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Abstract 

 

The absence of direct measurements of solar radiation in many countries around the world (due 

to the high costs of installation and maintenance of the measuring devices) has been identified 

(in the Colombian case by the Energy Mining Planning Unit) as one of the main barriers for the 

deployment of photovoltaic systems. In this sense, estimation techniques have been developed 

in the literature for locations where this variable is not measured. These techniques take 

advantage of the correlation between the irradiance and other climatic parameters of wider 

distribution and easier access to construct models that forecast with high accuracy the solar 

potential of a specific place. Thus, the current research exposes the implementation of an indirect 

estimation model designed with Artificial Intelligence that uses the temperature, humidity, wind 

speed and sunshine duration to predict the irradiation, as a tool for sizing photovoltaic systems in 

Norte de Santander (Colombia) where solar radiation measurements are available just in three of 

the 40 municipalities in which the region is geographically divided. 
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Chapter 1 

Introduction and Objectives 
 

Solar radiation is the energy emitted by the Sun, which propagates in all directions through space 

as electromagnetic waves, generated due to hydrogen reactions in the core of the Sun through 

nuclear fusion. This energy is the engine that determines the dynamics of atmospheric processes 

and climate on Earth; of the 64 million W/m2 produced on average by the surface of the Sun, the 

Earth intercepts only 1.367 W/m2, which are distributed in a greater proportion in the tropical 

zones (countries near to the Equator Line). This is because the ultraviolet rays affect these 

regions more directly than those with middle latitudes, and also because their ozone levels are 

lower (close to 240 UD -Dobson units, being UD = 2,69 × 1016 molecules/cm²) than the average 

ones in the northern and southern areas of the planet (taking into account that ozone is a factor 

inversely proportional to the incidence of solar radiation on the surface of the Earth [1]). 

Colombia is located in the tropical zones close to the Equator with a wide variety of climates highly 

dependent on the altitude with respect to sea level; a preliminary analysis determined that 

Colombia has a significant solar potential with average irradiance values higher than the world 

average (of up 6,237 kW/m2 in comparison with the world average of 3,9 kW/m2) and the average 

of countries in the northern and southern hemisphere [2].  

In this way, Colombia become an ideal place for the implementation of photovoltaic (PV) systems 

by the high solar radiation levels of its geographical zone. 

Despite of the above, the Energy Mining Planning Unit of Colombia (UPME, by its acronym in 

Spanish) declared in its balance for 2017 that the photovoltaic capacity installed in the country is 

close to 0,06 % of the total capacity of electricity generation [3], condition that in the last years 

has been a center of discussion bearing in mind that solar energy is one of the alternatives with 

greater possibilities of success in the country, and considering the need of diversifying the energy 

matrix of the nation. The later in response to the high dependence from the hydrological resource 

in Colombia (approximately 70 % of participation) which has a wide number of advantages as 

clean energy production, renewable resources, safety, but also has a hard sensibility to the 

changing weather conditions of the region where environmental phenomenon as El Niño or La 

Niña are very common.  

The low participation of PV systems is attributed by the UPME among several causes, to the lack 

of technical specifications for its application and the limited information about the energy potential 

that exists in each zone of the country. The UPME considers these situations as two of the 

identified and prioritized barriers for the growth of the photovoltaic solar energy in Colombia [2], 

scenario that has also been identified in other places [4].  

The previous argument can be based on the fact that the Institute of Hydrology, Meteorology and 

Environmental (IDEAM, by its acronym in Spanish), entity in charge of the management of the 

weather information in Colombia, has 4.451 meteorological stations throughout the country [5] 

but only 83 of these record global solar radiation data [6]; this scant coverage does not allow to 

determine the specific and detailed solar potential in the Colombian territory and it suggests that 

the average irradiance values supplied by the IDEAM could be inaccurate for PV design (causing 

oversizing or under-sizing of the system and erroneous periods of return of the investment, which 

leads to a loss of the reliability of the users on this type of technologies) in regions that are distant 

from those 83 locations where the solar radiation is measured. 
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Therefore, one of the key points in the development of the PV technology in Colombia depends 

on the accurate quantification of the solar resource in those places where irradiation data are 

absent, and that in general, represent the rural areas of the country. 

The aforementioned scenario is not only present in Colombia, but it is also common in developing 

countries [7] and even in some developed countries such as China [8]. The measurement of solar 

radiation data is generally available just in some specific areas due to the acquisition and 

maintenance costs of the solar radiation measuring devices in comparison to those that measure 

other variables. For example, the ratio between stations observing solar radiation and those 

observing ambient temperature is lower than 1:100 in America [9]. Due to this limitation, variables 

such as humidity, temperature, wind speed, among others, are much easier to access than the 

solar radiation. 

Considering that several studies have shown the correlation between the solar radiation and these 

climatic variables of greater availability [10] [11] [12] [13], different modelling techniques have 

been developed to estimate the solar radiation from them with high accuracy. This allows the 

expansion of reliable irradiation profiles to locations where this variable is not measured but where 

those correlated variables are available, improving the design process of PV systems; thereby,  

the applications based on solar energy increase  [8] [14] [15] and their penetration in a specific 

place also makes it [16]. 

In the literature, these structures that use climatological parameters as input to generate a 

corresponding irradiation value are called indirect estimation models, since the model forecasts 

the solar radiation from other variable and then, using a PV performance model of the plant or a 

commercial PV simulation software, such as TRNSYSM, PVFORM, or HOMER, calculates the 

PV power generation. In a similar way, the direct version can be also found, but this handles 

historical data samples, such as PV power output and meteorological data associated to predict 

directly the energy produced by the system  [16] [17]. As it can be intuited, the direct estimation 

would be more precise because it would take into account the contribution of the behavior of the 

panel to record output data from the system implemented; however, it also becomes a 

disadvantage due to the need of a physical prototype for its construction (which could be 

unfeasible as a previous investment is required to determine if systems in the location under 

analysis are profitable or not; additionally, its realization requires a considerable amount of time 

taking all the samples for the evaluation).  

Although nowadays, there is a wide variety of satellite information sources that provide irradiation 

data, the results of these models constructed with ground-measurements in many investigations 

have demonstrated to have a higher performance with minimum complexity and computational 

cost.  

Thus, based on the necessity of obtaining more precise and detailed information of the solar 

resource for its application in different fields, and the solution offered by the estimation models, 

the government of Colombia has implemented a set of initiatives aimed to projects that use its 

extensive climatological stations network to predict the irradiation in all regions of the country. 

One of these initiatives is named PERS (Sustainable Rural Electrification Plan), whose goal is to 

develop indirect estimation models to generate and test new solar radiation data that supports 

and complements improves the information supplied today by the IDEAM.  

Norte de Santander is one of the 32 departments in which Colombia is geographically divided, 

and it was selected for the PERS initiative and it is also the focus of this work. PERS in this region 

resulted with the implementation of three empirical models based on the relationship between 

solar radiation and the sunshine hours; although these models were constructed with data of 

three specific locations, PERS researchers indicated that it was possible to implement the models 



 
 

10 
 

in different cities and rural zones of the Department. Details about this will be explained in next 

sections. 

Hence, considering all of the above, the goal of this research is to develop indirect estimation 

models (since according to the limitations for a physical implementation of the system respect to 

the time to develop this project, a direct model could not be performed) based on Artificial 

Intelligence (AI) for Norte de Santander, in order to extend the results reached by PERS in this 

Department (taking into account that AI models have shown better results than empirical models 

in the literature) and to contribute to the efforts of the government of Colombia for incrementing 

the tools and information for the sizing and implementation of PV systems, mainly in the rural 

zones. 

Consequently, the general approach of the present investigation is to define the advantages that 

indirect estimation models using AI could offer in the solar radiation database in the Department 

of Norte de Santander; and the specific objectives are detailed as follows: 

- Analyze the meteorological information available for Norte de Santander and determine 

its correlation with the solar radiation. 

- Construct indirect estimation models for irradiation data based on Artificial Intelligence in 

the zones of the Department where these data are measured. 

- Compare the performance of the AI models with similar works in the literature. 

