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“There’s a tale about the machine against the human, and it creates this popular belief that
machines are against us, but when humans and machines work together as allies, not

adversaries, we are presented with a great range of new opportunities.”

iii





Abstract
The aim of this thesis is to develop a cognitive assistant for the high-level design of
a spacecraft bus. The motivation for such a system comes from both the challenges
of developing an end-to-end software and the challenges of system architecture in
general, specifically satellite design. My work is inspired by the success of Daphne,
the first cognitive assistant which helps users in the architecting of space missions,
and the possibility of complementing it with a system to assist humans in the design
of individual units of a mission. This system has been developed using a layered
architecture, the front-end consists of aweb interface that serves as a dashboardwere
the user can edit the current design of a satellite. The parameters that define the
design can be introduced into the system inmanyways, either by speech recognition,
natural language processing or manually editing the design. The back-end layer,
serves as the brain of the system, it takes the inputs of the user and evaluates each
subsystem of the satellite. It starts by modeling each subsystem with a rule based
expert system that then sends suggestions back to the web interface. Ultimately, the
user receives these recommendationswhere it is toldwhich parts of the design could
be optimized andwhich of themare right. The final result of this thesis is the Satellite
DesignAssistant, an open-source cognitive assistant to support the high-level design
of all the subsystems of a satellite by giving feedback and recommendations to the
systems engineering team.

Keywords: systems engineering, satellite design, spacecraft, cognitive assistant,
aerospace engineering
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Resum
L’objectiu d’aquest treball de fi de grau és desenvolupar un assistent cognitiu
per al disseny d’alt nivell dels subsistemes d’un satèl·lit. La motivació per crear
aquest sistema prové tant del gran repte que ha suposat desenvolupar un software
de principi a fi, com dels reptes existents en el disseny de sistemes complexos
en general, i dels subsistemes d’un satèl·lit en particular. El meu treball ha estat
inspirat per l’èxit de Daphne, el primer assistent cognitiu que ajuda als seus usuaris
en el disseny d’alt nivell de missions espacials d’observació terrestre, a més de la
possibilitat de complementar-lo amb un sistema per assistir humans en el disseny
de unitats concretes d’un sistema de satèl·lits. El sistema s’ha desenvolupat amb
una arquitectura de capes, la primera de les quals és la interfície web, que serveix
com a un tauler d’eines on l’usuari pot editar el seu disseny del satèl·lit. Els
paràmetres que el defineixen es poden introduir en el sistema de diverses formes,
des de reconeixement de veu i processament de llenguatge natural fins a editant-los
manualment. La segona capa és el back-end o processador, i actua com el cervell del
sistema. Primer, agafa els paràmetres introduïts per l’enginyer i avalua cadascun del
subsistemes del satèl·lit. Després crea un model de cada subsistema utilitzant un
sistema expert basat en regles que envia les suggeriments un altre cop a la pàgina
web. Al final, l’usuari rep aquestes recomanacions on se li explica quines parts
del disseny es podrien optimitzar i quines ja estan bé. El resultat final d’aquest
treball de fi de grau és l’Assistent en el Disseny de Satèl·lits, un assistent cognitiu de
codi obert per ajudar als enginyers de sistemes en el disseny d’alt nivell de tots els
subsistemes d’un satèl·lit.

Paraules clau: enginyeria de sistemes, dissenyde satèl·lits, vehicle espacial, assistent
cognitiu, enginyeria aeroespacial
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Resumen
El objetivo de este trabajo de fin de grado es el desarrollo de un asistente cognitivo
para el diseño de alto nivel de los subsistemas de un satélite. La motivación para
crear tal sistema proviene tanto del gran reto que supuso el desarrollo de un
software de principio a fin, como de los retos existentes en el diseño de sistemas
complejos en general, i de los subsistemas de un satélite en particular. Mi trabajo
ha estado inspirado por el éxito de Daphne, el primer asistente cognitivo que ayuda
a sus usuarios en el diseño de alto nivel de misiones espaciales de observación
terrestre, además de la posibilidad de complementarlo con un sistema para asistir
a humanos en el diseño de unidades concretas de un sistema de satélites. El
sistema se ha desarrollado con una arquitectura por capas, la primera de las cuales
es una interfaz web, que sirve como tablero de herramientas donde el usuario
puede editar su diseño del satélite. Los parámetros que lo definen se pueden
introducir en el sistema de varias formas, desde por reconocimiento de voz y
procesamiento del lenguaje natural, hasta directamente editándolos manualmente.
La segunda capa es el back-end o procesador, y actúa como el cerebro del sistema.
Primero, coge los parámetros introducidos por el ingeniero i evalúa cada uno
de los subsistemas del satélite. Después crea un modelo de cada subsistema
utilizando un sistema experto basado en reglas que envía las sugerencias otra
vez a la página web. Al final, el usuario recibe estas recomendaciones donde
se le explica que partes del diseño se podrían optimizar más y cuáles ya están
bien. El resultado final de este trabajo de fin de grado es el Asistente en el
Diseño de Satélites, un asistente cognitivo de código abierto para ayudar a los in-
genieros de sistemas en el diseño de alto nivel de todos los subsistemas de un satélite.

Palabras clave: ingeniería de sistemas, diseño de satélites,vehículo espacial, asis-
tente cognitivo, ingeniería aeroespacial
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Chapter 1

Introduction

1.1 Motivation

The engineering design of a spacecraft has enormously progressed over the last
decades and now extremely sophisticated techniques are used to assess the optimal
solution for a component, subsystem or architecture. This process requires un-
derstanding the mission requirements, including payload characteristics and other
constraints such as orbit, mission lifetime and performance requirements. Then, the
architecture of the mission is chosen, and the subsystems of the different spacecrafts
are designed, considering all the requirements and constraints in order to provide
the functions necessary for mission success.

It is at this point, where the most important design decisions need to be made
regarding the overall architecture of the mission, and it is also at this point where
less detailed information is available about what will be the optimal design. Indeed,
system architecting remains mostly an art rather than a science, even years after the
publication of the foundationalwork in the field byRechtin andMaier [25]. Themain
reason is that it is a task that requires creativity and dealing with deep uncertainty
and ambiguity, and these abilities are hard to standardize. However, many parts of
the design process have been automated; tools such as simulations and optimization
are being used by all engineers in the design process to help them select the best
system configuration.

Moreover, traditionally missions have been mainly monolithic spacecrafts with all
the instruments placed in one satellite. Nowadays, this trend is changing to building
missions which include distributed or fractionated systems, where the mass and the
number of instruments of each satellite have been reduced compared to the larger
monolithic missions of the early 2000’s [38]. Two commonly cited advantages of
such distributed architectures are the increase in reliability and robustness achieved
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Chapter 1. Introduction

by reducing the number of single points of failure in the system, and improved
affordability as individual units become smaller and less costly. On the other hand,
distributed systems may lead more complexity in the design of the architecture, and
therefore an increase in the cognitive difficulty of the design process.

NASA’s technology roadmap for technology area “TA 11: Modeling, Simulation,
Information Technology, and Processing”, recognizes this problem as it describes a
need for improved “Analysis Tools for Mission Design”. Specifically, the document
states that current tools are thought for monolithic missions and only take into
account small parts of the system at a time [30]. Nowadays, large space organizations
such as NASA and ESA have design facilities where engineers speed up the mission
design process by rapidly assessing the cost, value, feasibility and risk of multiple
mission concepts.

Thus, improved tools are needed to architect these complex constellations as there
is a need to account or the entire system as opposed to a single satellite during the
early design process. These tools help the user to analyze large, high-dimensional
design spaces that define the complex space of decisions (tradespace) that can be
made when selecting the optimal architecture for a mission. There has been some
research in this area [37] [42], including tools currently being developed by NASA,
such as TAT-C [29].

To counter the increase in cognitive difficulty, intelligent agents called Cognitive
Assistants (CA) have been studied for the last 20 years. Their objective, as well as
that of most decision support tools developed, is “augmenting human intellect”,
as told by D.C Engelbart in one of the first works in human-computer interaction
(HCI) back in 1962 [11]. CA aim to facilitate user interaction without overloading it
with information, and theymake use of modern visualizations to provide the critical
information for assisting the user in the decision-making process. Most CA send and
receive information to/from the user by means of natural language, either through
a voice or text-based interface, and then query an expert system with a knowledge
database to provide the necessary information to the user.

This project extends an existing software package for mission design developed at
Texas A&M SEAK Lab to address some of its current limitations. The software
consists of a Cognitive Assistant (DAPHNE) for aerospace systems architecting [5].
Daphne can take two different roles (Analyst and Critic), draw information from
three different sources (historical database, expert knowledge-base, and knowledge
extracted from data mining), and communicate with the user through verbal and
visual interfaces. As Daphne has a modular structure, we can add new capabilities
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1.1. Motivation

and improve the current design of one of its modules. Its different agents are tasked
with solvingdifferent parts of theproblem, such as thedesign of a specific subsystem,
the synthesis of new architectures or the evaluation of the science benefit of each
architecture in the tradespace.

Daphne focuses on serving as a tool to help the user in the process of designing
the architecture of a mission. Once this choice has been made, and the orbits and
payloads of each satellite of the architecture have been assigned, the next step would
be the preliminary design of the individual units that are part of the architecture.

As the reader may know, the design of an individual satellite is also considered as a
complex system problem. A satellite is the result of the interactions of many subsys-
tems each one performing a determined task to support the payload requirements
and influencing the rest of the spacecraft. As mentioned before, large space agencies
have design facilities where engineers can speed up the process of designing the
different subsystems, they are called Concurrent Design Facilities [4]. There, the
engineers from the different subsystems work together in the same room, gathering
all the available information and putting in common all their problems and designs
that are considered.

Different tools are used in these facilities to assist humans in the process, but this
project focuses on developing a tool to help engineers gather all the parameters that
define a satellite and give feedback on the design they are working on.

Motivated by the challenges of system architecture in general and architecting an
individual satellite in particular, and inspired by the success of Daphne, an oppor-
tunity was identified to explore the task of developing a CA to assist humans in
the high-level design of the spacecraft bus, complementing the skills of Daphne
and considering the interrelation with the rest of elements of the mission concept,
and assuming that elements like the orbit, launcher or payload have been already
decided and are fixed. Thus, this project focuses on two aspects:

• Improve the module responsible for designing the different subsystems of the
spacecraft bus. Thesemodules use first-order physics-based equations to select
the appropriate subsystem components to meet all the mission requirements
as well as estimate the mass and size of the whole satellite.

• Build a web interface-based assistant where the user can receive feedback of its
current design of a satellite.

This report explains in detail how the Satellite Design Assistant was built, both the
front-end web interface to interact with the user and the back-end rule based expert
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Chapter 1. Introduction

system which does all the heavy work of designing each subsystem and making the
recommendations. It then goes on whit a use case where the software is tested with
a real satellite design. Finally, the limitations, future work and conclusions of the
project are presented.

1.2 Background

In order to design and develop the mentioned assistant, it was important to review
the literature on threemain pillars that support the thesis: the space mission design
process, cognitive assistants and expert systems.

1.2.1 Space Mission Analysis and Design Process

Space mission design usually seeks to find the optimal configuration of a space
system which satisfies one or more general objectives and constraints at the lowest
possible cost. In other words, it pursues to find the cheapest space system that is
able tomeet certainmission requirements and offer the best performance at that cost.
There are now a number of references available on the mission design process and
the definition of mission objectives, but this thesis is based on The Space Mission
Analysis and Design Process (SMAD) book [43], which gives a broad view of all the
process and a detailed explanation of systems engineering.

Figure 1.1 from SMAD [43] summarizes the space mission analysis and design
process that has been widely applied during the last 50 years of space exploration
from earth observationmissions to interplanetarymissions. The analysis and design
processes shown in Figure 1.1 are iterative and repeated multiple times for each
mission, so that the requirements are improved and refined at every single step,
ending in a very well defined space mission concept which can easily end with
hundreds of requirements for a small mission.

In step 1, the qualitative goals of the mission are defined in a very general way. In
step 2, it is estimated in a quantitative way how well the objectives of the mission
must be achieved, taking into account the needs, technology and budget that the
mission has available. These parameters defined at this point must evolve over
several iterations during the process. A frequent problem in space mission design is
to concrete these requirements too early in the design process, which may after lead
to wrong decision making, underperforming designs or too expensive designs for
the requirements that had to be fulfilled.
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1.2. Background

Figure 1.1: Mission analysis and Design Process

In step 3, mission concepts or concepts of operations are defined. A mission concept
is a document or a model that explains how the mission will work in practice and
contains information such as which kind of data will be acquired, how it will be
sent to the ground, the mission control procedure and a complete timeline of the
mission. In step 4, different alternate combinations of mission elements are defined
(i.e. mission architectures) in order to achieve all the needs detailed in the mission
concept. The space mission architecture includes the description of the subject of
the mission, the mission operations, the control and communications architecture,
the orbit and constellation, the payload, the spacecraft bus, the launch vehicle and
the ground segment.

In step 5, the cost and performance systemdrivers are identified (number of satellites,
altitude, power, size and weight) for each of the mission concepts and architectures
developed in steps 3 and 4. Knowing these driving features and tuning these pa-
rameters in particular makes it easier to find the design that perform better at the
lowest cost.

Step 6 is one of the most important steps because it characterizes all the system
budgets and decides what will be done on board in space and what data will be
processed on the ground. In step 7, each system defined in the previous stages
is evaluated and critical requirements responsible for the cost and complexity of
the system are identified. It is important not to confuse critical requirements with
system drivers, although they can be strongly related. For instance, coverage (critical
requirement) will be strongly related to changes in altitude and, consequently, may
become a system driver. Step 8 consists of mission utility analysis, in which it
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Chapter 1. Introduction

is evaluated how well requirements and broad objectives are met as function of
cost and/or system design choices. The objective of this step is to provide the
decisionmaker a single chart of potential performance vs cost of the differentmission
concepts.

Having evaluated alternative designs and done a preliminary assessment of mission
utility, in step 9 one system is selected as a baseline to keep working on. A baseline
design is a single consistent definition of the system which meets most or all of the
mission objectives. Iteration over iteration, this baseline develops until it becomes
the final design.

Finally, in order to know how well we have completed the space mission analysis
and design, in steps 10 and 11 the initial broad mission objectives and constraints are
translated into well-defined numerical system requirements and allocate them to the
components of the space missions.

1.2.2 Space Mission Life Cycle

Figure 1.2 from SMAD illustrates the life cycle of a space mission, which typically
progresses through four phases:

• Concept exploration is the initial study phase, which results in a broad definition
of the space mission and its components. It is the phase explained in section
1.2.1.

• Detailed development is the formal design phase, which results in a detailed
definition of the system components and, in larger programs, development of
test hardware and software.

• Production and deployment consists of the construction of the ground and flight
hardware and software and launch of the first full constellation of satellites.

