the hidden or latent r.v.’s V .

f(Y,V; θ) =
M∏
m=1

(πP (ym,p1))
vm((1− π)P (ym,p0))

(1−vm)
(5)

The EM algorithm iteratively alternates between the expecta-
tion step (E-Step) and the maximization step (M-Step). In the
E-Step the following expectation is computed

Q(θ; θ̂t) = EV{log(f(Y,V; θ))|Y; θ̂t} =
M∑
m=1

v̂tm log(πP (ym,p1)) + (1− v̂tm) log((1− π)P (ym,p0))

(6)
where θ̂t denotes the estimate of the parameters at iteration
t, and v̂tm = Pr{vm = 1|Y; θ̂t} is the posterior probability of
vm at iteration t, equal to

v̂tm =
π̂tP (ym, p̂

t
1)

π̂tP (ym, p̂t1) + (1− π̂t)P (ym, p̂t0)
(7)

In the M-Step, the conditional expectation in (6) is maximized
with respect to the parameters θ, using Lagrange multipliers
to impose the constraints

∑Lg−1
l=0 png,l = 1, (see e.g. [18]).

Therefore, at iteration t, π̂t+1 and {p̂0,t+1
g,l , p̂1,t+1

g,l } for g =
1, .., G and l = 0, .., Lg − 1 are computed as follows

π̂t+1 =
1

M

∑M

m=1
v̂tm (8)

p̂1,t+1
g,l =

∑M
m=1 v̂

t
mB

g
l (y

g
m)∑M

m=1 v̂
t
m

∑Lg−1
l′=0 Bgl′(y

g
m)

(9)

p̂0,t+1
g,l =

∑M
m=1(1− v̂tm)Bgl (y

g
m)∑M

m=1(1− v̂tm)
∑Lg−1
l′=0 Bgl′(y

g
m)

(10)

The resulting EM algorithm is summarized in Algorithm 1
and will be referred to as correlated EM (CEM). The final
estimate of the parameters is denoted by θ̂f := {π̂f , p̂f0 , p̂

f
1},

being p̂n,fg,l in (9) and (10) the entries of vector p̂fn for n = 0, 1;
g = 1, ..., G and l = 0, ..., Lg−1. Similarly, the final estimate
of the latent variables are denoted by {v̂fm}Mm=1.

B. Decision process
Upon convergence of CEM, a decision on each object is

taken based on a binary quantification of variables v̂fm, i.e., if
v̂fm > 0.5 instance m is labeled as 1, and 0 otherwise. This
is indeed equivalent to apply a MAP criterion in (3) after
substituting {π,p1,p0} by {π̂f,p̂f0,p̂

f
1} of the CEM algorithm.
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Algorithm 1 Correlated EM (CEM)
Input: {v̂0m}Mm=1, ε, tMAX

Output: {v̂fm}Mm=1, θ̂
f

1: procedure EM
2: Q(θ; θ̂0)← − inf; t← 0 . Initialization
3: repeat
4: Compute π̂t+1 as in (8) . M-Step
5: for g = 1, .., G do
6: Compute {p̂0,t+1

g,l }
Lg−1
l=0 as in (9)

7: Compute {p̂1,t+1
g,l }

Lg−1
l=0 as in (10)

8: end for
9: t← t+ 1; tf ← t

10: Compute {v̂tm}Mm=1 as in (7) . E-Step
11: Compute Q(θ; θ̂t) as in (6) . Check convergence
12: if Q(θ; θ̂t)−Q(θ; θ̂t−1) < ε|Q(θ; θ̂t)| then
13: t← tMAX

14: end if
15: until t = tMAX

16: v̂fm ← v̂
tf
m ,m = 1, ...,M

17: θ̂f = θ̂tf

18: end procedure

IV. NUMERICAL RESULTS

In this section, we support the proposed ensemble classifier
with numerical results in MATLAB. To generate the set Y :=
{y1, ...,yM} of multivariate correlated Bernoulli r.v.’s in the
experiments with synthetic data, for g=1...G and l=0...Lg−
1, we first assign values to the marginal probability parameters
fng,l,1 := Pr(ygm(1) = zgl (1)|vm = n), and afterwards to the
conditional probability parameters fng,l,r defined as

Pr
(
ygm(r)=z

g
l (r)|y

g
m(1)=z

g
l (1), ...,y

g
m(r−1)=z

g
l (r−1),vm=n

)
for increasing values of r up to Rg . Then we compute the
probability parameters png,l as

png,l = Pr(ygm = zgl |vm = n) =
∏Rg

r=1
fng,l,r (11)

for n = 0, 1; g = 1...G and l = 0...Lg − 1. Additionally,
the ground truth set {vm}Mm=1 is generated as independent
Bernoulli r.v.’s with parameter π, and the observation vectors
ym are obtained according to (1), after substituting the prob-
ability parameters computed in (11).