- Compare the results from AI models with other information sources available for the region 

in terms of PV sizing. 

- Analyze the scope of the AI models to zones of the Department where irradiation data are 

not available. 

In reference to these objectives, the outline of the document is: After the introduction, Chapter 2 

defines the state of the art of the indirect estimation models applied to irradiation profiles. In 

Chapter 3, a brief review about the AI techniques used in the development of these models is 

displayed. Chapter 4 shows the design methodology of the models for the zones under evaluation; 

in this section a short overview with the characteristics of the Department of Norte de Santander 

is also depicted to contextualize the reader with the feasibility of this type of research in that 

region. A comparison of results is performed in Chapter 5, and the applicability of this research in 

Norte de Santander is exposed in Chapter 6. Finally, the conclusions of the work are presented 

in Chapter 7. 

The choice of Norte de Santander as a case study site stems from the fact that the master studies 

of the author were funded by the government of this Department for the realization of this 

research. 
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Chapter 2 

Irradiation indirect estimation models: 

State of the art 
 

In the literature, many indirect estimation models applied to the identification of the irradiance 

profiles have been developed. As it was previously mentioned, these models aim to forecast the 

solar potential in places where irradiation data based on ground-measurements are not available. 

Their objective is to predict with the highest accuracy the actual irradiation to perform appropriate 

sizing and economic analysis of a PV system. 

Among the main theoretical indirect forecasting methodologies are: statistical approach, artificial 

intelligence techniques, physical models (mainly based on numerical weather prediction, NWP), 

and hybrid strategies [18]. Additional to this, others as probabilistic and empirical forecasting 

methods, and weighted Gaussian process (GP) regression have become a recent research focus 

[19]. A brief explanation of the previous methodologies with some investigations is presented 

below. 

2.1. Statistical models: 

Statistical approaches have been widely used in time series forecasting. In general, these are 

based on historical data. The predictor constructs a statistical relationship between the variables 

used as inputs for the model and the variable to be predicted  [18] [20]. The statistical models 

most used for the prediction of solar radiation are ARMA and ARIMA [21] [22] [23], but other 

methods as Persistence [24] [25] and ARMAX [26] are also used.  

2.2. Artificial Intelligence: 

AI techniques are being used in various fields, including forecasting, pattern recognition, control, 

optimization, and so on. Due to the high learning and regression capabilities, AI techniques have 

been widely employed for modeling and prediction of solar energy [18]. Among the most notable 

models in this field are: Artificial neuronal network  [4] [27] [28] [29] [30] [31] [32], fuzzy logic [33] 

[34], support vector machine [35] [36] [37] and genetic algorithms [38]. 

2.3. Physical models: 

Physical models consist of the set of mathematical equations that describe the physical state and 

dynamic motion of the atmosphere. These are designed with the PV power plant characteristics, 

such as location, different meteorological variables, and orientation historical data. In this type of 

models two methodologies are predominant: Sky Image-Based Models and Numerical Weather 

Prediction (NWP) Based Models. The first methodology is developed with satellite images and 

with ground-based sky image approaches; and the second one, with numerical dynamic modeling 

of the climatological conditions. 

 

In reference to the sky image methodology, the satellite images are used to detect the motion of 

cloud using motion vector fields, which allow to identify the clarity of the trajectory of the solar 

radiation and therefore, the amount of energy that can be captured for a system in ground. These 

images are obtained from satellite stations such as: Meteosat Satellite Network (Europe, Central 

Asia and Africa), Geostationary Operational Environment Satellite (America) [18], Geostationary 

Meteorological Satellite GMS - Himawari and MTSAT satellites (East and Southeast Asia and 

Oceania) [39]. The information given by these stations can be found in several databases as: 
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Satel-Light, Solar Data (SoDa), NASA Surface Meteorology and Solar Energy (SMSE) and the 

Australian Bureau of Meteorology (ABM) [39]. The methods and algorithms for processing the 

captured images and then, to perform the solar estimation process vary from one database to 

another. Heliosat is one of the most used methods in several research studies based on data 

from the Meteosat satellites. In this field different studies about the spatial-temporal variations of 

solar radiation around the world have been performed [40] [41] [42].  

 

In contrast to the satellite image-based method, ground-based sky images can provide a much 

higher spatial and temporal resolution for solar forecasts, on the basis of a total sky imager (TSI); 

this is an equipment which has a hemispherical mirror with a downward position pointing towards 

a couple-charged device (CCD) camera located above it. The mirror is equipped with a Sun 

tracking shadow band that shields the optical sensor from the consequences of solar reflection.  

Despite of satellite analysis has increased its participation in recent years with desirable results 

in the solar prediction field, it has been found that the results estimated of solar radiation using 

remote sensing methods may not be as good as empirical and artificial intelligence methods, 

although the satellite ones can provide a wider spatial distribution in regional or global scales [43]. 

One of the reasons for this is argued in the fact that satellite models require much more elements 

to perform an accurate estimation which are not available in most cases; some of these elements 

can be complex atmospheric models, ground-measurements such as atmospheric turbidity, and 

the ability to differentiate between cloud- and ground-reflected radiation during the day [9] [44].  

The decision between the advantages of a wider spatial distribution and the loss of accuracy in 

the estimation is still not clear; a comparative analysis between satellite and ground-based 

measurements methods in [45] found that factors as landform, latitude and weather station 

density (i.e., the number of stations by km2) can increase or decrease the accuracy of each 

method under different application cases. At the end, the conclusion is that the selection is not 

between satellite-derived and ground-based data, but between which satellite model and ground 

measurement model can be used.  

2.4. Empirical models: 

These models have been developed to estimate daily or monthly global solar radiation by means 

of correlations with the more readily available meteorological data at a majority of weather stations 

[46]. Selecting an appropriate model from various existing design strategies depends on the 

available data of the place and the accuracy offered by the method to develop the model. Despite 

of the many empirical correlations reported by different authors, these models can be mainly 

classified into the following four categories. 

2.4.1. Sunshine-based models: The most commonly used parameter for estimating global solar 

radiation is sunshine duration, since it is a variable directly proportional to the changes of the solar 

resource. Sunshine duration can be easily and reliably measured from devices called 

Heliographs, so that the data are widely available at the weather stations. Among the models that 

use the sunshine as input parameter are: Angstrom–Prescott model and Glowerand McCulloch 

model. 

2.4.2. Cloud-based models: The cloud data are detected routinely by meteorological satellites, so 

global solar radiation can be estimated from observations of various cloud layer amounts and 

cloud types. These models differ from the physical ones in the complexity of the analysis, due to 

that physical approaches do not use only the cloud information for the prediction. Black model 

and Paltridge model are the most representative in this field. 

2.4.3. Temperature-based models: The temperature-based models assume that the difference 

between the maximum and minimum temperature is directly related to the fraction of 
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extraterrestrial radiation received at the ground level. Hargreaves model and Bristow and 

Campbell model are widely used in forecasting of solar radiation from temperature. 

2.4.4 Other meteorological parameter-based models: Many researchers have tried to use various 

available meteorological parameters such as precipitation, relative humidity, dew point 

temperature, soil temperature, evaporation and pressure to predict the amount of global solar 

radiation. Some works are shown as follows: 

- Swartman and Ogunlade model: Use the relative humidity as correlation variable to 

determine the solar radiation. 

- Garg and Garg model: It includes a precipitation factor for the prediction. 

In [46] and [47] an extensive review of different models (with the highest accuracy in their 

respective works) in each category is presented for easing the choice of a model according to the 

characteristics and available data of the implementation place. It is worth to note that previous 

investigations are only a guideline to select the best type of correlation, since the coefficients of 

the equations resulted from empirical analysis depends on the climate conditions of the specific 

location where the research was carried out.  

2.5. Hybrid models: 

To further optimize the accuracy in the prediction of solar radiation, several authors have 

proposed combining different models and techniques [48] [49] [50]. This method has been widely 

used and it presents combinations of, for example, satellite images as input parameters to an 

artificial neural network or even the participation of three different strategies in order to reach the 

highest accuracy with respect to individual approaches. 