• Operations and support are the day-to-day operation of the space system, its
maintenance and finally the deorbit or recovery at the end of the mission life.

These phases may be divided and named differently depending on whether the
sponsor (the group which provides and controls the budget) is DoD, NASA, ESA or
any other organization.
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1.2. Background

Figure 1.2: Mission Cycle at ESA, NASA and DoD

During the Concept Exploration Phase, three basic activities occur. Users and op-
erators develop and coordinate a set of broad needs and performance objectives,
as explained before. At the same time, developers generate alternative concepts to
meet these needs. In addition, the sponsor performs long-range planning, develops
an overall program structure and estimates the budgetary needs. This project and
the work done by SEAK Lab at Texas A&M emphasizes in developing cognitive
assistants and tools to help decision makers in this concept exploration phase,
previous to the detailed definition of the mission, with the objective of analyzing
and selecting the best design alternatives either on an architecture level (Daphne) or
a subsystem level (Satellite Design Assistant).

Figure 1.3 shows two graphs. The first one plots the project expenditures as func-
tion of time during the life cycle of a space mission, and the second one plots the
percentage of the project cost that has been determined as function of time.
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Chapter 1. Introduction

Figure 1.3: Mission cost and Percentage of budget determined during
each phase.

As Figure 1.3 shows, the most important decisions of the mission design process
such as the choice of architecture or the preliminary design of the subsystems must
bemadewhenmost of themoney has not been spent yet, because the detailed design
and manufacturing has not started. But more important, nearly 80% of the budget
has been already allocated to some phase of the project by the end of the concept
exploration phase. That is why, human assistants are so important in this phase
of the mission design process; to help decision-makers have a broad view of the
high-dimensional decision space that systems engineering generates.

1.2.3 Systems Engineering

Systems engineering is an interdisciplinary approach to enable the realization of
successful complex systems. It focuses on defining customer needs and required
functionality early in the development cycle, documenting requirements and then
proceeding with design synthesis and system validation while considering the com-
plete problem. Systems engineering integrates all the disciplines and specialty
groups into a team effort forming a structured development process that goes from
concept to production and operation.

Before going on we should define what is a system. NASA defines it as a set of
interrelated components which interact in an organized fashion towards a common
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1.2. Background

purpose as told in NASA SP-6105 handbook [22]. It can be noted the importance of
the interrelationship between the components, and not just designing focusing on a
single component. Since all spacemissions consist of a set of elements or components
as shown in Figure 1.4, the arrangement of these elements generates a space mission
architecture, which basically is a system of subsystems.

Figure 1.4: Elements of space mission architecture.

The subject of the mission is the agent which interacts with or is sensed by the space
payload: moisture content or atmospheric temperature, for weather missions; types
of vegetation or water for Earth observing missions; or a rocket or missile for space
defense missions.

The payload consists of the hardware and software that sense or interact with the
subject. Typically, there is a trade off and combine several sensors and experiments
to form the payload. The subsystems of the spacecraft bus support the payload by pro-
viding orbit attitude maintenance, power, command, telemetry and data handling,
structure and temperature control. The payload and the spacecraft bus together are
called the spacecraft or space segment.
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Chapter 1. Introduction

The launch system includes the launch facility, launch vehicle and any upper stage
required to place the spacecraft in orbit. The selected launch system constraints the
size, shape and mass of the spacecraft.

The orbit is the spacecraft’s trajectory. Typically, there is a separate initial parking
orbit, a transfer orbit and the final mission orbit. There may also be an end-of-life
or disposal orbit. The mission orbit influences every element of the mission and
provides many options for trades in mission architecture.

The communications architecture consists of all the components which satisfy the mis-
sion’s communication, command and control requirements. It depends strongly on
the amount and timing requirements of data to be transferred, as well as the number,
location and availability of the space and ground assets used in the mission.

The ground system consists of fixed and mobile ground stations around the globe
connected by various data links. They allowus to command and track the spacecraft,
receive and process telemetry and mission data.

Finally, mission operations consist of the people, hardware and software that execute
the mission, procedures and data flows.

1.2.3.1 Spacecraft Bus Design

As mentioned before, this project is focused on developing a Cognitive Assistant
to help users in the design of the spacecraft bus, considering the interrelation with
the rest of elements of the mission concept, and assuming that elements like the
orbit, launcher or payload have been already decided and are fixed, and they all
determine the mission requirements. For this reason, from now on we will focus on
the Design and Sizing of the multiple satellite subsystems: ADCS, communications,
power, propulsion, thermal control and structure. All together compose what we
know as the spacecraft bus, which is in charge of the following tasks, represented in
Figure 1.5:

The propulsion subsystem provides thrust for changing the spacecraft’s translational
velocity or applying torques to change its angular momentum. Most spacecraft need
some controlled thrust, so their design includes some form of metered propulsion
– a propulsion system that can be turned on and off in small increments. Com-
pressed gasses, such as nitrogen, and liquids, such as monopropellant hydrazine,
are common propellants. Significant sizing parameters for the subsystem are the
total impulse and the number, orientation and thrust levels of the thrusters.
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Figure 1.5: Subsystems that compose the spacecraft bus.

The attitude determination and control subsystemmeasures and controls the spacecraft’s
angular orientation (pointing direction), or, in the case of a guidance, navigation,
and control system, both its orientation and linear velocity. The simplest spacecrafts
achieve control by passive methods such as spinning or interacting with gravity and
magnetic field. More complex systems employ controllers to process the attitude
and actuators to change it. The capability of the attitude control subsystem depends
on the number of body axes to be controlled, control accuracy and speed of response.

The communications subsystem links the spacecraft with the ground or other space-
craft. It is sized by the data rate, allowable error rate, communication path length
and RF frequency used.

The power subsystem provides electric power for the equipment on the spacecraft and
the payload. It consists of a power source, power storage and power conversion and
distribution equipment. It is sized based on the power needed to operate the payload
and the power duty cycle imposed by the eclipses and peak power consumption.
Because solar cells and batteries have limited lives, our design must account for
power requirements both at beginning-of-life (BOL) and end-of-life (EOL).

The thermal control subsystem controls the spacecraft equipment’s temperatures. It
does so by the physical arrangement of equipment and using thermal insulation and
coatings to balance heat from power dissipation, absorption from the Earth and Sun,
and radiation to space. The amount of heat dissipation and temperatures required
for the equipment to operate and survive determine the subsystem’s size.
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The structural subsystem carries, supports, and mechanically aligns the spacecraft
equipment. It also cages and protects folded components during boost and deploys
them in orbit. Themain structure is sized by either the strength necessary to carry the
spacecraft mass through launch accelerations or stiffness needed to avoid dynamic
interaction between the spacecraft and the launch vehicle structures.

1.2.4 Cognitive Assistants

Intelligent tools have been used to support the design of complex systems since
the birth of the computing era, like [26] or others as seen in [21]. These tools have
taken different forms, which include intelligent Computer Aided Design (CAD)
systems [17], knowledge databases [24], design assistants [5] and design critics [20].
Since the focus of SEAK Lab [34], concretely the design of Daphne, the Cognitive
Assistant being developed by the Lab at Texas A&M, is centered on the first stages
of design, sometimes referred as conceptual design, we are going to focus this part
of the background review on this kind of tools.

Intelligent personal assistants are intelligent agents that manage and perform tasks
on behalf of humans to reduce routine tasks and the cognitive load of the human
users. It is important to note that the main goal of developing these systems is not
replacing humans, but to enhance human capabilities both in performing routine
tasks and solving complex problems. They usually take the shape of interactive
visualizations and decision support toolswhich allow for the analysis of the different
design alternatives, and which have the capacity to handle the thousands of options
which can exist for a design problem. Other tools utilize unsupervised machine
learning algorithms such as manifold learning, feature selection and clustering to
help visualize solutions in a high-dimensional space.

Cognitive Assistants have a long story: starting with NLS from Engelbart back in
1962 [11], there has been a continuous stream of them: RADAR [15], a calendar
and email management system that can extract relevant information or CALO [28],
a virtual assistant which uses a Belief-Desire-Intention (BDI) model where the user
can assign tasks to the agent. More recently, as voice recognition software and
natural language processing have advanced to an almost usable level, commercial
alternatives have appeared, such as IBMWatson [13,23], WolframAlpha [44], Siri [3],
GoogleAssistant [18], AmazonAlexa [2] orMicrosoft Cortana [27]. All these systems
share the fact that are generalists: they try to answer as many queries as possible
from the user using lots of data sources. But generalist CAs are not useful when it
comes to a very specialized task, such as aerospace design.

12



1.2. Background

Most CAs in aerospace are thought out to be used by Air Force pilots. Examples
of these assistants include CAMA [31], which is an intelligent assistant for ensuring
pilot’s situational awareness during a flight. A similar type of assistant has been
developed to help pilots ofmultipleUAVsystems by telling the pilotwhen something
strange might be happening in one of the missions [9].

Finally, DAPHNE [5] would be closer to a design CA in the sense that all of them
are thought out to help the systems engineer come up with a good design. To
reduce the cognitive load of systems engineers, one of the main objectives of the
tool in this thesis, is to serve as a design critic who offers recommendations of a
possible spacecraft bus design. In the future this could complement the Critic Agent
of Daphne, by giving feedback on a spacecraft design.

1.2.5 Rule Based Expert Systems

As mentioned in the motivation section 1.1, the back-end of the software, consists of
a rule based expert system. This choice was made because at the core of the Daphne
CA, sits VASSAR (Value Assessment of System Architectures), a model to assess the
scientific value of a system architecture, developed by Daniel Selva [35,36]. VASSAR
contains a rule-based expert system to model the knowledge-intensive components
of the problem. Thus, due to the experience of my thesis director in the field and
of the members of the Lab, we decided to develop the back-end of the Satellite
Design Assistant using a rule-based expert system to provide recommendations on
the design of a spacecraft bus.

An expert system is “a computer program designed to model the problem-solving
ability of a human expert” as told by John Durkin in [10]. In order to do that, an
expert system uses large bodies of heuristic – expert knowledge. In a rule-based
expert system (RBES), expert knowledge is encapsulated in the form of logical rules.
This is in opposition to other kinds of expert systems that primarily use different data
structures to store expert knowledge, such as frames in frame-based expert systems
(FBES).

In RBES, a logical rule is composed of a set of conditions in its left-hand side (LHS),
and a set of actions in its right-hand side (RHS). The actions in the RHS are to be
executed if the conditions in the LHS are all satisfied. An example of a logical rule
is the following: LHS: = “if the car won’t start”, RHS: =” then check the electrical
engine”. An RBES infers information from rules in one of two ways: forward
chaining, when logical rules are used from the data to the goal in a deductive
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process; backward-chaining, when the rules are applied working backwards from a
target goal, as explained by Buchanan & Shortliffe in [7].

RBES consist of three major elements: a fact database, a rule database, and an
inference engine. The fact database contains relevant pieces of information about the
specific problem at hand called facts. Information in facts is organized according to
predetermineddata structures similar toC structures and JavaBeans,withproperties
and values. These data structures are called templates in many RBES development
tools. Facts can be asserted, modified and retrieved from the database anytime. The
rule database contains a set of logical rules that contain the domain knowledge. The
LHS of these rules maymatch one or more facts in the workingmemory. The RHS of
these rules define the actions to be executed for each of thesematches, which typically
include asserting new facts, modifying the matching facts, performing calculations
or showing some information to the user.

The inference engine performs three tasks in an infinite loop: a) pattern matching
between the facts and the LHS of the rules in the working memory and creation of
activation records (also known as the conflict set); b) while there remain activation
records, select the next rule to execute, or fire (conflict resolution); c) execute the
selected rules’ RHS (deduction). Most current rule engines are based on the Rete
algorithm developed by Forgy in 1982 [14]. The Rete algorithm is faster than other
algorithms because it “remembers” prior activation records in a network in memory
called the Rete network. The Rete network is very efficient in speeding up the search
process because most of the time, the network does not change much between
iterations. Note that the improvement in computational time comes at the price to
increased use of memory.

CLIPS (C-language integration production system) is a public language to write
expert systems developed in 1985 at NASA Johnson Space Center as an alternative
to the proprietary ART*inference [33]. Ten years later in 1995, Dr Friedman-Hill
at Sandia National Labs developed an expert system shell in Java based on CLIPS,
especially tailored for RBES, called Jess [16]. As any other RBES, Jess deals with
rules and facts, and its inference engine is based on the Rete algorithm. CLIPS/ Jess
syntax is very similar to common LISP, one of the earliest programming languages
in artificial intelligence developed by Steele [40].

In Jess, the properties in templates are defined using the deftemplate command and
properties are listed using keywords slot (single element attributes) or multislot
(multiple element attributes). Rules are defined using the defrule command. A
fact is added into working memory, modified or removed using the assert, modify
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and retract commands respectively. Whenever the working memory is modified,
the Rete network is recalculated. Matching rules are fired in the order determined
by the Rete algorithm once the run command is sent. The general structure of the
definitions of a template, a fact, and a rule are provided in the following example.
For further information on the Jess language, a good overview can be found in [16].

Jess is the language used to write the rule based expert system of the Satellite Design
Assistant developed in this project. Furthermore, Jess is written in Java, which
facilitates the integration with other environment, such as Matlab, which will be
used to assess some physical models of the subsystems.

1.3 Approach

The objective of this project, as its titles states, is to design and develop the software
architecture for a Cognitive Assistant to assist humans in the high-level design of
a spacecraft bus.

To achieve this objective, the project has been developed inside a group (SEAK Lab,
at TexasA&M)which has beenworking during years in the development of cognitive
assistants to help humans in the design of complex aerospace systems. This means
that, whilemost of the design of the software architecture and subsystemmodels has
been developed from scratch, some parts used the work done by the group during
these past years.

The rest of this thesis will try to be a general explanation of the whole project and at
the same time a description of the parts of the work done by myself. It is organized
as follows: Chapter 2 is an overview of the whole system, both the back-end and
the front-end. Then, in Chapter 3 two use cases are presented where the assistant
could be useful. Finally, Chapter 4 wraps the whole project up while exposing the
limitations of the software and future work that could be done to improve it. An
appendix is added at the end with the source code.
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Chapter 2

Description of the System

This chapter describes the most important part of the work done during the devel-
opment of the project. It starts with an overview of the architecture of the system
and continues explaining more in detail both the front-end and back-end, taking a
closer look in the main part of the project, the Subsystem Expert System.

2.1 Architecture Overview

Figure 2.1: Flow diagram of the architecture of the Satellite Design As-
sistant

The Satellite Design Assistant is structured in 2 different layers which interact with
each other. At the top we have the different inputs the user can choose to introduce
the information of the design into the system. These inputs can be: an Excel file,
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containing the parameter and the value; a PDF file or raw text, containing a descrip-
tion of the satellite which is processed by a Natural Language Processing algorithm
to extract the relevant information; a Voice description of the design, which is pro-
cessed to text and sent to the parameter extractor as the text input and finally, the
user can also manually edit the parameters directly into the web interface.