Previous works that generate multivariate Bernoulli distribu-
tions impose several consistent relations on the joint probabil-
ity function [19] or mix different independent Bernoulli trials
to correlate them [20]. We use instead the procedure described
above to better adjust the correlation between labels of the
same group g. As independence and uncorrelation are equiva-
lent in a multivariable Bernoulli distribution [16], in order to
obtain strongly correlated agents we assign values to fng,l,r that
depend on the conditional event [ygm(1)=z

g
l (1), ...,y

g
m(r−1)=

zgl (r−1),vm=n] (for instance, we choose a value proportional
to integer l). The degree of correlation of the data set Y will
be characterized by {ρn}1n=0 defined as

ρn :=
2
∑G
g=1

∑Rg

r=1

∑r−1
r′=1 |Cng (r, r′)|∑G

g=1

∑Rg

r=1 C
n
g (r, r)

(12)

TABLE I
SIMULATION CASES 1 TO 10 FOR R = 12 DECISION AGENTS.

Case 1 2 3 4 5 6 7 8 9 10

R1 1 2 3 4 5 6 7 8 9 10

ρ 0.0 0.14 0.29 0.50 0.74 1.02 1.33 1.67 2.04 2.44

2L+ 1 25 29 35 49 79 141 267 521 1031 2053

with Cng(r,r
′)=E

{
[ygm(r)−E{ygm(r)}][ygm(r′)−E{ygm(r′)}]|vm=

n
}

the covariance between labels ygm(r) and ygm(r
′). Indeed, the

closer {ρ0,ρ1} are to 0, the more independent the data set is.

A. Results with synthetic data

In all simulation trials we provide ρ := ρ0+ρ1

2 as a measure
of correlation degree. Cases 1-10 (R=12) are given in Table I.
They consist of 1 group with R1 correlated agents, and R−R1

groups with one agent each with an accuracy probability of
0.85. Table I includes parameter ρ and the number of unknown
parameters of CEM, 2L+1. Note that in Case 1 all agents are
uncorrelated. Further, Case 11 (ρ = 2.27 and 2L + 1 = 237)
consists of R=16 (G=4) with 3 groups with 5 agents each,
and one group with a single malicious agent with an accuracy
equal to 0.25; and Case 12 (ρ = 1.70 and 2L + 1 = 67231)
consists of R = 50 (G = 27) with one group with R1 = 15
agents, a second one with R2 = 10 agents and 25 independent
agents, some of them are malicious.

In the experiments, CEM is compared to the following
methods: MAP criterion as benchmark; Majority Voting (MV);
EM algorithm with all uncorrelated agents initialized to MV,
denoted by Uncorrelated EM (UEM); and three state-of-the-
art methods, namely the provably Optimal initialized EM
(OEM) [9], the Arbitrary Adversaries based Algorithm (AAA)
[14], and the Latent-Spectral Metalearner (LSM) [13]. For
the sake of fairness, LSM assumes the group structure is
known instead of estimating it as in [13]. Further, the so-
called ’Agents’ method is the performance averaged over the
individual decisions given by the decision agents.

In a first experiment, Cases 1-12 with labels for M = 1000
binary objects with an a priori probability of π = 0.5 are
considered. Fig. 1 shows the relative error (εr), defined as the
ratio of the number of objects erroneously classified to the total
number of objects M , averaged over N = 1000 independent
runs. Indeed εr = FP+FN

M , where FP (FN) denotes False
Positive (False Negative), and the accuracy of a classification
method is 1−εr. In these cases, CEM is always superior to the
rest of methods and the most similar to MAP. Note that CEM,
OEM, LSM and UEM perform the same in Case 1 where all
agents are independent.