In this sense, there is a large list of methods or techniques for the estimation of the solar radiation; 

each one of them with its advantages and disadvantages according to the location, the availability 

of the input parameters and the desired spatial-temporal forecasting, which makes it complicated 

to determine a global selection pattern when a model is needed. Considering this, several review 

papers which group and compare a large amount of models [8] [9] [16] [17] [51] were analyzed to 

determine which of them could generate more benefits for the research. After this evaluation, the 

AI technique based on Artificial Neural Networks (ANN) was selected taken into account in the 

following reasons: 

1. Wide literature: The authors in [17] compared about 84 research studies and found that models 

structured with ANNs are the most used machine learning technique in solar power 

forecasting; this is because, in average, ANNs presented the best results in terms of accuracy 

regarding typical performance metrics in this field as root mean square error (RMSE), mean 

absolute percentage error (MAPE), mean absolute error (MAE), coefficient of determination 

(𝑅2) and mean bias error (MBE).  

 

Figure 1 describes a distribution of studies with respect to the technique used, where it can be 

observed that the highest participation is for ANN models with a 24 % of the total. It should be 

noted in figure 1 that ANN (and other artificial intelligence techniques) appears inside of the 

statistical group. This is because in [17] AI and statistical methods were categorized as a single 

group, which can be different in other research since this classification changes slightly from 

one investigation to another. In a similar way, a comparative review of the main estimation 

methods is presented in [51] with a total of 74 research studies, and in [16] where can be also 

observed that ANN models outperform the results of traditional methods. 

 

2. High accuracy with respect to other models: As it was mentioned in the later point, there is a 

wide participation of ANN models in the solar estimation processes, due to the good results in 
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terms of the accuracy achieved in several works; in reference to [51], several performance 

parameters according to the information provided by the researchers, allowed to establish 

criteria to compare the models. ANN demonstrates in average the lowest errors; for instance, 

in terms of the RMSE, values as low as 0,2 % (Ref. 27 in [51]), 3,38 % (Ref. 30 in [51]),  

5,19 % (Ref. 32 in [51]) and 8,81 % (Ref. 31 in [51]) were obtained, while methods as ELM, 

ARIMA, Sky images and Satellite images obtained RMSE values of 13,83 % (Ref. 39 in [51]), 

29,73 % (Ref. 57 in [51]), 11,17 % (Ref. 79 in [51]) and 15,47 % (Ref. 82 in [51]), respectively.  

 

Figure 1. Distribution of studies with respect to the prediction technique used. Sample set: studies listed in [17]. 

3. Advantages in relation to the available data: The capability of using several input parameters 

in ANN models represents an advantage (unlike many empirical and statistical models which 

use only one variable), considering that a wide variety of research findings have proved that 

this characteristic improves the precision in the output prediction [8] [16]. Thus, because 

different climatic variables data are available in Colombia (as it will be detailed later), this 

advantage can be exploited in the development of the model. Additionally, ANN techniques do 

not require a linear relationship between the input and the output of the model, being ideal for 

nonlinear correlations as those presented by available variables such as the humidity and wind 

speed with the solar radiation; this is an interesting approach since statistical model as auto-

regressive and regressive-based models do not support it [16]. 

 

4. Adaptability to other models: Hybrid models have begun to be popular in the estimation of solar 

radiation due to the increase of the efficiency by taking the individual advantages of each model 

and deleting its deficiencies in a cluster  [16] [51]. For this reason, in order to analyze the 

possible adaptation of another model (which increases the accuracy as in [51] where the 

application of the a hybrid method between neural network and fuzzy logic, called Adaptive-

Network-based Fuzzy Inference System (ANFIS), improved the accuracy in 95 % from the 

standard fuzzy logic), ANN is selected since in most cases, it is the common cooperator in 

hybrid models [16]. 

 

5. Previous investigations: Since the Colombian government has performed some studies in the 

estimation of solar radiation (e.g. PERS project) and some solar radiation satellite databases 

can be accessed, empirical and physical (satellite images) models are not taken into account 

in the present work, leaving thus the ANN models as an alternative not yet explored with 

possible better results. 

 

Thus, since the ANN model is selected as the best option for the models, the next chapter is 

focused on the analysis of its characteristics for its application in the chapter 4 (design and 

methodology). Additionally, ANFIS model is included as a hybrid method of the ANN model 

considering the general improvements that the combination of methods represent and the specific 

benefits mentioned in the previous point (Adaptability to other models). 
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Chapter 3 

Artificial Intelligence Techniques: ANN 

and ANFIS 
 

As it was mentioned at the end of the previous chapter, AI techniques based on ANN models are 

the choice for the development of the indirect estimation model of this research, for the 

Department of Norte de Santander. However, since hybrid models are shown as a way to improve 

the accuracy of the predictions, and in relation to the point 4 of the selection reasons of the ANN 

models in chapter 2, an ANFIS model is included in the current chapter as an additional element 

in the search of the best model. Thus, both AI techniques are detailed briefly below to make the 

reader familiar with upcoming sections. 

3.1. Artificial Neural Network: 

3.1.1. Overview: 

ANN is defined as non-linear map systems whose structure is based on principles observed in 

the nervous systems of humans and animals. It consists of a large number of simple processors 

linked by connections with weights. The processing units are called neurons. Each unit receives 

inputs from other nodes and generates a simple output that depends on the available local 

information, stored internally or arriving through the connections with the weights [52]. Thus, each 

process unit has a simple task: it receives input(s) from other units or external sources and 

processes the information to obtain an output that propagates to other units. A network can have 

an arbitrary structure, but the layers containing these structures are defined according to their 

location in the topology of the neural network. The external inputs are applied in the first layer, 

and the outputs are considered the last layer. Internal layers that are not observed as inputs or 

outputs are called hidden layers. By convention, entries are not considered as a layer because 

they do not perform processing. 

The total input 𝑢 of a unit 𝑘 is the sum of the weights of the inputs connected, plus a bias 𝜃 which 

operates as an external input for each unit: 

𝑢 = ∑ 𝜔𝑗𝑥𝑗 + 𝜃

𝑗

 

where: 

𝜔𝑗 = 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 

𝑥𝑗 = 𝑜𝑢𝑡𝑝𝑢𝑡 𝑠𝑖𝑔𝑛𝑎𝑙𝑠 𝑓𝑟𝑜𝑚 𝑜𝑡ℎ𝑒𝑟 𝑛𝑜𝑑𝑒𝑠 𝑜𝑟 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑖𝑛𝑝𝑢𝑡𝑠 

If the weight 𝜔𝑗 is positive, it represents an excitation and if the weight is negative, it is considered 

an inhibition of the input.  

Figure 2a shows a basic structure of an ANN with three layers, where the first layer is the input 

layer (𝑖) which receives input information, the second layer is the hidden layer (𝑗) that can be 

constituted by several layers (each one with similar or different structure) and determines the 

processing of the input information, and finally the third layer known as the output layer (𝑘) where 

the results are received and analyzed to provide the output. Each layer is interconnected by its 

corresponding weight 𝜔𝑖𝑗 and 𝜔𝑗𝑘, and every unit sums its inputs, adds the bias or threshold term 
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and a linear or nonlinear function transforms the sum to produce an output. This transformation 

is called the activation function of the node, which is frequently a linear function in the output layer 

[53]. 

 

a.                                                                                  b. 

Figure 2. A three-layer artificial neural network: a. Structure. b. Mathematical model of an ANN neuron. 

Based on the above, each neuron is composed by two parts: A first part in charge of the sum of 

the inputs called combination function, and a second part defined by the activation function. The 

most common activation functions are described in table 1 [16] [52]. The functions with bipolar 

operation also have their unipolar version. 