Each time the web interface server detects a new parameter, it is added to the
database. When all the parameters of a specific subsystem are introduced into the
database, the user can evaluate this subsystem. When this request is sent to the
server, another module called “parameter selector” extracts the parameters needed
to evaluate the specific subsystem requested by the user and are sent to the subsystem
expert system.

Finally, the subsystem expert system evaluates the design and provides a series of
recommendations on the design described by the user. These recommendations are
sent to theweb interface and a Report Page is renderedwith the output of the system.

This chapter is organized from the bottomup: it startswith the Back-end (section 2.2),
explainingmore in detail the Parameter Database (section 2.2.1), the Subsystem Rule
Based Expert System (section 2.2.2, the QA System (section 2.2.3) and the physical
models developed for each subsystem (section 2.2.4). The chapter ends with the
Front-endWeb Interface (section 2.3), payingmore attention to the text inputmodule
(section 2.3.1), the file input module (section 2.3.2), the editing dashboard (section
2.3.3) and the reporting page (section 2.3.4). This order helps in understanding the
whole system better and also was the chronological order of the development.

2.2 Back-end

In this section, the different parts of the back-end of the system are explained. The
back-end does all the heavywork necessary to obtain the recommendations and send
them to the front-end and display them to the user. In order to achieve this goal,
the system uses different modules that will be explained in the following sections.
Firstly, the parameters are stored in a database, then the parameter selector makes a
list of the required parameters to evaluate a specific subsystem, this list is used by
the Expert System to evaluate the design and write the recommendations.
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2.2.1 Parameter Database

The back-end of the webpage is programmed using a Java framework to code the
server side of a webpage, called Spring Framework [32]. This framework makes the
process of writing the back-end of a webpage easier, by managing the dependencies
and has many tools that can be linked between them very easily. One of these tools
is the JPA Repository, which is basically a relational database. Its most compelling
feature is the ability to create repository implementations automatically, at runtime,
from a repository interface, using Java objects that you can use to implement other
features of the webpage.

In order to create a parameter database then, a JPARepositorywas created containing
Parameter objects. A Parameter object contained the following information:

• Parameter name: the name that appears in the webpage.

• Parameter ID: a unique number to differentiate the parameters.

• Slot name: the name that the parameter has inside the rule based expert system.

• Value: the value of the parameter, can either be numeric or not.

• Unit: the unit of the parameter in case it has.

To evaluate a specific subsystem, it is necessary to have all the parameters required
by the Rule Based Expert System. In order to achieve this, the front-end won’t let the
user evaluate a subsystem that hasmissingparameters in the database. Furthermore,
there are some subsystems that require parameters from other subsystems, in other
words, there are parameters that are used by more than one subsystem. To solve
this problem, there is a module that selects the parameters that the Expert System
requires to evaluate the subsystem that the user chose.

This is done by creating another table into the relational database. This table consists
of the following information:

• Subsystem Name: the name of the subsystem the user wants to evaluate.

• Parameters ID: list of the parameters necessary to evaluate this subsystem.

When a specific subsystem is requested by the user, the parameter selector looks up
the table for the list of IDs to select and creates a list with the Slot name and Value
of the selected parameters. This list is then sent to the Subsystem Rule Based Expert
System, who will evaluate the design and make the recommendations.
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2.2.2 Subsystem Rule Based Expert System

The mentioned list of parameters is received by the Subsystem Rule Based Expert
System and it is used in the following way:

Figure 2.2: Flowdiagram of the Rule Based Expert System, for a general
subsystem

Figure 2.2 shows the flow diagram of the mentioned module, the parameter list
is used as an input and the recommendations are the outputs. It is important to
mention here that this explanation is the general architecture of all the subsystems,
but each subsystem has its design rules andMatlab files. The physical model of each
subsystem is explained in section 2.2.4.

As mentioned, this module consists of a rule based expert system that has been
written in the JESS language (explained in section 1.2.5). The building blocks of
this language are facts and rules and, as consequence, the module consists of these
elements.

Each subsystem has a CHECK template and a DESIGNED template to use during
the evaluation:

20



2.2. Back-end

• The CHECK template contains the slots of the different parameters that a
specific subsystem requires. When the READ rules fire, they assert a CHECK
fact with the parameters available in the list.

• The DESIGNED template contains the same slots as the CHECK template.
However, some subsystems will save intermediate results in this fact, reason
why the DESIGNED template hasmore slots than the CHECK template. When
the SELECT rules fire, they take the parameters that will be used as inputs from
the CHECK fact and copy them into the DESIGNED fact.

When this process finishes, the result is 2 facts: the check fact containing the design
of the user, and the designed fact containing only the parameters that will be used
as inputs to design the specific subsystem.

To continue with the evaluation, the DESIGN rules will use the input information
from the DESIGNED fact plus some other facts depending on the subsystem with
other relevant information (i.e. the properties of the different types of solar cells in
the power subsystem, or the different types of coatings and insulators for the thermal
subsystem). Furthermore, there are some subsystems that also use Matlab files to
make some of the calculations. This choice was made because writing mathematical
models with Jess language can be sometimes quite hard to do. Moreover, Matlab
provides many powerful tools that can be used to improve the model designed by
the module (i.e. the Symbolic Toolbox).

Once this rules fire, the DESIGNED fact is completed with the slots that were empty,
the output of themodel, and can be comparedwith the same slots but in the CHECK
fact that contain the design of the user. Table 2.1 shows an example of these two
facts in the power subsystem.

Input slots contain the information that the design rules will use to generate the
outputs of each model. The slots that have the output tag are the slots filled with
the output of the design rules, but these slots in the CHECK fact are the information
provided by the user that will be compared with the same slots in the DESIGNED
fact to generate the recommendations. Finally, the auxiliary slots are the ones that
are generated by the design rules but are only useful for the model itself to perform
future calculations or to providemore detailed information in the recommendations.

The last step happenswhen the CHECK rules fire. These rules will compare the slots
that are tagged with the output type between the CHECK fact and the DESIGNED
fact. The rules, take both numbers and compare them with a 10% error, depending
on the result of the comparison one recommendation or another will be asserted.
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CHECK fact DESIGNED fact Slot type
orbit-type orbit-type inputs

orbit-RAAN orbit-RAAN
orbit-altitude orbit-altitude
payload-power payload-power

payload-peak-power payload-peak-power
lifetime lifetime

satellite-dry-mass satellite-dry-mass
solar-cell-type solar-cell-type
battery-type battery-type

planet planet
solar-array-area solar-array-area outputs
solar-array-mass solar-array-mass
battery-mass battery-mass
EPS-mass EPS-mass

orbit-period auxiliary
worst-sun-angle
fraction-sunlight

orbit-semimajor-axis
depth-of-discharge
satellite-EOL-power
satellite-BOL-power
battery-capacity

Table 2.1: Power subsystem CHECK and DESIGNED facts.

For example, in the power subsystem Electrical Power Subsystem (EPS) mass will be
compared between the CHECK fact (check-mass) and the DESIGNED (designed-mass)
fact. If the check-mass is higher than the designed-mass the system will recommend
to the user to reduce the mass of the Power subsystem, since it might be overdi-
mensioned. On the other hand, if the check-mass is lower than the designed-mass,
the system will recommend to the user to make the Power subsystem bigger since
it might be incapable of delivering the right amount of energy to the payload and
satellite bus. If both numbers are similar (10% error is used), the system will tell the
user that the design is correct.

These recommendation facts are used by the back-end of the webpage to render a
report page with the information provided by the system.

2.2.3 QA system - Failed approach

This project was started coding the Subsystem Expert System that it is currently
being explained. While doing this part it was important to have a module which
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would interact with the user. For this reason, a QA system was designed in the
back-end to ask the user for missing input parameters and modify the CHECK fact
with the answer the user gives. However, when the back-end was integrated with
the front-end web interface, it was decided to put this QA system directly into the
front-end. The final version of the software, as it will be explained in the front-end
section 2.3, tells the user when a parameter is missing in the Parameter Database
in the web interface, and does not have to wait until the CHECK facts are created,
during the evaluation of a subsystem. This allows the user to receive this feedback
without having to wait to evaluate the subsystem.

Although this module is not implemented in the final version of the project, I feel
that putting this section in the report is a reminder that research is not always a
straight path to success, and for every small step that tries to push forward the state
of the art there are a lot of attempts that simply utterly fail. Figure 2.3 describes the
mentioned module:

Figure 2.3: Flow diagram of the QA system

The module is written in Jess language, which means that it consists of a set of rules
and facts. The QUESTION facts contain the questions that the system will ask to
the user in case a parameter that has an input tag is missing. The INTERVIEW rules
fire when a slot in the CHECK fact is missing and is an input. These rules create
an ASK fact with the parameter ID. Then, the ASK rules fire when they match a
QUESTION fact and an ASK fact with the same ID, then they ask the user for the
required information and assert an ANSWER fact. Finally, the MODIFY rules fire
when there is an ANSWER fact with the same ID as the parameter missing in the
CHECK fact, then they modify the mentioned fact to save the information of the
ANSWER fact, provided by the user.
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2.2.4 Spacecraft Bus Physical Model

One of the most important parts of the project that was developed by the author is
the work explained in this section. In section 2.2.2, there is a general description of
the architecture of the expert system of each subsystem. At the core of thesemodules
there are the Design Rules that contain the physical models to obtain the outputs of
the model with the inputs provided by the user. The design rules are going to be
explained with more detail in this section. Some of this models were taken from
the VASSAR [36], but all of them were extended to use more detailed models and to
adapt them to the current project.

Each subsystem has a set of the mentioned design rules and Matlab files that take
the input parameters from the CHECK fact, obtain the output parameters and save
them into the DESIGNED fact. Then, the output values are compared to the values
given by the user and the recommendations are generated. Thus, each subsystem
will be explained following the same structure:

• Input and Output parameters description

• First-order equations used to model the subsystem

• Recommendations made to the user

It is also important to comment that not all the parameters are explained and listed
in the tables. For the sake of writing an understanding report, some parameters
have been grouped (i.e Orbit Parameters), and others that don’t provide relevant
information to the reader have been omitted (i.e the auxiliary parameters), which
only are useful to obtain intermediate results. All the parameters grouped as Orbit
Parameters are the following, and are used to obtain other auxiliary parameters such
asWorst sun angle, Orbit Period, Orbit Semimajor axis and the Fraction of Sunlight:

• Orbit Type: type of orbit based on the altitude and other parameters. The
options supported by design are: LEO (Low Earth Orbit), MEO (Medium
Earth Orbit), HEO (High Elliptical Orbit), SSO (Sun Synchronous Orbit) or
GEO (Geosynchronous Equatorial Orbit).

• Orbit Right Ascension of the Ascending Node (RAAN): angle from a reference
direction, called the origin of longitude, to the direction of the ascending node,
measured in a reference plane. The ascending node is the point where the orbit
of the object passes through the plane of reference. In our case the reference
direction is Earth’s equatorial plane and the and the First Point of Aries is the

24



2.2. Back-end

origin of longitude. The options supported by design are: DD, AM, Noon, PM,
N-A.

• Orbit Altitude [km]: distance from the surface of the Earth to the orbit for quasi
circular orbits.

• Orbit Eccentricity: parameter that determines the amount by which its orbit
around another body deviates from a perfect circle. A value of 0 is a circular
orbit, values between 0 and 1 form an elliptic orbit, 1 is a parabolic escape orbit,
and greater than 1 is a hyperbola.

• Orbit Inclination [º]: measures the tilt of an object’s orbit around a celestial body.
It is expressed as the angle between a reference plane (Earth’s equatorial plane)
and the orbital plane or axis of direction of the orbiting object.

• Planet: planet that the satellite orbits. At the current version of the software,
only Earth is available but it can be upgraded to support other planets from
the Solar System, as it is explained in Future Work (section 4.2).

2.2.4.1 Power Subsystem

The satellite power subsystem, also known as the Electric Power Subsystem (EPS),
is responsible for generating, storing, controlling and distributing electrical power
to all the other satellite subsystems and to the payload, in order to allow the whole
system to work. Thus, that subsystem consists basically of a power source, generally
solar panels to create electricity from sunlight, batteries that store energy during the
daylight period and supply energy during the eclipse period and some other compo-
nents such as regulators and converters. The power subsystem design process must
take into account beginning of life (BOL) and end of life (EOL) power requirements
since solar cells and batteries have limited lives. The total power needed to operate
the satellite and the power duty cycle will determine the area of solar cells and the
size and number of batteries and other equipment required.

Inputs and Outputs

Table 2.2 shows the inputs and outputs of the power model, and each of them is
explained below the table:
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Input Parameters Output Parameters
Orbit Parameters EPS mass [kg]
Payload Power [W] Solar array area [m2]

Payload Peak Power [W] Solar array mass [kg]
Lifetime [years] Battery Capacity [Wh]

Satellite Dry Mass [kg] Battery mass [kg]
Solar Cell Type
Battery Cell Type

Table 2.2: Power subsystem Table.

• Payload Power: The system needs to know the amount of power needed by
all the different subsystem in order to compute BOL (Beginning Of Lifetime)
and EOL (End Of Lifetime) power requirements, as well as the peak power to
consider worst case scenarios.

• Lifetime: As solar cells and batteries have limited lives, it is very important
to know the duration of the mission in order to take into account the time
degradation of these components from BOL to EOL.

• Satellite Dry Mass: This parameter is used in the modeling of the different
subsystems to calculate an extra percentage of mass proportional to spacecraft
total size, to consider the electronics, converters and other extra equipment.

• Solar Cell and Battery Type: The system supports different solar cells (GaAs, Si
or Multi- Junction) and batteries (NiH2, NiCd) used for the on board power
supply and storage. The system will use the user’s input to design the power
system but will also recommend a better choice of solar cells and batteries in
case the design can be optimized.

• EPSmass: The total mass of the power subsystem estimated by themodel. This
parameter is compared with the user’s designed and used to make recommen-
dations.

• Solar array area: The total area of solar cells required to power the satellite. In
order to givemore detailed recommendations to the user, this parameter is also
used to give feedback to the user.

• Battery Capacity: The total battery capacity required to power the satellite
during eclipse in orbit. The number of batteries is not considered because the
user can choose them depending on the distribution wanted in the spacecraft
bus, and would be a decision to be made later in the design.
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• Battery Mass: From the battery capacity and the battery type, one can obtain
the battery mass used to calculate the total EPS mass.

Description of the model

The following part describes the sizing estimation method used in the power sub-
system, explaining in detail all the different models and equations used all along the
process. All the equations and estimates used are explained in detail in chapter 11.4
of the SMAD book [43].