In a second experiment, we generate M =10 : 10000 objects
for Cases 5 and 10 of Table I, and compute εr averaged
along N = 1000 runs. Results in Fig. 2 show that once
more, CEM outperforms LSM, UEM, OEM, AAA and MV
in case 5, which has less correlated decision agents. Indeed,
it approximates MAP performance from M = 2000. In Case
10, with a higher number of correlated decision agents, CEM
is the best from M = 500 onwards, and interestingly CEM
performance tends to MAP performance as the number of
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Fig. 1. Averaged relative error εr for different methods and Cases 1 to 12.

Fig. 2. Averaged relative error εr for Case 5 (continuous lines) and Case 10
(dashed lines) as a function of the number of objects M .

TABLE II
MSE MEASURED IN dB FOR CASE 10 AS A FUNCTION OF M

M 10 50 100 500 1000 5000 10000

MSE(dB) -34.4 -39.8 -41.2 -46.0 -47.8 -57.6 -60.5

objects M increases. Table II shows the Mean Square Error
(MSE) in dB of the parameter estimates versus M for Case 10.
Note that this estimation improves as M increases, resulting
in a decreasing relative error (εr) in Fig. 2.

First rows of Table III include the classification time of
all methods averaging N = 1000 runs for Case 5, with 5
correlated agents; for Case 10 with 10 correlated agents and for
M = 1000 and M = 10000; and for Case 12, which biggest
group includes 15 agents. We can conclude that, even though
the number of parameters in CEM increases exponentially with
the size of the largest agents’ group, still the computational
complexity and performance of CEM is competitive with
respect to other state-of-the-art methods for sizes of the largest
group up to 10 − 15, if necessary at the expense of a higher
number of objects M as in Case 10.

TABLE III
AVERAGED CLASSIFICATION TIME (ms)

Case MV UEM OEM LSM AAA CEM

5 (M = 1000) 0.041 23.8 2657.2 126.3 224.9 65.2
10 (M = 1000) 0.044 25.4 2610.4 121.7 187.0 172.0

10 (M = 10000) 0.46 255.8 11717.1 1084.0 332.9 2306.3
12 (M = 1000) 0.096 96.7 5528.2 461.2 23632.3 2787.5

Spam (M = 1150) 2.63 39,41 5115.5 268.4 663.0 112.4
Star (M = 4474) 9.88 149.6 12072.7 717.6 712.1 247.1

TABLE IV
AVERAGED εr FROM REAL DATA, GROUP STRUCTURE: [6, 6, 6]

Dataset Agents MV UEM OEM LSM AAA CEM

Spam (M=1150) 0.115 0.081 0.081 0.082 0.080 0.081 0.078
Star (M=4474) 0.025 0.019 0.025 0.022 0.018 0.019 0.018

B. Results with real datasets

Two UCI repository real datasets from archive.ics.uci.edu
have been selected to validate the CEM algorithm. The Spam
dataset consists of N = 4601 56-featured instances of an e-
mail text that can be spam. The HTRU2 dataset consists of
N = 17898 8-featured instances of a star observation that
potentially can be a pulsar star. For each one of the datasets,
R=18 classifiers are checked using G=3 groups with R1 =6
neural networks, R2 =6 support vector machines and R3 =6
decision tree classifiers, with a total of 2L+1 = 385 unknown
parameters. Each individual classifier is firstly trained on a
randomly chosen subset. Then, a separate single independent
test dataset with M =1150 instances for Spam and M =4474
instances for Star is used to obtain the set Y := {y1,...,yM}
with ym ∈R18. Table IV shows the relative error εr obtained
averaged over 1000 realizations, and last rows in Table III
show the classification time spent in these experiments. CEM
attains the best performance for Spam case, and LSM and
CEM are the best ones for the Stars, with less computational
cost for CEM.

V. CONCLUSIONS

A new unsupervised ensemble classification method for
optimally combining labels provided by correlated decision
agents is presented. As shown with numerical results using
synthetic and real datasets, the proposed method achieves a
higher classification accuracy than other classical and state-
of-the-art algorithms for medium-size groups of correlated
agents. Moreover, even though the number of parameters of the
proposed method scales exponentially with the number of cor-
related agents, the computational time is still competitive com-
pared to other state-of-the-art methods and accuracy improves
as the number of objects to classify increases. Further work
includes the generalization to multiple classes; dealing with
missing labels; on-line implementations to estimate agents’
performance, especially if they are going to be used later on;
and identification of correlated groups.
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