Activation function Formula Graphical representation 

Bipolar step function 

−1   𝑖𝑓 𝑢 < 0          
𝑓(𝑢) =           0   𝑖𝑓 𝑢 = 0          

1   𝑖𝑓 𝑢 > 0          

 

Linear 𝑓(𝑢) = 𝑢 

 

Bipolar linear function 

 

− 1   𝑖𝑓 𝑢 < −𝑐   
𝑓(𝑢) =               1   𝑖𝑓 𝑢 > 𝑐      

 𝑎𝑥  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

         
 

 

Sigmoid 
𝑓(𝑢) =

1

1 + 𝑒𝑢 
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Hyperbolic tangent sigmoid 𝑓(𝑢) =
𝑒𝑢 − 𝑒−𝑢

𝑒𝑢 + 𝑒−𝑢 

 

Gaussian radial basis 𝑓(𝑢) =
1

𝜎√2𝜋
𝑒

(
𝑥2

2𝜎2)
 

 
 

Table 1. Most common activation functions for an ANN. 
 

In Matlab, some activation functions for the training process in ANNs are the hyperbolic tangent 

function (tansig), the sigmoid function (logsig), the hard-limit transfer or step function (hardlim) 

and the linear function (purelin), which facilitates the approximations that are required between 

inputs and outputs. 

3.1.2. Topologies: 

Two of the most used topologies are presented, according to the differences in the way in which 

the connections are made: 

1. Forward propagation networks (feed-forward): the flow of information from the inputs to the 

outputs is exclusively forward, extending through multiple layers of units, but there is no feedback 

connection. 

2. Recurrent networks: they contain feedback connections, which can result in a process of 

evolution towards a stable state in which there are no changes in the activation state of the 

neurons. 

ANNs can also be categorized according to the number of layers (mono-layer or multi-layer) or 

the type of data that they receive (analog or discrete), but the information flow or connection 

structures is the most representative way for its classification.  

The process of configuration of a neural network is called training or learning so that the inputs 

produce the desired outputs through the strengthening of the connections or weights. Each 

topology uses one or a combination of training algorithms to reach this objective. One way to 

accomplish this is from the establishment of previously known weights, and another method 

involves the use of feedback techniques and learning patterns that change the weights until 

appropriate values are found. In addition, learning can be divided into supervised or associative 

and not supervised or self-organized. In the first case, inputs that correspond to certain outputs 

are introduced, either by an external agent or by the same system. In the second one, the training 

focuses on finding statistical characteristics between groupings of patterns in the entries [52]. Part 

of the literature mentions a third learning strategy known as Reinforcement Learning [28]; this 

strategy lies somewhere in between the previous two types of learning. It is used in cases where 

an exact output of the problem modeled is unknown. 
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One type of rule that is used for training by adjusting the weights is the Hebbiana, proposed by 

Hebb in 1949. Several proposed variants of Hebbiana have appeared over time. If two units j and 

k are active at the same time, the connection between the two must be strengthened by modifying 

the weight: 

∆𝜔𝑗𝑘 = 𝛾𝑦𝑗𝑦𝑘 

where 𝛾 is a constant of positive proportionality that represents the learning rate, and 𝑦𝑗 together 

with 𝑦𝑘 represent the output of the unit. 

Another rule commonly used involves adjusting the weights through the difference between the 

current and the desired activation; it is known as the Delta Rule: 

∆𝜔𝑗𝑘 = 𝛾𝑦𝑗(𝑑𝑘 − 𝑦𝑘) 

where 𝑑𝑘 is the desired activation. 

Within supervised learning three major algorithms can be distinguished to carry out the training: 

learning by error correction, which takes the difference between the actual and estimated output 

and sets the weights to reduce the error. Learning by reinforcement, is a slower training technique 

than the previous one; it adjusts the weights based on probabilities because unlike the previous 

case, this learning strategy only evaluates if the output is correct or incorrect with respect to the 

input; and the last one is a stochastic learning algorithm which consists of randomly modifying the 

connection weights within the network and evaluating if it meets the requirements or not. If the 

answer improves, the algorithm modifies the weights, and if not, generates new random weights, 

until the expected response is reached. 

Inside of the first category of the supervised learning algorithms, i.e., learning by error correction, 

is found the back-propagation algorithm. It is one of the most popular ones since it has an 

optimization method that defines the error gradient and minimizes it with respect to the 

parameters of the neural network [52]. A brief explanation about it is displayed below. 

Figure 3 shows a three-layered network with two inputs and one output; each neuron consists of 

two units, where the first one adds the products of the inputs with their respective weights, and 

the second unit contains the activation function.  

To train the neural network it is necessary to use a set of data, which consists of input signals 𝑥1 

and 𝑥2 assigned with a corresponding objective (desired outputs) called 𝑦. Training is an iterative 

process, and each cycle or iteration is known as epoch. In each epoch the weights of the nodes 

are modified using a new set of data for the training. Figure 4 depicts a possible trajectory from 

the inputs to the output of the ANN; the path from the inputs to the first layer is highlighted in figure 

4a, and figure 4b displays the trajectory from the first to the second layer with the corresponding 

outputs of each one of its involved neurons. The weight 𝜔𝑗𝑘 indicates the connection of the output 

of the neuron in the layer 𝑗 with the input of the neuron in the layer 𝑘. 
 

 
a. b. 

 

Figure 3. ANN of three layers: a. Structure of the network. b. Structure of each neuron. 
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        a.                                                                                               b. 

Figure 4. One trajectory of execution of the backpropagation algorithm: a. From inputs to the first layer. b. From the 
first layer to the second one. 

After executing the route in figure 4, the output of the network is compared with the desired target 

value. The difference is called signal error (𝛿). It is impossible to know the error in the neurons of 

the internal layers directly, because the output values of these neurons are unknown. The back-

propagation algorithm propagates the signal error back to all neurons, whose output was the input 

of the last neuron, as shown in figure 5a. Subsequently, the error is propagated to the neurons of 

previous layers, considering the weights of the connections, as shown in figure 5b.   

 
                                          a.                                                                                                 b. 

Figure 5. Back propagation of the error: a. From the last layer to the second one. b. From the second layer to the first 
one. 

Finally, when the error is calculated for each neuron, the input weights can be modified according 

to the expressions in figure 6 to start a new iteration. The error is minimized across many training 

cycles or iterations until reaching the desired level of accuracy. 

 
 

Figure 6. Updating of the weights. 

𝛿1 = 𝑤14𝛿4 + 𝑤15𝛿5 𝛿4 = 𝑤46𝛿 

𝛿4 

𝛿 𝛿 

𝛿4 

𝛿1 

𝛿5 

𝑦1 = 𝑓1(𝑤(𝑥1)1𝑥1 + 𝑤(𝑥2)1𝑥2) 𝑦5 = 𝑓5(𝑤15𝑦1 + 𝑤25𝑦2 + 𝑤35𝑦3) 

𝛿1 

𝛿2 

𝛿3 

𝛿4 

𝛿5 

𝛿 

𝑤′
(𝑥1)1 = 𝑤(𝑥1)1 + 𝜂𝛿1

𝑑𝑓1(𝑒)

𝑑𝑒
𝑥1 

𝑤′(𝑥2)1 = 𝑤(𝑥2)1 + 𝜂𝛿1

𝑑𝑓1(𝑒)

𝑑𝑒
𝑥2 
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The coefficients affect the learning speed and can be selected by different methods. One of them 

implies that at the beginning of the training process a large value is chosen, which gradually 

decreases as the process progresses. Another method starts with small parameters that increase 

as the process progresses and again decreases in the final stage. Starting the process with a 

small parameter allows the establishment of the signs of the weights faster and for this, it is the 

recommended option. It is common that the back-propagation algorithm is mixed with other 

algorithms to improve its performance in the development of the model. Among the most 

remarkable training algorithms are [53]: 

 

- Gradient Descent (Gradient Descent back-propagation algorithm, Gradient Descent with 

Momentum, Resilience back-propagation). 

- Conjugate Gradient algorithms (Scaled conjugate Gradient, Conjugate Gradient back-

propagation with Fletcher-Reeves Updates, Conjugate Gradient back-propagation with 

Polak-Riebre Updates). 

- Quasi-Newton algorithms (Broyden-Fletcher Goldfarb Shanno, Levenberg–Marquardt 

back-propagation). 
 

The corresponding functions for the implementation of these algorithms in Matlab are deployed 

in table 2. 