The first step is to estimate the amount of power required to operate the payload and
spacecraft bus, as we have the payload power as an input, we can use the following
approximation to estimate the total required power:

Pav g �
PPa yloadAv g

0.4
(2.1)

Ppeak �
PPa yloadPeak

0.4
(2.2)

Pda y � 0.8Pav g + 0.2Ppeak � Peclipse (2.3)

The power required by the spacecraft during eclipse and during daylight are ap-
proximate equal (as suggested by SMAD book) thus, with the eclipse and sunlight
time fractions and the efficiencies of the paths, we can compute the amount of power
PSA that the spacecraft must produce during daylight in order to power the whole
spacecraft for the whole orbit:

Tda y � Period ∗ FracSunli ght; Teclipse � Period − Tda y (2.4)

PSA �

Pe Te
Xe

+
PdTd
Xd

Td
(2.5)

where Pe and Pd are the satellite’s power requirements during eclipse and daylight,
and Te and Td are the lengths of these periods per orbit. The parameters Xe and Xd

correspond to the efficiency of the paths from the solar arrays through the batteries to
the individual loads and the path directly from the arrays to the loads, respectively.
For direct energy transfer or peak-power tracking (two common types of power
regulation) those parameters are between 0.6 and 0.65 for the Xe ; and between 0.8
and 0.85 for the Xd .
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Once we know the power that the spacecraft must produce, we need to determine
the amount of power that the solar array will be capable of producing per area
unit, in order to find out the solar array minimum surface. The solar cells degrade
during lifetime mission, that is way the area will be determined considering the
end-of-lifetime (EOL) power.

PBOL � P0Idcos(worstSunAn gle) (2.6)

PEOL � PBOL(1 − de g)li f e time (2.7)

where P0 is the power output per unit area with the Sun normal to the surface of
the cells, Id is the inherent degradation due to the design of assembled solar arrays,
which are less efficient than single cells because of assembling design inefficiencies,
Worst Sun Angle corresponds to the worst case scenario of the incidence of the Sun
into the panels and cos(WorstSunAn gle) is referred to as the cosine loss. The
parameter deg represents the % of degradation that the solar arrays suffer every
year because of thermal cycling in and out of eclipses, micrometeoroid strikes and
material outgassing. A standard value for Id is 0.77 and the values of P0 and deg
depend on the type of solar cell that the user chooses.

Using the information obtained from equations 2.5 and 2.7, it is then very simple
to estimate the solar array area required to produce the necessary power by a solar
array that will have a capability of producing enough power at the mission end of
life.

Asa �
PSA

PEOL
(2.8)

The mass of the solar array is estimated using the specific power (W/kg) of the
solar arrays, which can range from 14 to 47 W/kg at end of life. SMAD uses an
approximate value of 25 W/kg to estimate the mass of a solar array:

Masssa �
PSA

Speci f icPower
(2.9)

Next step is to size the energy storage part of the spacecraft. To do so, we need to
compute the necessary amount of energy stored within a single battery, also known
as the capacity (Cr) in Wh:

Cr �
PeTe

n(DOD)3600
(2.10)

where DOD corresponds to the Depth of discharge (estimated by the model based
on the type of orbit) and is the percentage of the total battery capacity removed
during a discharge period. Pe is the power required to store during eclipse time, Te
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is the eclipse fraction in seconds and n is the battery-to-load transmission efficiency
(frequently set to 0.9). Then, using the specific energy density of the battery cell
chosen by the user, we can estimate the mass of the battery pack, which the user can
divide in as many batteries required by the design:

Massbat �
Cr

ρe
(2.11)

Finally, to complete the analysis if the entire power subsystem, the mass of a power
control unit, a regulator and converter and the wiring must be computed as well.
Again, from the SMADbook [43], we can obtain an equation to estimate these values:

Massothers � 0.02PSA + 0.025PSA + 0.02SatelliteDr yMass (2.12)

MassEPS � MassSA + Massbat + Massothers (2.13)

Recommendations

Once all the parameters are calculated, the system will compare the following val-
ues between the CHECK fact (information given by the user) and the DESIGNED
fact (information calculated by the system), and give different recommendations
depending on which of them is higher or if they are equal, within an error of 10%:

• Solar array area: checks if the area of the solar arrays is correctly calculated.

• Battery mass: checks if the mass of the battery (without considering the
number of batteries, but the total capacity) is correct.

• EPS mass: checks if the total mass of the EPS is correct, considering the wiring,
converters and other parts.

2.2.4.2 Communications Subsystem

The satellite communications subsystem is responsible for allowing the spacecraft
to communicate uploading and downloading information to and from a ground
station or any other space vehicle. Thus, that subsystem consists basically of a
transmitter and a receiver (sometimes assembled into a unique component that we
call transceiver) plus an antenna. We will often prefer to have an omnidirection-
al/hemispheric antenna but, depending on the difficulty of closing the link budget
and, especially the data rate selected, sometimes it will be necessary to provide the
satellite with a more complex directional antenna which, to show another example
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of how coupled are the different satellite subsystems, will probably require a more
complex and consequently more expensive ADCS subsystem due to higher pointing
accuracy necessities.

The information flowing from the ground station to the spacecraft, also known as
the uplink or forward link, consists of commands and ranging tones and normally
needs a low data rate. On the other hand, the information flowing from spacecraft
to the ground station, also known as the downlink or return link, consists of mission
status telemetry, ranging tones and mainly data collected by the payload. As the
volume of information in the return link is usually much larger than in the forward
link, it requires higher data rate and, consequently, this side of the link is the one
that normally shapes and sizes the subsystem.

Inputs and Outputs

Table 2.3 shows the inputs and outputs of the communications model, and each of
them is explained below the table:

Input Parameters Output Parameters
Orbit Parameters Comms mass [kg]
Redundancy Antenna Gain [dB]

Transmitted Power [W] Antenna Type
Satellite Dry Mass [kg] Comms peak power [W]
Data per Day [bpd]

Band
Modulation

Number of Ground Stations
Ground Station information

Table 2.3: Communications subsystem Table.

• Redundancy: This parameter is associated to the reliability of the system in
case of hypothetical failure. Normally we will set this parameter to 1 for a
single-chain architecture or 2 in which every single component is assumed to
be duplicated.

• Transmitted power: The power, estimated by the user, sent through the antenna
to the ground stations.

• Satellite Dry Mass: Like in many other subsystems, the communications model
needs to know the total satellite dry mass (i.e., bus mass + payload mass) or
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at least a good approximation of it. In many spacecraft design models, this
parameter is used to calculate the wiring mass of the different subsystems, as
it can generally be well approximated by a percentage of the satellite dry mass.

• Data per day: The total number of bits of information that the downlink will
need to sent per day.

• Band: The system calculates the link budget equation using the band provide
by the user, but if an optimal solutionwith another band is available, the system
selects the optimal band (UHF, S-Band, XBand or K-Band).

• Modulation: The type ofmodulation (2,4,8,16-PSK) used for the communication
between spacecraft and ground station.

• Number of Ground Stations: Number of ground stations that the satellite will
communicate with. It can go from 1 to 4.

• Ground Station Information: The system considers four ground stations often
used by NASA missions, namely Wallops, White Sands, McMurdo and Solna.
The information used by the system consists of the frequencies of uplink and
downlink for the different bands that can be selected. Moreover, the system
uses the Orekit Library to calculate the total contact time of the satellite with
the ground system.

• Communications Mass: Output calculated by the system with total mass of the
subsystem.

• Communications Peak Power: Maximum power required to operate the commu-
nications subsystem, calculated based on the antenna gain and transmitted
power required.

• Antenna Gain: Gain of the antenna in dB.

• Antenna Type: The system considers three different kinds of antenna: Dipole,
Patch or Parabolic. The first two types will be generally used in links that
require low gains and use UHF or S-band, whereas parabolic antennas will
be chosen both for high gain requirements or when we use high frequency
(X-band or K-band).

Description of the model

The following part describes the sizing estimation method used in the communica-
tions subsystem, explaining in detail all the different models and equations used all

31



Chapter 2. Description of the System

along the process. All the equations and estimates used are explained in detail in
chapter 13 of the SMAD book [43].

The first step is calculating the data rate that the inputs chosen by the user require.
Using the Orekit Library [8] we can calculate the Total Access Time between the
spacecraft and the ground station facilities. The user will choose a number between
1 and 4 for the number of ground stations, and the model will assign which ground
stations will the spacecraft make contact with. This information is passed to a Java
Class which uses a method with the Orekit Library to obtain the Total Access Time.
This information together with the amount of data that the satellite must send to
ground every day (dpd) allows themodel to compute theminimumdata rate needed:

Rb[bps] �
dpd[bitsperda y]
AccessTime[s] (2.14)

The choice of modulation made by the user lets us check if the user has made any
mistake in its design. The modulation (M-PSK) essentially depends on the data
rate requirement obtained in equation 2.14. The maximum data rate that we can
obtain with a certain modulation scheme is driven by the spectral efficiency (γ) and
computed by the following equation:

Rbmax � γBW �
lo g2M

2
BW ≥ Rb (2.15)

where BW is the bandwidth chosen by the user. The data rate calculated in 2.14must
always be smaller than Rbmax .

Another limitation that the communications subsystem needs to comply is the Link
Budget equation. This equation is key to the communication link design since it
defines the relationship between wavelength (λ), data rate (Rb), transmitting an-
tenna gain (GT), transmitted power (PT), propagation path length (R), receiver noise
temperature (TR) and receiver antenna gain (GR):

Eb

N0
�

PT GT GRλ2

(4πR)2kTRRb
≥ Eb

N0

����
min

(2.16)

where k is Boltzmann constant.
Eb
N0

���
min

is the minimum energy per bit to noise power spectral density ratio, also
known as the "SNR per bit" is an important parameter in digital communications
or data transmission and it is defined by the modulation scheme chosen and the
bit error rate (BER) performance needed. Thus, the link budget equation lets us
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approximate the SNR per bit, which must always be bigger than the minimum SNR
per bit obtained from the modulation and BER. For a typical value of BER = 10−5,
and modulations of 2,4,8 and 16 - PSK respectively, we obtain a minimum SNR per
bit of:

Eb

N0

����
min

� [10.6 10.6 14 18.3] for a BER � 10−5

At this moment we have to limits for our communications subsystem, one imposed
to the data rate by the modulation and bandwidth; and another imposed to the
minimum SNR per bit by the modulation and bit error rate. However, there is a
third limit imposed by the physics of the communication link; the shannon limit. The
Shannon limit or Shannon capacity of a communications channel is the theoretical
maximum information transfer rate of the channel, for a particular noise level, and
is defined as follows:

Eb

N0
≥ 2η − 1

η
where η �

Rb

BW
(2.17)

With all the parameters imposed by the user and these equations, the model will
evaluate the user’s design and check if all of the three limits are complied. If any of
the limits is not true, then the systemwill tell the user which one is failing and make
a recommendation to change some of the input parameters.

If all of the three limits are met, then the systemwill proceed to evaluate the antenna
gain and type chosen by the user and try to find an optimal solution for the link
budget equation that defines the communication. The first step is to evaluate if the
gain of the antenna can be minimized, because an antenna with a lower gain will
have a simpler design and, as consequence, less cost and weight. Therefore, we will
calculate and try to minimize the margin that the SNR per bit has until it meets any
of the lower limits, either the shannon limit or the minimum SNR per bit:

Margin �
Eb

N0
− Eb

N0

����
min

(2.18)

In order to minimize this equation we will try to find if there exists any value for
the antenna gain that makes the margin equal to 4 dB (we leave a small margin as a
conservative measure). If there is any value that would minimize the margin, this
gain will be chosen by the model for the transceiver, and the system will find an
antenna type which meets this new requirement. The system will also recommend
the user to stay with the current margin and change other inputs such as the data
rate, the bandwidth or the modulation.

There is the possibility that evenwith an antenna gain of 0 dB, themarginwould still
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be positive. In this case, the system will recommend other options to the user such
as using a higher bandwidth or modulation, a higher data rate. The systemwill also
show the user a design with an antenna that has a gain of 0 dB and the respective
margin.

The following simplified code describes the model that this system uses to choose
the most suitable antenna type:

1 if Gain < 3 && Band == UHF

2 AntennaType='Dipole';

3 elseif (Gain<9) && Band == {UHF, Sband or Xband }

4 AntennaType='Patch';

5 else

6 AntennaType='Parabolic';

7 end

When the model has chosen an antenna gain and an antenna type it will go to the
next stepwhich is sizing the antenna. Each antenna type (Dipole, Patch or parabolic)
has a sizing model which defines its dimensions and weight. These models can be
found in the SMAD book [43]. For example, the diameter and mass of a parabolic
antenna can be estimated with the following equations:

Diameter � D �

√
GTλ2

π2e f f
(2.19)

Mass � ρπ · D2

4
·
(1 + 4β2)1.5 − 1

6β2 (1 + α) (2.20)

where e f f corresponds to the antenna efficiency, ρ to the material density, β to the
parabolic aspect ratio and α to the support to dish mass ratio.

Once the system has chosen a more optimal antenna gain and antenna type, the
next step consists in estimating the power and mass of the communications system.
From [19], the mass of these components is derived as a function of the transmitting
power (PT) following a simplified linear extrapolation of existing components. The
transmitter incorporates a TWTA (traveling wave tube amplifier) and the modeling
allows to have either only a transmitter or both a transmitter and amplifier. The
equations area the following:

Mass � Masstrans + Massamp + Masswirin g � (2.21)

� (0.008 PT
e f ftrans

+ 0.5) + (0.005 PT
e f famp

+ 2) + 0.01 · SatelliteDr yMass
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where e f ftrans = 0.1 and e f famp = 0.7 according to [1].

Then, the total mass of the communications subsystem is:

Masscomms � Massantenna + Masselectronics (2.22)

Another important output parameter from the communications system is the peak
power required by the subsystem to allow every single component to work. This
value is computed using the following equations, that can be found in the SMAD
book.

Powerpeak � PT · (1 +
1

e f f
) (2.23)

where e f f � max[0.45, 0.45 − 0.015 · (PT − 5)]

Recommendations

Once all the parameters are calculated, the system will compare the following val-
ues between the CHECK fact (information given by the user) and the DESIGNED
fact (information calculated by the system), and give different recommendations
depending on which of them is higher or if they are equal, within an error of 10%:

• Link budget equation: check if the calculated SNR per bit is higher than the
shannon limit and the minimum SNR per bit.

• Data rate :check if the data rate required by the user is less than the maximum
data rate.

• Margin Analysis :mentioned, the margin of the link budget equation can
be minimized, and this minimum can be 0 or be greater than zero. In this
recommendation, the system explains to the userwhich is its situation showing
the calculate margins and antenna gains, and possible actions to minimize the
margin without changing the gain, such as, changing the band or having a
higher data rate.