 

Algorithm Function 

Gradient Descent back-propagation 
algorithm 

traingd 

Gradient Descent with Momentum traingdm 

Resilience back-propagation trainrp 

Scaled conjugate Gradient trainscg 

Conjugate Gradient back-propagation with 
Fletcher-Reeves Updates 

traincgf 

Conjugate Gradient back-propagation with 
Polak-Riebre Updates 

traincgp 

Broyden-Fletcher Goldfarb Shanno trainbfg 

Levenberg–Marquardt back-propagation trainlm 
 

Table 2. Functions for the implementation of ANN training algorithms in Matlab. 
 

The fact whereby the back-propagation algorithm is explained in detail in the present work, is 

because the Levenberg-Marquardt (LM) back propagation is one of the most used algorithm for 

estimation and forecasting of solar radiation in the literature [4] [29] [53] [54]. The reason for its 

common use is because it is considered to be one of the fastest and most accurate algorithms 

since it combines the speed of the Newton algorithm with the stability of the steepest descent 

method to reduce tasks and the sums of the squares of the new non-linear tasks. The LM 

algorithm uses Newton's method to calculate Jacobian matrices without computing the hessian 

matrices. This makes the LM algorithm to have a faster convergence with minimal error. 

Therefore, this is the algorithm used as starting point in the development of the ANN in the next 

sections. 

 

Thus, considering the concept of the back-propagation, and the classification of the ANN 

topologies according to the information flow, several architectures are detached as follows [54]: 

- Feed forward Network (FFN) 

- Feed-Forward Back Propagation Network (FFB) 

- Cascade-Forward Back Propagation Network (CFB) 

- Elman Back Propagation Network (ELM) 
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- Radial Basis Neural Network (RB) 

- Probabilistic Neural Network (PNN) 

- Custom Network  

Being the multilayer FFB network with LM as optimization algorithm the combination more 

frequently implemented in the construction of the estimation models for solar radiation [4] [16] [29] 

[53]. 

In this way, the design of the ANN fore this work takes as starting parameters those with better 

results in the literature. By varying different components (number of neurons, number of hidden 

layers, activation function, optimization algorithms and topologies), the use of those starting 

parameters will be verified, otherwise a new implementation criterion will be established. 

3.2. Adaptive-Network-based Fuzzy Inference System (ANFIS): 

3.2.1. Overview: 

ANFIS, proposed by Jang in 1993 [55], is a hybrid model composed of a fuzzy and artificial neural 

network, where the nodes in the different layers of a network handle fuzzy parameters. This is 

equivalent to fuzzy inference systems (FIS) with distributed parameters, as shown in figure 7 [55] 

[52].  

 
Figure 7. Fuzzy inference system. 

 

Basically, a fuzzy inference system is composed of five functional blocks: 1) A rule base 

containing a number of fuzzy if-then rules. 2) A database which defines the membership functions 

(MF) of the fuzzy sets used in the rules. 3) A decision-making unit which performs the inference. 

4) A fuzzification interface which transforms the crisp (i.e. fixed) inputs. 5) A defuzzification 

interface which transforms the fuzzy output to the same range of the input. 

Usually, the rule base and the database are jointly referred to as the knowledge base. For the 

fuzzification process “membership functions” are used which categorize in a graphic way a 

specific fuzzy set; it means that a membership function defines a continuous trajectory to where 

each one of the discrete elements with some property in common belongs.  

The steps of fuzzy reasoning (inference operations upon fuzzy if-then rules) performed by fuzzy 

inference systems are: 

1. Compare the input variables with the membership functions on the premise part to obtain 

the membership values (or compatibility measures) of each linguistic label (this step is 

often called fuzzification). 

2. Combine (through a specific T-norm operator, usually multiplication or min.) the 

membership values on the premise part to get firing strength (weight) of each rule. 

3. Generate the qualified consequent (either fuzzy or crisp) of each rule depending on the 

firing strength. 

4. Aggregate the qualified consequents to produce a crisp output (this step is called 

defuzzification). 
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Depending on the types of fuzzy reasoning and fuzzy if-then rules employed, most fuzzy inference 

systems can be classified into three types: 

Type 1:   The overall output is the weighted average of each rule’s crisp output induced by the 

rule’s firing strength (the product or minimum of the degrees of match with the premise 

part) and output membership functions. The output membership functions used in this 

scheme must be monotonic functions. 

Type 2:   The overall fuzzy output is derived by applying “ma” operation to the qualified fuzzy 

outputs (each of which is equal to the minimum of firing strength and the output 

membership function of each rule). Various schemes have been proposed to choose 

the final crisp output based on the overall fuzzy output; some of them are centroid of 

area, bisector of area, mean of maxima, maximum criterion, etc. 

Type 3:   Takagi and Sugeno’s fuzzy if-then rules are used. The output of each rule is a linear 

combination of input variables plus a constant term, and the final output is the weighted 

average of each rule’s output. 

Figure 8 utilizes a two-rule two-input fuzzy inference system to show different types of fuzzy rules 

and fuzzy reasoning mentioned above [55]. 

 
Figure 8. Commonly fuzzy if-then rules and fuzzy reasoning mechanisms. 

 

Thus, ANFIS falls into the third type of fuzzy inference system, where at its core, the technique 

splits the representation of prior knowledge into subsets in order to reduce the search space and 

uses the back-propagation algorithm to adjust the fuzzy parameters. The resulting system is an 

adaptive neural network functionally equivalent to a first-order Takagi-Sugeno inference system, 

where the input-output relationship is linear. 

3.2.1 Topology: 

An adaptive network is a multilayer feedforward network in which each node performs a particular 

function (node function) on incoming signals as well as a set of parameters pertaining to this node. 

The formulas for the node functions may vary from node to node, and the choice of each node 

function depends on the overall input-output function that the adaptive network requires. Note that 

the links in an adaptive network just indicate the flow direction of signals between nodes; no 

weights are associated with the links.  

To reflect different adaptive capabilities, both circle and square nodes are used in the 

representation of an adaptive network. A square node (adaptive node) has parameters while a 
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circle node (fixed node) has none. The set of parameters in an adaptive network is the union of 

all parameters of each adaptive node. In order to achieve a desired input-output mapping (detailed 

later), these parameters are updated according to given training data and a gradient-based 

learning procedure, although several hybrid techniques can be applied to increase its 

performance and learning speed. 

In a first-order Sugeno system, a typical rule set with two fuzzy if-then rules can be expressed as: 

𝑅𝑢𝑙𝑒 1:  𝐼𝑓 𝑥 𝑖𝑠 𝐴1 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵1, 𝑡ℎ𝑒𝑛 𝑓1 = 𝑝1𝑥 + 𝑞1𝑦 + 𝑟1 

𝑅𝑢𝑙𝑒 2:  𝐼𝑓 𝑥 𝑖𝑠 𝐴2 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵2, 𝑡ℎ𝑒𝑛 𝑓2 = 𝑝2𝑥 + 𝑞2𝑦 + 𝑟2 

where 𝑥 and 𝑦 are the crisp inputs to node 𝑖, 𝐴𝑖 and 𝐵𝑖 are the fuzzy sets in the antecedent, 𝑓𝑖 is 

the output within the fuzzy region specified by the fuzzy rule; and 𝑝𝑖, 𝑞𝑖 and 𝑟𝑖 are the design 

parameters that are determined during the training process. 

In general, ANFIS structure consists of five layers, namely: fuzzy layer, product layer, normalized 

layer, de-fuzzy layer and total output layer, and a structure for two inputs, one output and the two 

rules mentioned above is shown in figure 9.  

 
Figure 9. Basic structure of ANFIS. 

 

The characteristics of each layer are explained below. 

Layer 1: Every node 𝑖 in this layer is a square node with a node function: 

𝑂𝑖
1 = 𝜇𝐴𝑖

(𝑥) 

Where 𝑥 is the input to node 𝑖, and 𝐴, is the linguistic label (small, large, etc.) associated with this 

node function. In other words, 𝑂𝑖
1 is the membership function of 𝐴, and it specifies the degree to 

which the input 𝑥 satisfies the quantifier 𝐴𝑖. Usually 𝜇𝐴𝑖
(𝑥) is chosen to be bell-shaped with 

maximum equal to 1 and minimum equal to 0, although it can also be a triangular or trapezoidal 

membership function, as it is related in figure 10 and whose mathematical definitions are 

displayed in table 3. Parameters in this layer are referred to as premise parameters. 