• Antenna analysis :the system shows to the user its current choice of antenna
and if it finds a possible design with an antenna of lower gain, the system
suggests to the user this more optimal design, and the corresponding TTC
mass and power.
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2.2.4.3 Thermal Control Subsystem

The thermal control subsystem or TCS is responsible of maintaining all spacecraft
and payload components and subsystems within their required temperature lim-
its for each mission phase. Temperature limits include a cold temperature which
the component must not go below and a hot temperature that it must not exceed.
Frequently, there are two limits defined in each end: the operational limits that the
component must remain within while operating and the survival limits that the com-
ponentmust remainwithin at all times, evenwhen not powered. Exceeding survival
temperature limits can result in permanent equipment damage as opposed to out of
tolerance performance when operational limits are exceeded.

Thermal control techniques are broadly divided into two categories. Passive thermal
control makes use of materials, coatings or surface finished (such as blankets or sec-
ond surface mirrors) to maintain temperature limits. Active thermal control, which is
generally more complex and expensive, maintains the temperature by some active
means, such as heaters or thermo-electric coolers. In general, low-cost thermal con-
trol systems are designed to keep spacecraft at the cool end of allowable temperature
ranges. Cooler components generally last longer, and this allows for system power
growth.

The design process for the thermal control system is very complex and can consider
physical models with very high-degree of precision like computational simulations
of the heat flow in the satellite. In this project, a simpler model is considered.
First, the heat inputs are characterized throughout the entire life of the mission.
The most important external great source will nearly always be the Sun, which
continuously provides 1367 W/m2 at the mean distance of the Earth from the Sun.
This input disappears whenever the spacecraft enters a period of eclipse during
its orbit. However, the Earth or other nearby central body serves as a moderating
thermal influence by radiating heat in the infrared.

As it will be explained afterwards, our model determined the radiator, insulator and
heater requirements considering a hot case, where the satellite is between the Sun
and the Earth during its period, and a cold case where the Earth is between the Sun
and the satellite (eclipse).
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Inputs and Outputs

Table 2.4 shows the inputs and outputs of the thermal control model, and each of
them is explained below the table:

Input Parameters Output Parameters
Orbit Parameters TCS mass [kg]

Satellite Dry Mass [kg] TCS power [W]
Satellite Dimensions [m] TCS type

Maximum Operational Temperature [ºC]
Minimum Operational Temperature [ºC]

Maximum internal heat [W]
Minimum internal heat [W]
Radiator surface material
Insulator surface material

Table 2.4: Thermal Control subsystem Table.

• Satellite Dimensions: Dimensions of the satellite in the following reference
frame: direction X (direction of the velocity vector of the satellite), direction Y
(normal to plane XZ) and direction Z (direction from the satellite’s center of
gravity to Earth’s center).

• Satellite Dry Mass: Like in many other subsystems, the thermal subsystem
model needs to know the dry mass of the satellite to compute the mass of
additional equipment like the heater pipes and others as a percentage of the
dry mass of the satellite.

• Temperature Range: The operational and survival ranges of the satellite’s com-
ponents. In order to simplify the model, the system sizes the subsystem with
the operational limits of the most restrictive component, which means that all
the other components will fall inside the range.

• Internal Heat: The heat released by the payload and other subsystems into the
spacecraft during normal operation. It is used as an input heat to the model.

• Radiator and Insulator surface materials: The name of the material used as a coat-
ing or surface finish for the radiator and insulator. This information contains
the emissivity and absorptivity of these materials.

• Number of Ground Stations: Number of ground stations that the satellite will
communicate with. It can go from 1 to 4.
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• TCS type: The system decides if the spacecraft requires a passive control system
or an active control system.

• TCS mass: The total mass of the thermal subsystem calculated by the model.

• TCS power: The total power that the heater requires calculated by the model.

Description of the model

The following part describes the sizing estimation method used in the thermal
control subsystem, explaining in detail all the different models and equations used
all along the process. All the equations and estimates used are explained in detail in
chapter 11.5 of the SMAD book [43].

The model starts assuming that the thermal control subsystem is passive, meaning
that there isn’t any heater, and then makes the corresponding calculations to see if
a heater is required. In that case, the system will change to active and estimate the
required power for the heater.

As mentioned, the first step consists of considering a hot case and a cold case and
determine if the heat equilibrium in the satellite is inside the limits. For the hot case,
the following assumptions are considered:

T � Tmax

Earth’s albedo � 38%

Qinternal � Qmax

Qinradiator � Qsun + Qinternal

Qininsulator � Qsun + Qalbedo + QIR

where it is assumed that the radiator is facing the Sunandhalf of the insulator’s area is
facing the Sunand theother half is facing theEarth. Tmax is themaximumoperational
temperature, Qinternal is the internal heat released by the payload and spacecraft bus,
Qsun is the heat absorbed from the Sun (Very Near Infrared Radiation), Qalbedo is the
heat absorbed from the Earth’s albedo, and the QIR is the infrared radiation absorbed
from the Earth.

In this step, we aim to find the radiator and insulator area required to achieve
equilibrium at the required temperature. It is assumed that the 90% of the satellite’s
surface is covered either with insulator or radiator material. Thus, we can write a
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system of 2 equations to determine both areas:
dq � |Qout −Qin | � 0

Ainsulator � 0.9 · TotalArea − Aradiator

(2.24)

where Qout and Qin depend only on the area variables and other parameters, and
can be estimated using the following equations, where Qout consists of radiation
heat fluxes and Qin consists of the absorbed heat fluxes described above.

Qout � Qradradiator + Qradinsulator

Qin � Qinradiator + Qininsulator

Nowwe know both the Insulator Area and Radiator Area that are required to be safe in
the hot case. Then, we evaluate the design in the cold case of the orbit, where we aim
to obtain the Temperature at which equilibrium is accomplished with the estimated
areas. The assumptions for the cold case are the following:

Qinternal � Qmin

Earth’s albedo � 23%

Qinradiator � Qinternal

Qininsulator � Qsun + Qalbedo + QIR

where it is assumed that the radiator is pointing to deep space and half of the
insulator’s area is facing Earth and the other half is facing deep space.

In the cold case, we aim to find the equilibrium temperature that is reached. Thus,
we want to solve the following equation:

dq � |Qout −Qin | � 0 (2.25)

where Qout and Qin depend only on the equilibrium temperature and other param-
eters, and can be estimated using the following equations, where Qout consists of
radiation heat fluxes and Qin consists of the absorbed heat fluxes described above.

Qout � Qradradiator + Qradinsulator

Qin � Qinradiator + Qininsulator
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Oncewe have estimated the temperature of the cold case, we can compare it with the
minimumoperational temperature of the spacecraft anddecide if a heater is required.
If the cold temperature is higher than the minimum temperature, a passive thermal
control subsystem would be possible. On the other hand, if the cold temperature is
lower, a heater will be required for those situations and thus, the TCS will be active.
In this case, we need to estimate the required power of the heater.

The active case, makes the same assumptions as the cold case, but the internal heat
is the unknown variable, and the temperature is an input:

T � Tmin

Earth’s albedo � 23%

Qinternal � Pheater

Qinradiator � Qsun + Qinternal

Qininsulator � Qsun + Qalbedo + QIR

and the equation we solve is the following:

dq � |Qout −Qin | � 0 (2.26)

where Qout and Qin depend only on unknown variable Qinternal � Pheater . As the
reader might notice, if the variable Qinternal is calculated using this method, it won’t
take into account the internal heat sources that come from the payload and other
subsystems. This is done that way because the heater is sized in aworst case scenario
were the payload and spacecraft bus are not powered and the only heat source is the
heater, in order to size it for an emergency scenario.

Once we have sized the TCS, we can estimate the mass of the subsystem using the
approximations explained in the SMAD book:

PowerTCS � Pheater (2.27)

MassTCS � Massinsulator + Masselectronics + Massradiator (2.28)

Massinsulator � 0.73 · Ainsulator

Masselectronics � 0.2

Massradiator � 3.3 · Aradiator
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Recommendations

Once all the parameters are calculated, the system will compare the following val-
ues between the CHECK fact (information given by the user) and the DESIGNED
fact (information calculated by the system), and give different recommendations
depending on which of them is higher or if they are equal, within an error of 10%:

• Heater power: checks if the system requires a heater, and the power of it.

• TCS type: whether the choice between active and passive is correctly done.

• TCS mass: checks the total mass of the TCS, considering other equipment such
as pipes and pumps.

2.2.4.4 Propulsion Subsystem

The function of the propulsion subsystem is to provide the necessary thrust to all the
increments of velocity, changes in orbit, or orbitmaintenance operations and attitude
control during the lifetime of the mission. Specifically, the model used in this project
for the propulsion subsystem computes all the deltaVs required during the life of
the mission and size the amount of propellant and mass of the propulsion system
based on this calculations. Thus, the model will evaluate different scenarios where
an increment of velocity is required, and as a consequence, the current subsystem
would be used to achieve the required thrust:

• Injection to orbit: The system computes the delta-V required for injection for
GEO orMEO assuming a transfer orbit with a perigee of 150km and an apogee
at the desired orbit.

• Overcome drag: The system computes the delta-V required to overcome drag
while in orbit, to maintain the altitude of the orbit.

• Attitude control: compute the amount of delta-V required by the ADCS subsys-
tem in order to maintain a specific pointing direction.

• End of mission: compute the amount of delta-V requried to put the satellite into
a graveyard orbit at the end of mission or to deorbit the satellite to burn it in
the atmosphere.
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Inputs and Outputs

Table 2.5 shows the inputs and outputs of the propulsion subsystem model, and
each of them is explained below the table:

Input Parameters Output Parameters
Orbit Parameters DeltaV [m/s]
ADCS control type Propulsion Mass [kg]

Propellant for orbit injection Satellite Wet Mass [kg]
Propellant for ADCS thrusters Satellite Dry Mass [kg]

Payload power [W] Propellant Mass [kg]
Satellite Dimensions [m]

Deorbiting Strategy

Table 2.5: Propulsion subsystem Table.

• ADCS control type: In order to compute the increment in delta-V due to attitude
control, the model uses the ADCS control type. If the control type is gravity
gradient, the attitude control subsystem won’t need any increment of delta-V,
and if it is a three axis control system, delta-V will be set to a positive value.

• Propellant: The type of propellant (solid, hydrazine or LH2) used by the
thrusters of the injection to orbit propeller and by the ADCS thrusters. This
choice determines the specific impulse of each thruster.

• Paylaod Power: The propulsion model needs to know the payload power or
at least a good approximation of it. In many spacecraft design models, this
parameter is used to estimate the wet mass of the satellite.

• Satellite Dimensions: Dimensions of the satellite in the following reference
frame: direction X (direction of the velocity vector of the satellite), direction Y
(normal to plane XZ) and direction Z (direction from the satellite’s center of
gravity to Earth’s center). This parameter is used to evaluate the drag that the
satellite sees.

• Deorbiting strategy: Type of deorbiting chosen for the end of the mission. It can
be either putting the satellite into a graveyard orbit or deorbit the satellite and
burn it in the atmoshpere.

• DeltaV: Total increment of velocity required during the whole lifetime of the
mission.
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• Propulsionmass: Totalmass of the thrusters andother equipement of thepropul-
sion subsystem.

• Satellite Wet Mass: Output obtained by the model by adding the satellite dry
mass and the propellant mass. Is the mass of the satellite at launch.

• Satellite Dry Mass: In the case of this subsystem, the satellite dry mass is an
output, and is estimated with DeWeck’s algorithm (explained later in this
section). This output is very useful to check if the satellite dry mass (input)
provided by the user in other subsystems is a good estimate or not.

• Propellant Mass: Mass of propellant required to achieve the calculated total
delta-V.

Description of the model

The following part describes the sizing estimation method used in the propulsion
subsystem, explaining in detail all the different models and equations used all along
the process. All the equations and estimates used are explained in detail in chapter
17 of the SMAD book [43].

The first step of the method consists of estimating de totalDeltaV that the spacecraft
will need along its lifetime. To do this, different cases were thrust is required have
been considered, and then they are all added together:

The Injection to Orbit DeltaV, estimates the delta-V requried for injection into a GEO
orMEO orbit, assuming a transfer orbit with a perifee of 150km and an apogee at the
desired orbit, as suggested in De Weck’s paper [39]. For LEO and SSO, no injection
is required. The equations used are the following:

∆Vin j � |Vorbit2 − Vorbit1 | (2.29)

where Vorbit is the orbtial velocity of an orbit with semimajor axis a and distance of
the satellite to the focus r and is defined by the following equation:

V �

√
µEarth ·

(
2
r
− 1

a

)
The Drag DeltaV, computes the delta-V required to overcome drag. The model
comes from De Weck’s paper [39], and estimates the parameter Hp , to later obtain
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the approximated ∆V :

Hp �
SemiMajor Axis · (1 − Eccentricity) − REarth

1000
[ m/s

year
] (2.30)

which is a model that first determines a parameter (Hp) based on the orbit geometry.
Then, De Weck proposes the following rule-based model to adapt it to the satellite
drag based dV

1 if Hp < 500

2 dV = 12;

3 elseif Hp < 600

4 dV =5;

5 elseif Hp < 1000

6 dV = 2;

7 else

8 dV = 0;

9 end

Last, the dV estimated (which is per year), is multiplied by the lifetime of themission
to obtain the total drag based dV.

∆Vdra g � dVdeWeck · Li f etime

The ADCS DeltaV computes the delta-V required for attitude control. It is estimated
using the following rule of DeWeck:

1 if ADCS = 'Three Axis'

2 dV = 20;

3 elseif ADCS = 'Gravity Gradient' or 'Spinner'

4 dV =0;

5 end

Lastly, the dV estimated (which is per year), is multiplied by the lifetime of the
mission to obtain the total ADCS based dV.

∆Vadcs � dVdeWeck · Li f etime

The last case where thrust could be used is for the end of mission disposal. The
satellite could be put into an orbit graveyard or could burn into the atmoshpere.
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Both methods require an increment of velocity, so first the model decides which
method is required based on the orbit type:

1 if orbit = 'GEO' or 'MEO'

2 deorbit = 'graveyard';

3 elseif orbit = 'LEO' or 'SSO'

4 deorbit = 'drag-based';

5 end

Then, the deltaVs are estimated. For the drag basedmethod, which calculates the ∆V
to go from the actual orbit to an orbit with the perigee at Earth’s surface. For the
graveyardmethod, the method computes the ∆V required for deorbiting the satellite
into an orbit with a preige raised by a certain amount. Basiclly, a similar procedure
as in equation 2.29 considering the desired orbits.

Lastly, the total ∆V is calculated adding all the partial results:

∆Vtotal � ∆Vadcs + ∆Vdeorbit + ∆Vdra g + ∆Vin jection (2.31)

The next step is sizing the propulsion system for the required∆V . Again, wewill use
the model proposed by De Weck, which uses the following algorithm to compute
the propellant mass and the satellite wet mass, then substracting the propellant from
the wet mass, we can obtain the dry mass of the satellite, which will be useful for
estimating the mass of the thrusters as a percentage of the drymass:

1 Wet_mass = 4.6*payload_power^0.73 + 140; %first estimate of

the wet mass to initialize the algorithm

2 error = 1000;

3 while error > 0.1

4 mass_prop = rocket_equation_mi_to_mp(dV_inj, Isp_inj,

Wet_mass) + rocket_equation_mi_to_mp(dV_rest,

Isp_rest , Wet_mass);

5 mw1 = 38*(0.14*Ppower + mass_prop)^0.51;

6 error = abs(wet_mass - mw1);

7 wet_mass = mw1;

8 end

which starts but calculating an initial estimate of the wet mass of the satellite based
on the payload power and then keeps iterating over the algorithm until the solution
converges and the error is low. To calculate the propellantmasses, the algorithmuses
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the rocket equation, which calculates the requried propellant mass for a propellant
with Isp, the required dV and the initial mass (wet mass). It can be noticed that
it is done with two different dV and two different Isp; that is because usually the
injection thrusters are different from the thrusters used in the ADCS, or the orbit
maintenance and also usually have different propellants.

When the algorithm converges, we have a good estiamte of the propellant mass of
the two types of propellants, the satellite’s wet mass and the satellite’s dry mass.
Then, an estimate found in the literature (SMAD), can be used to estimate the mass
of the thrusters:

Masspropulsion � Massthruster + Masspropellant (2.32)

Massthruster � 0.04 · DryMass

Recommendations

Once all the parameters are calculated, the system will compare the following val-
ues between the CHECK fact (information given by the user) and the DESIGNED
fact (information calculated by the system), and give different recommendations
depending on which of them is higher or if they are equal, within an error of 10%:

• Deorbiting strategy: checks if the choice between graveyrad or drag-based
deorbiting is correct.

• Dry mass: checks if the satelliet dry mass (which is an output in this subsys-
tem) is coherent with the required wet mass and propellant required by the
propulsion design.

• Propellant mass: checks if the user’s value for mass of propellant is coherent
with the calculations of the model. The wet mass is not required to be check
because it can be simply done by adding the drymass and the propellant mass.

• Propulsion mass: checks if the mass of the thrusters is correct.

2.2.4.5 ADCS Subsystem

The attitude determination and control subsystem (ADCS) stabilizes the vehicle and
orients it in desired directions during the mission despite the external distubrance
torques acting on it. This requires that the vehicle determine its attitude, using
sensors, and control it, using actuators. The ADCS often is tightly coupled to other
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subsystems on board, especially the propulsion subsystem. For this reason, and
because it’s very difficultl to size accurately the ADCS in the preliminary phase of
design, the model used in this thesis is very simple and qualitative, it’s probably the
most qualitative of all the subsystems. The model uses rules of thumb to design the
type of ADCS and the actuators used.

Any body in space is subject small but persistent disturbance torques (i.e. 10−4

Nm) from a variety of sources. These torques are categorized as cyclic, varying in
a sinusoidal manner during an orbit, or secular, accumulating with time, and not
averaging out over an orbit. These torques would quickly reorient the vehicle unless
resisted in some way. An ADCS system can resist these torques passively, by ex-
ploiting inherent inertia or magnetic properties to make the disturbances stabilizing
and their effects tolerable (i.e. gravity gradient), or actively, by sensing the resulting
motion and applying corrective torques (i.e. reaction wheels).

Conservation of vehicle angular momentum plays an important role in this subsys-
tem. Angularmomentum is conserved unless an external torque is applied, meaning
that external disturbances must be resisted by external control toruqes (i.e. thrusters
or magnetic torquers) or the resulting momentum buildupmust be stored internally
(i.e. by reaction wheels).

Inputs and Outputs

Table 2.6 shows the inputs and outputs of the ADCS model, and each of them is
explained below the table:

Input Parameters Output Parameters
Orbit Parameters ADCS mass [kg]
ADCS accuracy [º] ADCS control type

Satellite Dry Mass [kg] Slew control method
Moments of inertia [kg m2] Number of Reaction Wheels

Slew angle [º/s]
Satellite Dimensions [m]

Table 2.6: ADCS subsystem Table.

• ADCS control type: In order to compute the increment in delta-V due to attitude
control, the model uses the ADCS control type. If the control type is gravity
gradient, the attitude control subsystem won’t need any increment of delta-V,
and if it is a three axis control system, delta-V will be set to a positive value.
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• ADCS accuracy: Degrees of accuracy required to the ADCS. A high accuracy
(lower numeric value in degrees) means that the actuator needs to be more
precise when applying the torque because the satellite has to be able to move
more precisely.

• Satellite Dry Mass: Like in many other subsystems, the thermal subsystem
model needs to know the dry mass of the satellite to compute the mass of
additional equipement like the heater pipes and others as a percentage of the
dry mass of the satellite.

• Satellite Dimensions: Dimensions of the satellite in the following reference
frame: direction X (direction of the velocity vector of the satellite), direction Y
(normal to plane XZ) and direction Z (direction from the satellite’s center of
gravity to Earth’s center). This parameter is used to evaluate the drag that the
satellite sees.

• Moments of Inertia: They are determined within the same directions as the
dimensions.

• Slew angle: Rate of change in the pointing direction required to the ADCS. A
higher number means that the satellite needs to move faster from one pointing
direction to another. Thus, the ADCS will be sized differently.

• ADCS mass: Total mass of the sensors, actuators and other equipement of the
ADCS.

• ADCS control type: Typeof control systemused in theADCS. Themodel chooses
themost suitable systembased on the accuracy needed. The supported systems
are: gravity gradient, spinner and three-axis control system.

• Number of Reaction Wheels: In the case that the model decides that the most
suitable system is the three-axis control, which is the system in most modern
satellites, it will consider the number of reaction wheels, which need to be
equal to the number of body axis directions that want to be controlled plus
some number of backup wheel (usually there is one extra wheel in the most
restrictive body axis direction).

Description of the model

The following part describes the sizing estimation method used in the attitude
determination and control subsystem, explaining in detail all the different models
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and equations used all along the process. All the equations and estimates used are
explained in detail in chapter 11.1 of the SMAD book [43].

Themodel that sizes theADCS is probably themost qualitative of all the subsystems.
Maing decisions and accurate approximations of the parameters that define the
ADCS is a difficult task, and usually this subsystem is sized when more information
is fixed during the deisgn process. Despite that, our model tries to give as much
feedback as possible to the user regarding the choice of control system, the set of
sensors to be used and approximates themass of a three axisADCS,which is probably
the most common.

Firstly, the system chooses the slew control method to change the attitude of the
satellite based on the slew angle or angular velocity required by the user. The rules
used are the following:

1 if slew_angle = 0

2 slew_control = 'none';

3 elseif slew_angle < 0.5

4 slew_control = 'thrusters';

5 else

6 slew_control = 'two-force-thrusters';

7 end

where the difference between the two types are that two force thrusters are able to
regulate the amount of thrust to make changes in attitude faster.

Then, the type of ADCS is decided based on the accuracy required, using the follow-
ing set of rules:

1 if accuracy < 1

2 adcs_type = 'three-axis';

3 elseif accuracy < 5

4 adcs_type = 'spinner';

5 else

6 adcs_type = 'gravity-gradient';

7 end

where Gravity gradient is a passive technique which uses the inertial properties
of a vehicle to keep it pointed toward the Earth. This relies on the fact than an
elongated object in a gravity field tends to align its longitudinal axis through the
Earth’s center. This technique is used on simple spacecrafts which require not a
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lot of pointing accuracy. Spinner is a passive control technique in which the entire
spacecraft rotates so that its angular momentum vector remains approximately fixed
in inertial space. This systems employ the gyroscopic stability effect to passively
resist distrubance torques about two-axes. Three-axis refers to techniques where the
spacecraft is stabilized in 3 axes. They maneuver and can be stable and accurate,
depending on their sensors and actuators, but they are alsomore expensive andmore
complex. The control torques about the 3 axis systems come from combinations of
momentum wheels, reacion wheels, thrusters or magnetic torquers.

The next step consists on choosing a set of sensors that can determine the attitude of
the satellite based on the accuracy required by the designer. To accomplish this task,
our model sets the best possible sensor for every possible case using the following
rule:

1 if accuracy < 0.01

2 sensor = 'star-sensor';

3 elseif accuracy <0.25

4 sensor = 'horzion';

5 else

6 sensor = 'sun';

7 end

This information will be used to recommend a list of possible actions to the user, one
of them will be the best choice of sensors for the required accuracy.

Finally, themodel sizes theADCS for a three axis standarddesignof 4 reactionwheels
(one for redundancy). In case the ADCS doesn’t require a three-axis tecnhique and
spinner or gravity gradient are chosen by the model, they will be set an approximate
fixed mass of 1 kg as they are passive techniques that consist of simple designs
that can be accomplished with the shape of the satellite or a torque produced by
the launch system respectively. Therefore, to size a three-axis stabilized satellite we
need to compute all the disturbance torques that affect the spacecraft and size the
reaction wheels to provide the required counter-torque:

The disturbance torque induced by the gravity gradient of the spacecraft can be
computed as follows;

Tg �
3
2
· µEarth · 1

a3 · (Iz − Iy) · sin(2θ) (2.33)

where µEarth is the gravitational parameter of the Earth, a is the semimajor axis of
the orbit, Iz and Iy are the moments of inertia in the respective directions and θ is
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the maximum deviation of the Z-axis from local vertical in radians (or the maximum
slew-angle that will perform the satellite).

The next equation computes the aerodynamical disturbance torque, induced by the
small atmospheric density that is still present in orbit:

Taero �
1
2
· ρ(h)AV2Cd · (Cp − Cg) (2.34)

where ρ(h) is the density of the atmosphere as function of the altitude, A is the
surface area that sees the velocity, Cd is the drag coefficient, V the orbital velocity,
Cp the center of aerodynamic pressure and Cg the center of gravity.

The disturbance torque induced by the solar pressure is computed using the follow-
ing equation:

Tsp �
Fs

c
· As · (1 + q)cos(i) · (Csp − Cg) (2.35)

where Fs is the solar constant, 1367 W/m2, c is the speed of light, 3x108m/s, As is
the surface area, Cps is the location of the center of solar pressure, Cg is the center of
gravity, q is the reflectance factor (ranging from 0 to 1, we use 0.6), and i is the angle
of incidence of the Sun.

The last disturbance torque consider is the one induced by the magnetic field of the
Earth, and can be computed as follows:

Tm � D · 2M
R3 (2.36)

where D is the residual dipole of the vehicle in A·m2, M is the magnetic moment
of the Earth, 7.96x1015Tesla · m3 and R is the radius from the Earth’s center to the
spacecraft in m.

Once all the disturbances are computed, we use themaximumdisturbance as aworst
case scenario to size the reactionwheels. Firstly, we need to calculate themomentum
storage capacity that a reaction wheels needs to have to compensate for a permanent
sinusoidal distrubance torque that accumulates over 1/4 of the period:

h �
1√
2
· Tmax ·

1
4
· Period (2.37)

Then, we can estimate the mass of a reaction wheel from its momentum storage
capacity:

MRW �
3
2
· h0.6 (2.38)
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We can also estimate the mass of the sensors from its accuracy requirement. It is
based on data from SMAD chapter 10 page 327:

Masssensor � 10 · Acc−0.316 (2.39)

Then, we can compute the total mass of the ADCS, considering a standard design
with 4 reaction wheels and 3 sensors:

Massadcs � 4 ·MassRW + 3 ·Masssensor + 0.01 · DryMass (2.40)

To compute the power of the system, we can use the estimations from the SMAD
book, which suggest that sensor power can be neglected and the power of a reaction
wheel can be approximated by the following equation:

Poweradcs � 3 · PowerRW � 3 · (200 · T) (2.41)

where we use 3 reaction wheels here because the fourth woud only be used in case
one of the others fails, andT is themaximum torque that the reactionwheel can apply
and can be approximated as T � ωh. Where h is the system’s angular momentum,
and ω is the angular velocity required by the user (slew angle).

Recommendations

Once all the parameters are calculated, the system will compare the following val-
ues between the CHECK fact (information given by the user) and the DESIGNED
fact (information calculated by the system), and give different recommendations
depending on which of them is higher or if they are equal, within an error of 10%:

• Slew control system: Checks if the choice for the control of the slew angle is
correct, based on the slew rate.

• ADCS type: Based on the accuracy required, check if the system chosen by the
user would meet this requirement.

• Number of reaction wheels: checks the number of reaction wheels, consdier-
ing that there is always an extra one for redundancy.

• ADCS mass: checks the total mass of the ADCS, considering other equipment
such as sensors and wiring.

52



2.2. Back-end

• Report: Since this subsystemhas amore qualitativedesign, the systemexplains
to the user some of the critical design points of the deisgn such as which are
the best sensors to use and the problem of the saturation of reaction wheels.

2.2.4.6 Structure Subsystem

The structures subsystem mechanically supports all other spacecraft subsystems,
attaches the spacecraft to the launch vehicle, and provides for ordnance-activated
separation. The design must satisfy all strength and stiffness requirements of the
spacecraft and of its interface to the booster. The primary structure carries the space-
craft’s major loads and the secondary structure supports wire bundles, propellant
lines, nonstructural doors, and other components that may be folded during launch.

The launch vehicle is the most obvious source of structural requirements, dictating
the spacecraft’s weight, geometry, rigidity and strength. The launch vehicle, the
selected orbit, and upper stage determine the spacecraft’s allowable weight. The
launch-vehicle structure will determine the necessary rigidity and strength of the
structure through the natural frequencies that respond to forces from both internal
(engine oscillations) and external (aerodynamic effects) sources. The launch vehicle
contractor will list known natural frequencies for each launch vehicle and describes
associated axial, bending and lateral modes.

When designing a structure, we have to consider all the optional materials, types
of structures and methods of construction. By far the most commonly ised metal
for spacecraft structure is aluminium alloy. Alluminium is relatively lightweight,
strong, readily available, easy to machine and the raw material is cheap.

The structuralmodel of this thesis considers different types ofAlluminiumalloys and
makes a design decision between a monocoque structure and a stringers structure.
Monocoque structures, which are panels and shells without stiffening members, are
used only if applied and reacted loads are spread out rather than concentrades.
In case that is necessary to increase the buckling strength, the model will opt for
a semimonocoque structure, which uses stringers to stiffen the primary structure.
Stringers are longitudinal members that accept more concentrated loads and spread
them into the skin.
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Inputs and Outputs

Table 2.7 shows the inputs and outputs of the structure model, and each of them is
explained below the table:

Input Parameters Output Parameters
Orbit Parameters Structural Mass [kg]

Satellite Wet Mass [kg] Structure type
Satellite Length [m]

Satellite Maximum Diameter [m]
Axial Load Factor
Lateral Load Factor
Bending Load Factor

Axial Natural Frequency [Hz]
Lateral Natural Frequency [Hz]

Structure Material
Solar array area [m2]
Solar array mass [kg]

Number of Solar Arrays

Table 2.7: Structure subsystem Table.

• Satellite Wet Mass: In order to compute the effects of the launcher into the
structure, the model has to know the mass of the satellite at launch.