Layer 2: Every node in this layer is a circle node labeled as Π which multiplies the incoming signals 

and sends the product out. For instance, 

𝜔𝑖 = 𝜇𝐴𝑖
(𝑥) × 𝜇𝐵𝑖

(𝑦), 𝑖 = 1,2.  

Each node output represents the firing strength of a rule (in fact, other T-norm operators that 

perform the generalized function AND can be used as the node function in this layer). 

Layer 3: Every node in this layer is a circle node labeled as 𝑁. The 𝑖𝑡ℎ node calculates the ratio 

of the 𝑖𝑡ℎ rule’s firing strength to the sum of all rules’ firing strengths: 
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𝜔𝑖̅̅ ̅ =
𝜔𝑖

𝜔1 + 𝜔2
, 𝑖 = 1,2. 

For convenience, outputs of this layer will be called normalized firing strengths. 

 

Figure 10. Common membership functions. 

Name of MFs Equation 

Triangular MF 𝜇𝐴𝑖(𝑥) = 𝑚𝑎𝑥 {𝑚𝑖𝑛 (
𝑥 − 𝑎

𝑏 − 𝑎
,
𝑐 − 𝑥

𝑐 − 𝑏
) , 0} 

Trapezoidal MF 𝜇𝐴𝑖(𝑥) = 𝑚𝑎𝑥 {𝑚𝑖𝑛 (
𝑥 − 𝑎

𝑏 − 𝑎
, 1,

𝑑 − 𝑥

𝑑 − 𝑐
) , 0} 

Gaussian MF 𝜇𝐴𝑖(𝑥) = 𝑒
−(𝑥−𝑐)2

2𝜎2  

Bell-Shaped MF 
𝜇𝐴𝑖(𝑥) =

1

1 + |
𝑥 − 𝑐

𝑎
|

2𝑏 

{𝑎, 𝑏, 𝑐, 𝑑} is the parameter set that changes the shapes of the MFs with maximum 1 and minimum 0. 

Table 3. Common membership functions. 

Layer 4: Every node 𝑖 in this layer is a square node with a node function: 

𝑂𝑖
4 = 𝜔𝑖̅̅ ̅𝑓𝑖 = 𝜔𝑖̅̅ ̅(𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖) 

where 𝜔𝑖̅̅ ̅ is the output of layer 3, and {𝑝𝑖 , 𝑞𝑖, 𝑟𝑖} are the coefficients of a linear combination in the 

Sugeno inference system. Parameters in this layer will be referred to as consequent parameters. 

Layer 5: The single node in this layer is a circle node labeled as Σ that computes the overall output 

as the summation of all incoming signals, i.e.: 

𝑂𝑖
5 = 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 = ∑ 𝜔𝑖̅̅ ̅𝑓𝑖 =

∑ 𝜔𝑖𝑓𝑖

∑ 𝜔𝑖
𝑖

 

Therefore, an adaptive network which is functionally equivalent to a type-3 fuzzy inference system 

is constructed, and its fuzzy reasoning is presented in figure 11.  

The membership functions distribution on the physical domain for each linguistic variable of the 

system is called mapping, and figure 12 shows that for a 2-input, type-3 ANFIS with nine rules.  
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Figure 11. Type 3 fuzzy reasoning (evaluation of the fuzzy inference). 

 

Figure 12. Mapping of a 2-input, type-3 ANFIS with three MF in each input. 

Three membership functions are associated with each input, so the input space is partitioned into 

nine fuzzy subspaces, each one of which is governed by a fuzzy if-then rule. The premise part of 

a rule delineates a fuzzy subspace, while the consequent part specifies the output within this 

fuzzy subspace. Considering the above, the number of rules (NR) is given by: 

𝑁𝑅 = ∏ 𝑀𝐹𝑖

𝑛

𝑖=1

 

Where 𝑛 represents the number of inputs of the system. 

ANFIS uses a hybrid learning algorithm for the estimation of the premise and consequent 

parameters. The hybrid learning algorithm estimates the consequent parameters in a forward 

pass and the premise parameters in a backward pass. In the forward phase, the information 

propagates forward until layer 4, where the consequent parameters are optimized by a least 

square regression algorithm. In the backward phase, the error signals propagate backwards and 

the premise parameters are updated by a gradient descent (GD) algorithm. This measured error 

is usually defined by the sum of the squared difference between measured and modeled values 

and is minimized to a desired value. Then, the final overall output in figure 9 can be rewritten as: 

𝑓𝑜𝑢𝑡 = (𝜔1̅̅̅̅ ∙ 𝑥)𝑝1 + (𝜔1̅̅̅̅ ∙ 𝑦)𝑞1𝑦 + (𝜔1̅̅̅̅ )𝑟1 + (𝜔2̅̅ ̅̅ ∙ 𝑥)𝑝2 + (𝜔2̅̅ ̅̅ ∙ 𝑦)𝑞2𝑦 + (𝜔2̅̅ ̅̅ )𝑟2 

Where 𝑥 and 𝑦 are the input parameters of the model; 𝜔1, 𝜔2 are the normalized firing strengths 

of fuzzy rules and (𝑝1, 𝑞1, 𝑟1, 𝑝2, 𝑞2, 𝑟2) are the consequent parameters. A more extensive 

explanation about the learning strategies for ANFIS can be consulted in [55]. 

𝑓1 = 𝑝1𝑥 + 𝑞1 + 𝑟1 

𝑓2 = 𝑝2𝑥 + 𝑞2 + 𝑟2 

 

 

𝑓 =
𝑤1𝑓1 + 𝑤2𝑓2

𝑤1 + 𝑤2
 

= 𝑤̅1𝑓1 + 𝑤̅2𝑓2 
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Chapter 4 

Methodology 
 

This chapter is intended to explain the step-by-step of the design and implementation of the 

indirect estimation model. For this, Chapter 4 is divided in two sections: a first part includes a 

review about availability of the irradiation data in the Department of Norte de Santander to 

contextualize the motivation of the present work. In addition to this, an analysis of available 

climatological information is carried out to identify the parameters whose correlation with the solar 

radiation can be used in the estimation model. After this, a second section describes the 

methodology that was used in the development of the ANN and ANFIS models as an alternative 

information source of irradiation data in the region. 

4.1. Characteristics of the case study: 

Norte de Santander is one of the 32 departments that together with the Capital District of Bogota, 

form the Republic of Colombia. Cúcuta is the capital city of Norte de Santander and is located in 

the northeast of the country, in the Andean region, bordering the north and east with Venezuela. 

The main geographic characteristics are portrayed in figure 13. 
 

 

Parameter Value 

Average altitude (m) 2.283 

Total surface (km2) 21.648 

Coordinates 7°54′N 72°30′O 

Subdivisions 40 municipalities 

 
Capital: San José de Cúcuta 

 

 
 

Parameter Value 

Average altitude (m) 320 

Total surface (km2) 1176 

Coordinates 
7°54′27″N 

72°30′17″O 

Subdivisions 
10 corregimientos 

10 comunas 
 

 
Figure 13. Geographical characteristics of Norte de Santander. 

 

This Department as the rest in Colombia or in a tropical country does not have seasons and 

therefore, the weather mainly depends on the geographic conditions of the place. The change of 

altitude between a location and another is one of the principal factors that influences in the 

climatological variations of the region. Norte de Santander is among the last places crossed by 
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the Andes Mountain and in consequence, large changes in altitude and thus, in climate, are found 

between near cities. 

For instance, figure 14 and table 4 present the distance and the changes of some meteorological 

variables among the capital of Norte de Santander and three municipalities (denomination of the 

administrative territorial division in which the departments in Colombia are organized) in several 

possible directions. The lines in figure 16 are only a representation of the separation between 

municipalities but not indicate the real shape of the route. 

 

Figure 14. Distances from Cúcuta to different municipalities. 