• Load Factors: A multiple of weight on Earth, representing the force of inertia
that resists acceleration. The load factor applies in the direction opposite that
of the acceleration.

• Factors of safety: These are not an input parameter because their values are
hardcoded into the model. The usual values used are 1.1 for the Yield Safety
Factor and 1.25 for the Ultimate Safety Factor. They are the factors apploed to
the limit load to obtain a design with lower chances of failure.

• Natural Frequencies: The frequency at which a system tends to oscillate in
the absence of any driving or damping force. The axial and lateral natural
frequencies are the ones that respond to the internal and external forces of
the launch-vehicle system. This parameter is always provided by choice of
launcher.
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• Satellite Dimensions: Dimensions of the satellite in the following reference
frame: the length corresponds to the vertical longitude of the satellite along
the direction of launch, and the diameter to the maximum transversal distance
inside the fairing, when the satellite has all its components folded.

• Structure material: The material from which the structure is made of. This pa-
rameter holds the informatoin of thematerial relative to the poisson coefficient,
the young modulus, the density, the ultimate strength and the yield strength.
The available materials are: Aluminium (Al7075), Steel (17-4PH), Magnesium
(AZ31B) and Titanium (Ti-6Al-4V).

• Solar array Information: In order to size the secondary structure that holds the
solar arrays, the model needs informaiton about the mass and area of the solar
arrays, aswell as the amount of panels that are distributed around the structure.

• Structuremass: Totalmass of the primary structure and the secondary structure,
dimensioned to hold the solar arrays during launch.

• Structure Type: The model chooses the optimal design between a monocoque
structure and a semimonocoque structure with stringers which accepts a higher
buckling load in expense of more weight.

Description of the model

The following part describes the sizing estimation method used in the structure
subsystem, explaining in detail all the different models and equations used all along
the process. All the equations and estimates used are explained in detail in chapter
11.6 of the SMAD book [43].

As mentioned, the model will choose between a monocoque design or a semimono-
coque design, based on the one that, after sizing it for standing the launch loads,
wights less. Therefore, the model starts assuming amonocoque design and sizing it.
In order to do this, the shape of themain structure is approximated to a cylinderwith
uniform thickness. Then, we will size the thickness of it for different restrictions and
use the most restrictive design (the maximum thickness).

Axial Rigidity: for axial rigidity, we can use the following equation to calculate the
cross-sectional area of the structure, that meets the natural frequency requirements:

fnat � 0.25
√

AE
mL

(2.42)
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where E is the Young Modulus, m is the mass of the satellite and L its longitude in
the vertical direction of the launcher. Then, from this first equationwe can obtain the
area, A, and calculate the thickness using the cylindrical shape: A � 2πRt1, where
t1 is our first thickness.

Then, for lateral rigidity, we use the following equation to estimate the thickness that
meets the lateral natural frequency requirements:

fnat � 0.56
√

EI
mL3 (2.43)

where we obtain I, the cylinder area moment of inertia, and the required thickness
can be calculated using the definition of the area moment of inertia for a cylinder:
I � πR3t2.

The next step is calculating the applied and equivalent axial loads. By mulitplying
the spacecraftweight by the load factor, we canderive the limit ormaximumexpected
loads:

Axial Load � m · g · LFaxial

Lateral Load � m · g · LFlateral

Bending Load � m · g · L
2 · LFbendin g

Then, we can estimate the equivaent axial load using:

Peq � Paxial +
2M
R

(2.44)

where M is the Bending Load and R is the radius of the cylinder. Finally, we can
multiply this limit load by the ultimate factor of safety to obtain the ultimate load,
and by the yield fator of safety, to obtain the yield strength:

Ultimate Load � Peq · 1.25

Yield Load � Peq · 1.1

Now, we can size for tensile and yield strength, using thematerial’s allowable tensile
(Ftu) and yield (Ft y) strengths, and using the equation for axial stress, σ � P/A:

t3 �
Ultimate Load

2πRFtu
(2.45)
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t4 �
Yield Load

2πRFt y
(2.46)

The last step, is sizing the cylinder for stability (compressive strength) or buckling.
We first take the most restrictive thickness calculated until now, by using the max-
imum of [t1, t2, t3, t4]. Then, we can estimate the critical buckling load using the
following eqautions:

φ �
1
16

√
R
t

γ � 1 − 0.9 · (1 − e−φ)
σcr � 0.6γ · Et

R (2.47)

Pcr � A · σcr (2.48)

The next step, is checking if the ultimate load applied to the structure is greater than
the critical buckling load. To do this, structural integrity is often shown in terms of
the margin of safety (MS), defined as

MS �
Allowable Load or Stress
Applied Load or Stress

− 1 (2.49)

and must be greater than or equal to zero. If this is not the case, we will have to
make the structure thicker, to meet the buckling restriction. The model does this
using the following piece of code which iterates the model until finding a thickness
which makes de margin of safety (MS) equal to zero:

1 while MS < 0

2 tnew = t + 5e-5; %we make the thickness bigger

3 phi = 1/16*((D/2)/t_new)^0.5;

4 gamma = 1 - 0.901*(1 - exp(-phi));

5 sigma_cr = 0.6*gamma*E*t_new/(D/2); % critical buckling

stress

6 A = 2*pi*(D/2)*t_new; %area new

7 Pcr = A*sigma_cr; %Critical Buckling Load

8 MS = Pcr/UltimateLoad -1; % if MS < 0, increase thickness

9 t = t_new;

10 end

Finally,when the code converges,we canestimate the totalmassof themain structure:

Massmonocoque � ρ · 2πRtL; (2.50)
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The secondpart consists of sizing for a semimonocoque structure. Supposewe stiffen
the cylinder with 12 longitudinal members, caled stringers, and 11 circumferential
rings, or frames. With the following code, we can obtain the distance of each stringer
to the netural axis of the structure:

1 s = 12; %number of stringers
2 bays = 10; %number of separations of the cylinder (bays)

3 f = bays + 1; %number of frames
4 theta = 360/s; %angle of separation between stringers

5 d = []; %distance from neutral axis to stringer
6 for i = 1:s

7 d(i) = (D/2)*abs(sin(pi/180*theta*(i-1)));

8 end

Then, we start assigning a minimum thickness to the skin of 0.127 cm which is a
result from the SMAD book that is adequate to withstand the acoustic noise. First,
we must choose whether to design the skin to help sustain load or whether to allow
it to buckle, forcing the stiffeners to take on more of the burden. In our model, we
will design the skin not to buckle, as is usually done when performing preliminary
sizing analysis.

Again, we will first size for stiffness of the structure. Thus, if our chosen thickness
of 0.127 cm is smaller than the required thickness, t1, calculated before for axial
stiffness, we will change the thickness for t1. Then we size for the bending rigidity
by calculating the required area moment of inertia, Iskin , of the cylinder’s skin:

Iskin � πR3t

Thus, we can calculate the contribution to the total inerta, I, calculated in the first
part (remains constant), of the 12 stringers:

Istrin gers � I − Iskin

and we can calculate the I of the 12 stringers in the cylinder using the parallel axis
theorem, Ixx �

∑(Icm + Ad2). We can ignore the Icm because it will be very small
compared to the other term. Therefore, the I of the stringer system is a function of
stringer cross-sectional area, A, and d, the distance from the cylinder’s neutral axis,
calculated before.
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The next step is considering panel stability, which is done considering the following
equation to determine the compressive buckling stress for the skin panel:

σcr �
kπ2E

12(1 − ν2) ·
( t

b

)2
(2.51)

where k � 55, from Fig. 11-35 of the SMAD book, ν is Poisson’s ratio and b is the
width of the panels. The buckling load, Pcr � σcrA, lets us calculate the margin of
safety MS, for this design:

MS �
Allowable Load or Stress
Applied Load or Stress

− 1

Again, we must iterate the model like we did with the monocoque design, until we
find a thickness that makes the MS greater or equal than zero. Finally, we estimate
the mass of the stringers design as follows:

Massstrin gers � (Askin + Astrin gers)Lρ · 1.25 (2.52)

where a 25% of extra mass is added to count for the ring frames fasteners. The last
step is to choose one of the designs, this is simply done by choosing the one that
weights less:

Massmian � min[Massstrin gers ,Massmonocoque] (2.53)

Lastly, our model also makes an approximation of the mass of an important sec-
ondary structure which is present in mostly all satellite’s, the mass of the solar array
structure. Its function is to hold the solar arrays during the whole mission, but
specially during launch, where the highest loads are applied to the spacecraft.

The sizing process is the same as it was done with the monocoque and, therefore,
won’t be explained again. We first size for axial and lateral rigidity to meet the
natural frequencies requirements. Then we calculate the equivalent axial loads and
size for the tnesile and yield strength. Finally, themost restrictive thickness is chosen
(the highest), and the mass is estimated as follows:

MassSAstruc � numberSAρ ·Width · Len gth · t (2.54)

The only differences is that the natural frequencies are doubled from the ones of the
main structure, in order to make this secondary structure uncoupled from the main
one, and dynamically stable. Also, the code to calculate the dimensions of the solar
array panel is the following:
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1 SA_unit_area = SA_area/number_SA;

2 SA_mass = SA_mass_total/number_SA; %mass of 1 solar array

3 l = 10; %slenderness ratio of individual solar array (length/
wide)

4 width = (SA_unit_area/l)^0.5;

5 length = SA_unit_area/width;

where the solar array mass, solar array area and number of solar arrays are inputs
of the user. Obviously, the mass of the whole structure will be the sum of the main
and secondary structure:

Massstruc � MassSAstruc + Massmain (2.55)

Recommendations

Once all the parameters are calculated, the system will compare the following val-
ues between the CHECK fact (information given by the user) and the DESIGNED
fact (information calculated by the system), and give different recommendations
depending on which of them is higher or if they are equal, within an error of 10%:

• Structure mass: takes into account main structure and solar array structure.

• Structure type: check whether the choice between monocoque or semimono-
coque is correctly done.

2.2.4.7 Launcher Subsystem

The launch process can severly constrain spacecraft design. Primary restrictions
are the launch vehicle’s lift capability and the environment to which it subjects
the satellite during ascent. A launch system consists of a basic launch vehicle
incorporating one or more stages and an infrastructure for ground support. It
increments the velocity and altitude of the spacecraft to place it in orbit, while
creaing a severe ascent environment, and protects the spacecraft during the process.
Ultimately, it places the payload into the desired orbit, or into a transfer orbit, with
a functional spacecraft attitude.

The model of this subsystem consists of two parts. The first one, the performance
evaluator, estimates the mass that the launcher chosen by the user is capable of
putting into the required orbit. The second, the fairing evaluator, checks if the
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satellite (when all the components are folded), fits into the space designed to it in
the launcher system. To accomplish this, the model uses a database of launcher with
information on its fairing dimensions, and performance capabilities.

Inputs and Outputs

Table 2.8 shows the inputs and outputs of the launcher model, and each of them is
explained below the table:

Input Parameters Output Parameters
Orbit Parameters Launcher Performance

Satellite Wet Mass [kg] Fairing fitting
Satellite Dimensions [m]

Launcher System

Table 2.8: Launcher subsystem Table.

• Satellite Wet Mass: The mass of the spacecraft at launch.

• Satellite Dimensions: Dimensions of the satellite in the following reference
frame: the length corresponds to the vertical longitude of the satellite along
the direction of launch, and the diameter to the maximum transversal distance
inside the fairing, when the satellite has all its components folded.

• Launcher system: The model contains a list of launchers and information of
their performance (weight that they can put into orbit) as function of the type
of orbit and altitude. Information about the dimensions of the fairing is also
provided. The launchers that the system supports are: Ariane5 ESCA, Soyuz,
Vega, Delta 7320, Delta 7420, Delta 7920, Taurus XL and Minotaur IV.

• Launcher performance: Mass that can be put into a specific type of orbit and
altitude.

• Fairing fitting: The model checks if the length and the maximum horizontal
distance, when the satellite has all its components folded, are smaller than the
fairing dimensions.

Description of the model

The following part describes the sizing estimation method used in the launcher
subsystem, explaining in detail all the different models and equations used all along
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the process. All the equations and estimates used are explained in detail in chapter
18 of the SMAD book [43].

In this specific subsystem, the rule basedmodel will check if the satellite dimensions
fit into the launcher system selected by the user and check if the launcher is capable
of putting the satellite’s wet mass into the desired orbit. So basiclly, the system
will look up the diameter and height of the launcher in a database and check if the
satellite’s dimensions are smaller than those limits. If they aren’t the system will
recommend to look for another launcher.

Secondly, for the performance, the launcher database contains the coefficients of
second degree polynomial that estimates the mass that the satellite is capable of
putting into a specific type of orbit and altitude. For example, for the Delta 7320
launcher system, the polynomial for LEO is:

Mass � 2187h2 − 0.53125h + 4.06 · 10−5

where h is the altitude of the orbit. The information of this database is obtained
from VASSAR [36].

Recommendations

Once all the parameters are calculated, the system will compare the following val-
ues between the CHECK fact (information given by the user) and the DESIGNED
fact (information calculated by the system), and give different recommendations
depending on which of them is higher or if they are equal, within an error of 10%:

• Launcher performance: check if the launcher has the capability to put the
mass of the satellite into the required orbit altitude.

• Fairing dimensions: check if the satellite (when folded down) fits into the
fairing of the satellite.

2.3 Front-end Web Interface

As it was described in the overview of this chapter, the Satellite Design Assistant
has a web interface to act as a front-end for the user. In this section, the different
parts and functionalities of the website will be explained. The server-side of the
web interface is also considered to be in this part, as it works independently of the
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back-end rule-based expert system. Only when the user wants to evaluate a specific
subsystem, the server side of the webpage calls the backend of the system.

The back-end of the webpage was developed using the Spring Framework [32].
Spring makes it easy to create Java enterprise applications. It provides everything
you need to embrace the Java language in an enterprise environment, with support
for Groovy and Kotlin as alternative languages on the JVM, and with the flexibility
to create many kinds of architectures depending on an application’s needs. Spring
manages all the dependencies required by the project, and made easier to connect
the server side of the webpage with our rule-based expert system written in Jess,
which is written in Java. On the other side, all the front end has been developed
using HTML, CSS (Bootsratp library [6]), and JavaScript (Jquery library [41]).

The next sections explain the different funcionalities of the webpage, starting with
the ways to input the user’s design information and editing it, and finishing with
the report page where the recommendations are displayed.

2.3.1 Voice/ Text Input

Figure 2.4 shows the main ways to input information into the system. Specifically,
this section is going to explain the first input tag, at the top of the webpage. The user
can write any sentence explaining the design, or use the voice recognition button to
speak to it.

Figure 2.4: View of the top of the webpage.

If the user decides to write a sentence explaining a specific parameter (i.e. The
satellite has a dry mass of 200 kg.), the text will be sent to a python script which uses
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the Natural Language Processing (NLP) library Spacy [12], to extract any parameter
of the database and save it. The user can also talk to the webpage, by activating the
voice recognition tool. In this case, the webpage will transform the speech into text
using the SpeechKit library [?], which writes what the user has said into the input
bar. Then, the user can edit the text if it was not correctly interpreted and submit
it, calling again the same python script which will detect any parameters and their
values.

The python script has been designed assuming sentences will have simple structures
and follows these steps to extract the parameter names and their values:

1. Syntax detector: Firstly, a function divides the text into sentences, in case there
is more than one sentence as an input and process them separately. Then, the
script assigns a syntac type to each sentence, meaning that it will detect if there
is a conjunction in it or is a simple sentence. If the sentence is a conjunction,
the script will look for 2 or 3 parameters inside a same sentence and, on the
other hand, if the sentence has a simpler structure (e.g. The EPS mass is 70 kg
or The altitude of the orbit is 600 km.), the script will only look for one parameter.

2. Parameter detector: Secondly, for each function, the library used (Scapy), lets
you detect the parts of speech in a sentence, whether a word is a verb or a noun
and their function in the sentence, whether its the subject or the object. Then,
it look for the subject of the sentence and attaches adjectives and nouns that
complement the subject to build the parameter name. In the case that there is
a conjunction and, as consequence, more than one parameter, the script will
look for the subjects of the subsentences in the conjunction.

3. Value detector: Then, for each parameter detected, the script will look for
an attribute of that subject, that can be either numerical, like in most cases, or
non-numerical, for some of the parameters.

4. Assigning a parameter from the Database: The Difflib python library is used
to compare the string detected by the python module with the real parameter
names on the database. The parameter that results more similar to the words
detected by the python script, will have assigned the detected value and saved
into the database. Figure 2.5 showw the dashboard of the webpage, where
values saved in the database are shown in bold, when it detects the parameters
of the sentence: The satellite has a dry mass of 200 kg and an orbit altitude of 600
km.
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Figure 2.5: Parameters that are detected are directly saved into the
database and shown in the dashboard.

5. Message: Lastly, a message is displayed in the webpage with the parameter
and value detected, or a message saying that no parameters were detected if
it’s the case. Figure 2.6 shows an example of the message displayed in the
webpage:

Figure 2.6: Output message when parameters are saved.

2.3.2 File Input

Another option to input information into the system is by uploading files. This
optionwas implemented because text and voice recognitionwork better by detecting
parameters one by one in simple sentences. If the user wants to upload a full design
withmost of theparameters at once, it ismore efficient to do it throughfile uploading.
Figure 2.7 shows the view of this part of the webpage:

Figure 2.7: File upload section of the webpage.

As can be seen, the user can upload Excel Files or PDF files:
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• PDF File: Many times designs are described in PDF files such as in PDR
(Preliminary Design Review) or SRR (Systems Requirements Review). Thus, it
was important to implement a tool like this one, where PDF files can be read
to extract the relevant parameters. At this point, the tool is not very accurate
because it only reads the raw text of the PDF, divide it into sentences and send
the sentences to the python script which detects the parameters from the text
input described in section 2.3.1. Therefore, the tool works better when text is
preprocessed and cleaned, but it can be a first step to a further development of
this useful tool.

• Excel File: The simplest and most effective option to upload parameters is
through an Excel File. The user can download a template with a list of all the
parameters in the database and fill it with its design. By doing so, the user
can be sure that the parameters will be correctly detected, and there won’t be
detection errors like in the case of PDF files.

2.3.3 Editing Dashboard

The dashboard is the main part of the webpage. There, all the parameters in the
database are listed in their respective subsystem, plus an extra list of general infor-
mation that is common to all the subsystems. When a value is saved into a specific
parameter of the database, it appears next to its respective parameter showing the
user which of them are empty. Figures 2.8 and 2.9 show a split view of all the
dashboard.

Figure 2.8: Top view of the dashboard to edit parameters in the web-
page.

66



2.3. Front-end Web Interface

Figure 2.9: Bottom view of the dashboard to edit parameters in the
webpage.

The functionalities of the dasboard are:

• Parameter editing: The main function of the dashboard is showing the values
of the parameters of the database. It may happen that the text recognition
module, incorrectly reads a sentence and saves a wrong value for some param-
eter. In the dashboard, the user can see the error and edit it, by writing the
correct value for a parameter and then clicking the save button, which updates
the parameter database with the information written in the dashboard. Figure
?? shows an example of how the webpage looks when parameters are saved
into the database.

Figure 2.10: View of some parameters being saved into the database.
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• Clear All: This button at the top of the dashboard, deletes all the values of the
parameters in the database to erase all present information.

• Evaluate Design: This button is usedwhen all the parameters have their values
saved and the userwants to evaluate a specific subsystem, or all at once if its the
case. If a parameter is empty and is required for the subsystembeing evaluated,
amessagewill appear saying that there is somemissing information. As shown
in Figure 2.11, the user can selectwhich subsystem to evaluate and the selection
will appear next to the button:

Figure 2.11: View of the dropdown menu to evaluate a specific subsys-
tem.

As mentioned in this section, when a user clicks the evaluate button for a specific
subsystem, the server side of the webpage collects all the parameters required to
evaluate the subsystem in the rule-based expert system, and sends them to the back-
end of the system. This is an important step, because there can be examples where
a subsystem needs information of other subsystems; for example, to evaluate the
propulsion subsystem, the model also needs information on the ADCS control type,
but in the webpage, the user doesn’t see them in the same list but in different blocks.

To solve this possible problem, the server side of the webpage knows the parameters
required to evaluate each model, that are different from the simplified lists showed
in the webpage. If a parameter is missing, the webpage will show a message to the
user, as shown in Figure 2.12:

Lastly, at the bottom of the dashboard, the user can find a guide to help with the
inputs that can be put into themodel. Some parameters only allow a discrete number
of options that are listed in this help part:

68



2.3. Front-end Web Interface

Figure 2.12: View of the message displayed when there is a required
parameter empty.

Figure 2.13: Guide to help the user to use the system, at the bottom of
the page.

2.3.4 Report

The report is a new page where all the recommendations are shown to the user.
When one or more subsystems are evaluated by the back-end, it sends a list of
recommendations for each of the subsystems, and they are rendered in the page
with a small icon next to them to differentiate the positive from the negative ones,
as shown in Figures 2.14, 2.15 and 2.16 1:

1this example was only to show a view of the report page, the numbers may not be coherent.
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Figure 2.14: View of the report page: Launcher and Power subsystems.

Figure 2.15: View of the report page: ADCS and Propulsion subsys-
tems.

Figure 2.16: View of the report page: Communications, Thermal and
Structures subsystems.
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Use Case

This chapter explains the possible use cases where the described tool could be used
in a practical way. The first section shows how the satellite design assistant could
be used in a concurrent design facility (CDF), and the second section explains how
professors could use the tool to automatically grade projects from students. This
section also includes two examples where the assistant was used to receive feedback
of two different satellites: a CubeSat, which was designed by students in a class
project and FireSat, a real satellite that uses the SMAD book as example [43].

3.1 Concurrent Design Facilities

Nowadays, large space organizations such as NASA and ESA have design facilities
where engineers speed up the mission design process by rapidly assessing the cost,
value, feasibility and risk of multiple mission concepts, as explained in [4]. Further-
more, when the mission concept is fixed, it is a work methodology used to speed
up the design process by working with all the subsystem engineers together in one
room. This work methodology requires to gather all the information of the different
subsystems in one place and put in common many design decisions that affect the
overall performance of the satellite.

The satellite design assistant described in this project could be a useful tool to work
with in these design sessions. All the high-level information of the spacecraft would
be in one place and it could be introduced into the system in many ways (voice, text,
files, or edit manually). Then, engineers could iterate the design in real time and
receive high-level recommendations of the current option they are working with.
Another advantage of working with the tool would be that the design could be
shared to all participants and they could edit the dashboard in real time, making it
more interactive for a group meeting.
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Having this global view of the design is a great advantage during preliminary
phases, and would make it easier to iterate the design. Once the recommendations
of a specific design are received, the engineers could change the parameters that
are not correct in real time and iterate to obtain an optimal global design. At this
moment the tool doesn’t iterate the design automatically, but it can be donemanually
by changing the inputs when a negative recommendation is received.

As it will be explained in section 4.2, some future work would have to be done to
make the assistant more shareable with different users, such as a user authentication
feature, where each user can save its design or share it with the concurrent design
session.

3.2 Automatic grading

Probably all aerospace students have done a project where they have to design a
space mission based on a list of requirements. When professors have to grade this
type of projects, it can be difficult to pay attention to all the calculations and design
parameters and see if they are correct. This tool could be useful in this situation.
The professor would input the parameters of the student’s design, run the assistant
and receive the feedback. Then it would be easier to pay attention in the negative
recommendations.

In order to test this use case, the director of this thesis gave me an example of
Preliminary Design Review (PDR) that his students had done in a class project. To
start with the test, it was firstly tried to input the PDF document directly into the
webpage, but nothingwas correctly read by the system. Theparameter extractor only
works accurately with simple and concise sentences, and that could be something
to work more in the future, because the capacity of reading PDR documents and
extractingparameterswould be veryuseful. A second trywasdone bypreprocessing
the PDF file and cleaning it, leaving only the parts where parameters could be read.
This option had better results and some of the parameters were read by the system.
The incorrect or missing ones were manually written into the dashboard.

This example consisted of a CubeSat of 15 kg in LEO, andwhen the system evaluated
the model only 40% of the recommendations were positive meaning that those were
exactly the same as the ones calculated by themodel. This could be bymany reasons,
of course one is that the physics of the model are far from being accurate, but more
importantly, the model uses many empirical relations taken from the SMAD book
and other sources. These empirical relations are obtained from historical databases
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of large monolithic satellites built in the early years of space explorations. Thus,
they might not be applied to modern small satellites such as this CubeSat. To
further confirm this hypothesis, it was noted that the subsystems that had more
empirical relations such as the ADCS or the thermal subsystem had more negative
recommendations that others that depend more on first order physics equations,
such as the communications or the power subsystem.

To further test the system, another example was evaluated by the assistant. The Fire-
Sat satellite is an example that the SMAD book uses constantly in all the subsystems.
It is a 250 kg satellite in LEO. In this case, there were less errors and more positive
recommendations, nearly 80% of the recommendations were positive. Of course, for
a real satellite the system would have to find no mistakes ideally, and give 100% of
positive feedback. However, there is an improvement of the system’s accuracy when
evaluating large and real satellites than when evaluating a cubesat designed by a
group of undergraduate students.
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Conclusion

4.1 Limitations

Some difficult to solve problems identified during the process were identifies and
are listed as limitations of the project:

• Small testing: There has been very few formal testing with humans to see if
the system really accomplishes its intended benefits. The only evidence of its
accuracy in recommendations are the examples shown in chapter 3 with the
two examples of satellites.

• Generalization: The system is not thought out to be used in any kind of
spacecraft. As it was shown in the use case, the empirical relations used in
the model can only apply to large satellites that orbit the Earth. A future task
could be developing an interplanetary model that can design any spacecraft in
the solar system.

• Execution time: Some of the subsystems require the execution of Matlab files
that are executed from a Java environment. This task makes the execution time
longer only because of the time it takes to connect to Matlab. This could be
solved by writing the whole code in Java, giving up the benefits of some of the
Matlab libraries used.

4.2 Future Work

While developing the whole system, a lot of ideas were postponed as they were
considered not to be basic for the project to actually be in a working state:
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• More granularity in the recommendations: Making the recommendations
more explainable has been a difficult task during the project, and one option
to make them more useful to the user would be having more depth in the
feedback, meaning that if a negative recommendation is shown, the system
could be able of finding the mistake at a lower level of design. This is done
in some of the subsystems but I think it could be done going even further to
showing more detailed recommendations.

• Global optimization of the design: At this moment, if the user wants to
optimize the design globally it has to be done manually by editing the inputs
with the recommendations received in the previous iteration. Due to a lack
of time, this wasn’t done automatically, but it would be great improvement to
have an iterator that finds an optimal solution.

• Interplanetary model: The model is only thought to design Earth orbiting
missions, and having models of other planets would be a great complement
to the current system. This task was started with some of the subsystems, but
was not finished due to a lack of time.

• User authentication: This feature would be very important for the concurrent
design facilities use case, where different users could log in and save their
different designs or share them with other users.

4.3 Summary

The aim of this final degree thesis was to develop a full functional cognitive assistant
for helping system engineers in the high-level design of spacecrafts. This main
objective has been fully completed with the development of the whole architecture
of the satellite design assistant, including the front-end and the back-end of the
system.

Until some years ago, most cognitive assistants have been developed for commercial
general usage, then the Systems Engineering, Architecture and Knowledge Lab at
Texas A&M University developed Daphne, the first cognitive assistant specialized in
space mission design. The current thesis, has explained a possible complement of
Daphne to develop the individual satellites of a space mission. Ideally, one would
start designing the whole mission architecture withDaphne, and fix the payload and
orbits of each satellite, and then, start with the preliminary design of each spacecraft
with the help of the Satellite Design Assistant described in this project.
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The problem of cognitive overload of humans is becoming common in a lot of fields,
with design and aerospace being two of them, and there is a need for tools that assist
humans in these complex tasks. I find important to explain here, that these kind of
assistants are thought and developed to be tools that the human can use at any time
to help him in difficult tasks, and are not thought to replace engineers or to do all
the work by themselves.

On a more personal note, this project has been a great challenge for me, both for the
amount of coding and technical knowledge that I had to learn during the process.
I am specially proud of having developed an end to end software architecture for
the first time, without any past experience in either web development or languages
such as Java and Jess that are the basis of the back-end module. This experience has
been very valuable for my future work experience because nowadays, technologies
change very rapidly and one could be working in a totally new field in a few years.
It is the capacity of rapidly learning new things what I value most of my time at
the university, and what I personally think that is more valuable than any technical
knowledge we learn during these years.

Last but not least, finishing this project and thesis brings a sense of closure for me,
after 5 years of hard work doing two bachelor degrees at the same time, this is the
end result of the whole effort. I could not be more prouder of it, as I have been able
to use a lot of the knowledge I learned along the way in both of my degrees, and
prove to myself that I could take a big challenge like this one.
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Appendix A

Source code of the project

The source code for the whole project can be found under different repositories in
Github, under the seakers group: https://www.github.com/seakers. The ones
that are mentioned during the project are listed here, the Satellite Design Assistant
corresponds to the source code of this thesis and the others show the work done by
the SEAK Lab with Daphne and VASSAR:

• Satellite Design Assistant: https://github.com/seakers/satellite-design-
assistant

• Daphne Web page: https://www.selva-research.com/daphne/

• Daphne Brain: https://github.com/seakers/daphne_brain

• VASSAR: https://github.com/seakers/VASSAR

• Daphne Interface: https://github.com/seakers/daphne-interface
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