In reference to the information shown in figure 14 and table 4, it can appreciate that a short route 

of 76 km from Cúcuta to Pamplona (which lasts about 1h 40min in a car according to Google 

Maps [56]) there is a change in altitude from 320 m to 2.342 m with variations of up to 17 °C in 

temperature, 6 km/h in wind speed and 34 % for the percentage of humidity in the environment. 

Similar changes occur for the other two municipalities (see table 4). These significant changes in 

the altitude due to the mountainous geography of the region in short trips and their effects over 

the weather conditions, are an indication that the irradiance could also have a particular behavior. 

To obtain a wider perspective of the described situation, table 5 shows several climatic variables 

of the 40 municipalities in the Department of Norte de Santander as for August 27, 2018. The four 

municipalities used as example in table 4 are highlighted in table 5 for reference. 

Considering the high variability in climate conditions, the information sources that provide 

irradiation data in Norte de Santander must have high accuracy with a spatial distribution small 

enough to guarantee proper analysis and sizing of renewable energy systems in every 

municipality, since irradiation values in the region could vary a lot within a few kilometers. This 

scenario will be covered in more detail in the next sections.   

4.1.1. Climatological information sources in Norte de Santander: 

For Norte de Santander, several irradiation information sources can be found from either satellite 

information or empirical models. For the first approach, different databases can be consulted such 

as: Global Solar Atlas (GSA), NASA Surface Meteorology and Solar Energy (SMSE), and 

Photovoltaic Geographical Information System (PVGIS). Additionally, empirical models can be 

analyzed from sources as the PERS project and the IDEAM thorough its website.  In this way, in 

order to identify the benefits of the results of the present research study, these information 

sources will be used in next chapters for specific cases of sizing and therefore, their main 

characteristics are displayed below.
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Municipality Delta in altitude (m) 
Delta of temperature 

(°C) 
Delta of wind speed 

(km/h) 
Delta of humidity (%) 

Lourdes 1.090 9 12 30 

Ábrego 1.078 9 12 26 

Pamplona 2.022 17 6 34 
           Note: The differences presented in table 4 were obtained from the average values of each parameter.  

Table 4. Climatological variations among Cúcuta and some selected municipalities. 

Municipality 
Altitude 

(m) 

Minimum 
temperature 

(°C) 

Maximum 
temperature 

(°C) 

Delta of 
temperature 

(°C) 

Minimum 
wind speed 

(km/h) 

Maximum 
wind speed 

(km/h) 

Delta of 
wind speed 

(km/h) 

Minimum 
humidity 

(%) 

Maximum 
humidity 

(%) 

Delta of 
humidity 

(%) 

Arboledas 946 16 23 7 3 8 5 60 93 33 

Cucutilla 1277 20 26 6 3 6 3 62 84 22 

Gramalote 148 20 26 6 2 9 7 64 75 11 

Lourdes 1411 19 26 7 3 9 6 65 79 14 

Salazar de Las 
Palmas 

845 17 23 6 5 12 7 53 76 23 

Santiago 450 20 27 7 7 28 21 44 69 25 

Villa Caro 1600 19 23 4 4 13 9 61 87 26 

Cúcuta 320 28 34 6 10 21 11 35 56 21 

El Zulia 220 29 35 6 10 19 9 36 56 20 

Los Patios 410 27 32 5 10 22 12 40 61 21 

Puerto 
Santander 

60 27 34 7 2 12 10 45 74 29 

San Cayetano 235 29 35 6 9 18 9 38 57 19 

Villa del 
Rosario 

440 27 33 6 10 22 12 41 62 21 

Bucarasica 1552 21 27 6 5 14 9 49 72 23 

El Tarra 160 27 34 7 2 13 11 44 76 22 

Sardinata 320 28 34 6 4 13 9 39 69 30 

Tibú 75 27 34 7 3 11 9 44 77 33 
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Ábrego 1398 20 25 5 3 9 6 59 76 17 

Cáchira 2025 23 29 6 5 14 9 50 71 21 

Convención 1076 21 27 6 3 11 8 48 83 35 

El Carmen 761 20 28 8 4 10 6 49 84 35 

Hacarí 1050 19 27 8 2 14 12 50 80 30 

La Esperanza 1566 26 32 6 3 9 6 55 76 11 

La Playa de 
Belén 

1450 21 28 7 3 14 11 52 76 24 

Ocaña 1202 21 27 6 4 9 5 56 78 22 

San Calixto 1677 18 24 6 2 12 10 50 82 32 

Teorama 72 20 30 10 2 12 10 48 95 47 

Cácota 2465 9 16 7 3 12 9 69 93 24 

Chitagá 2379 11 17 6 2 13 11 75 95 20 

Mutiscua 2600 8 16 8 5 14 9 65 94 29 

Pamplona 2342 11 18 7 6 15 9 61 90 29 

Pamplonita 1886 16 24 8 6 13 7 56 84 28 

Santo Domingo 
de Silos 

2845 6 14 8 4 13 9 70 95 25 

Bochalema 1051 19 28 9 3 12 9 52 78 26 

Chinácota 1175 18 27 9 4 13 9 54 80 26 

Durania 940 19 28 9 3 12 9 48 76 28 

Herrán 1995 14 22 8 6 14 8 59 91 32 

Labateca 1465 16 24 8 3 14 9 64 90 26 

Ragonvalia 1615 14 21 7 5 15 10 56 88 32 

Toledo 1642 9 12 3 1 13 12 77 96 19 

 

Table 5.  Weather factors for each municipality of Norte de Santander for August 27, 2018. 
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The available irradiation data from these information sources is described in table 6; the details 

about the methods and resources that they use for their calculations can be found in: [57] for 

GSA, [58] for POWER project from SMSE, [59] for PVGIS, [60] for PERS project and in [61] for 

the IDEAM. All information applied in the next section from these sources was obtained in terms 

of irradiation (Wh/m2).  

Information 
source 

Irradiation data Period of availability of the 
data Annual Monthly Daily Hourly 

GSA     2017* 

SMSE     1981-2018 

PVGIS     2005-2015 

PERS     2015 

IDEAM     2014* 
*Sources with irradiation data averaged until the date indicated. 
 

Table 6. Irradiation data by information sources and scales. 
 

According to table 6, PVGIS is the most complete information source in terms of scales, with data 

updated until 2015 (to the date of writing this document). In the specific case of PERS, the 

empirical models were developed with monthly data, and it is not specified if the results could be 

adapted to other scale. For this reason, we just considered the data supplied by the authors in 

the official website of the PERS project (i.e., information for 2015 in monthly scale). It is important 

to indicate that the information supplied by this source is in a graphical way through a Cartesian 

plane, which relates the interception points of the irradiation values and its corresponding 

evaluation period (month); therefore, this scenario can generate inaccuracies in the acquisition of 

the data used in the subsequent analysis, since the numerical data are not available. 

Regarding GSA and SMSE databases, the irradiation data is available up to 2017 but not in all 

scales. Besides, GSA has an additional disadvantage since does makes available just annual 

data averaged from its first acquisition until 2017, i.e., does not present information year after 

year in order to analyze the changes from a period to another.   

Finally, the IDEAM published a solar atlas which contains a set of maps showing the annual and 

monthly irradiation averages. To generate those maps, IDEAM used several empirical models 

that use irradiation and sunshine data from the meteorological network of Colombia; one 

disadvantage of this source is that both the annual and monthly data are given in irradiation 

ranges (for instance, the annual map indicates that the irradiation for Cúcuta is between 4 kWh/m2 

and 4,5 kWh/m2, i.e., there is a range of uncertainty of 0,5 kWh/m2) so that the accuracy of the 

information is low. In addition to this, as the GSA data, the IDEAM does not present historical 

data but an average from the last years recorded by the entity until 2014. Despite of this, 

information more detailed can be obtained from the IDEAM but only for some cities of the country; 

this information is based on irradiation data in hourly scale measured in several climatological 

stations (as it will be shown later), but that just covers a small part of the national territory. This 

data is not available in the website as the atlas, since it must be requested after going through a 

series of administrative processes with the entity.  

4.1.2. Climatological information available in Norte de Santander: 

As it has been explained previously, different climatological variables or sky images can be used 

for forecasting solar radiation in a specific place; since the current case study is the Department 

of Norte de Santander, the input variables for the model will be limited by those measured by the 

different weather stations in the region. 

The entity responsible for managing the weather stations is the IDEAM which has global solar 

radiation information from a network of Conventional Stations (with measurements mainly from 

actinographs and a few pyranometers) and other Automatic Satellite Stations (with data from 
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pyranometers). Pyranometers installed from 2005 by the IDEAM, are the devices that are 

currently measuring irradiance in the country, since it was decided to dismantle the actinographs 

in operation, due to the difficulties encountered in the evaluation of their results (graphs based on 

a special cardboard) [62].  

In total the IDEAM has 4.504 stations which can be classified in conventional and automatic 

satellite [63], from the total only 83 measure irradiation data [64]. Nowadays, the IDEAM also 

performs the measurement of the following variables continuously: temperature (minimum, 

maximum and average value), humidity (relative humidity, vapor tension and evaporation), wind 

(speed and direction), precipitation, insolation (sunshine) and amount of ozone. According to the 

number of variables recorded by the stations, and their sample frequencies, these are classified 

in several categories related in table 7 [65]. 

Category Description 

Main synoptic 

It allows to observe hourly meteorological variables such as 
cloudiness, direction and wind speed, atmospheric pressure, air 
temperature, type and height of the clouds, visibility, special 
phenomena, humidity, precipitation and extreme temperatures. 

Main climatological 

Observations of visibility, present atmospheric time, quantity, type 
and height of the clouds, soil condition, precipitation, air temperature, 
humidity, wind, solar radiation, solar brightness, evaporation and 
special phenomena are measured in this station.  

Ordinary 
climatological 

This type of stations necessarily has a rain gauge and a 
psychrometer. Thus, they can measure rainfall and instantaneous 
temperatures. Other variables can be also present in the 
measurements of this station. 

Agrometeorological 

In this category, meteorological and biological observations are 
made, including phenological data and other observations that help 
to determine the relationships between weather and climate, on the 
one hand, and the life of plants and animals, on the other. It includes 
the same program of observations of the main climatological station, 
plus temperature records at various depths (up to one meter) and in 
the layer near the ground (0, 10 and 20 cm above the ground). 

Pluviometric 
It is a meteorological station equipped with a rain gauge or container 
that allows to measure the amount of rainfall between two 
consecutive observations. 

Pluviographic 
It records the precipitation, in a graph way that allows to know the 
amount, duration, intensity and period in which the rain has occurred. 
Currently, daily recorders are used. 

 
Table 7. Main categories of the meteorological stations of the IDEAM. 

 

The specific meteorological scenario for Norte de Santander is as follows: the IDEAM has 220 

stations located in the Department, of which 39 are classified among the first four categories in 

table 7, where several measurements of interest for a solar estimation model are recorded 

(temperature, wind speed, humidity, etc.). Therefore, the other stations located in the rest of 

categories in table 7, are not relevant for the current analysis because they only measure one 

variable, as the pluviometric stations. This is, as mentioned in chapter 2, because the use of 

several weather parameters improves the accuracy of the model based on ANN.  

In addition to the above, of the 39 aforementioned stations, 14 stations are suspended by different 

maintenance programs or technical problems; thus, 25 stations can be used to obtain 

meteorological data in Norte de Santander. These stations are listed in figure 15a and detailed in 

table 8.  
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Name Category Municipality Location Altitude (m) 

Apto. Camilo Daza Main synoptic Cúcuta (7,93, -72,50) 250 

ISER Pamplona Agrometeorological Pamplona (7,37, -72,64) 2,34 

La Esperanza Ordinary climatological Ragonvalia (7,56, -72,53) 1,76 

P. Nacional El Tama Main climatological Herrán (7,42, -72,44) 2,5 

Ragonvalia Main climatological Ragonvalia (7,57, -72,48) 1,55 

Univ. Francisco de 
Paula Santander 

(UFPS) 
Main climatological Cúcuta (7,89, -72,48) 311 

Univ. de Pamplona Agrometeorological Pamplona (7,36, -72,66) 2,362 

Alcaldía De Herrán Main climatological Herrán (7,50, -72,48) 2,04 

Finca La Palmita Ordinary climatological Pamplonita (7,51, -72,64) 1,107 

Apto. Camilo Daza 
(Automatic) 

Main synoptic Cúcuta (7,93, -72,51) 313 

Carmen de 
Tonchala 

Main climatological Cúcuta (7,84, -72,56) 285 

Salazar Main climatological Salazar (7,77, -72,83) 860 

Cinera-Villa Olga Main climatological Cúcuta (8,16, -72,46) 100 

Tibú Ordinary climatological Tibú (8,63, -72,72) 50 

Sardinata Ordinary climatological Sardinata (8,07, -72,80) 320 

Apto. Aguas Claras Main climatological Ocaña (8,31, -73,35) 1,435 

Teorama Ordinary climatological Teorama (8,44, -73,28) 1,16 

Abrego Centro Adm. Main climatological Ábrego (8,08, -73,22) 1,43 

La Playa  Ordinary climatological La Playa (8,21, -73,23) 1,5 

Ins Agr Convencion Main climatological Convención (8,47, -73,34) 1,076 

UFPS. (Automatic) Ordinary climatological Ocaña (8,23, -73,32) 1,15 

Aguas De La Virgen Main climatological Ocaña (8,22, -73,39) 1,7 

Esc Agr Cachira Ordinary climatological Cáchira (7,73, -73,05) 1,882 

Silos Ordinary climatological Silos (7,20, -72,75) 2,765 

Tunebia Ordinary climatological Toledo (7,00, -72,11) 370 

 
Table 8. Active meteorological stations for Norte de Santander. 

 

From table 8, a total of 7 stations (4 conventional and 3 automatic satellite ones) measure 

irradiation but since the conventional stations with actinographs are becoming dismantled, just 

the 3 automatic satellite stations are enabled to provide irradiance data in a reliable way. These 

3 stations are shown in figure 15b and highlighted in table 8. 

 

Thus, the stations with measurements of irradiation only constitute 1,36 % of the total stations 

installed in Norte de Santander. This confirms for this region of Colombia, the common scenario 

in several countries around the world mentioned in the first chapter of the present document, in 

reference to the low ratio between weather stations with measurements of climatological variables 

as humidity, temperature, etcetera, and those with irradiation data. 

Other weather stations with ground measurements (in total 11) can be found in the Department, 

managed by the Regional Autonomous Corporation of the Northeast Frontier (CORPONOR, by 

its acronym in Spanish). However, in [60] was shown that the databases of nine (9) of the eleven 

(11) stations did not present radiation information or insolation. In addition, the two (2) remaining 

ones did not contain information for a period of time greater than five (5) years with absence of 

information in several months, for which it was determined that this information is not 

representative for the analysis of the solar potential of the Department. 
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a. 

 
b. 

 

Figure 15. Meteorological stations for Norte de Santander: a. Classified in the first four categories from table 7.         
b. Only those with reliable irradiation data. 

 
 

 

 

 
 

Considering the previous sections, most of the territory of Norte de Santander does not have solar 

information directly measured so PV sizing must be supported by data estimated from different 

sources. Here is where the accuracy of the estimation starts to play a significant role based on 

the geographical variability of the region and the diversity of its weather conditions. Thus, taking 

into account the good results of the estimation models obtained with ground-measurements over 

the satellite ones (for the specific case of Norte de Santander, this choice can be validated by the 

work developed in [45] which presents some evaluation criteria to the selection between a ground-

based or satellite measurements in countries with a landform and weather conditions very similar 

to Colombia), and the profits achieved by the AI techniques among the ground-based methods, 

it makes sense to use indirect estimation models with AI in Norte de Santander. This is the focus 

of the rest of the document, where the construction of the AI models for the solar estimation is 

performed, and later, the results are compared under several scenarios in order to identify the 

relevance of their implementation. 
 

4.2. Development of the model: 

The main idea of the present work is to design an estimation model for irradiation data which 

takes advantage of the correlation between several climatological variables (as temperature 

humidity, sunshine, among others) of easy access and the solar radiation, to increase the 

information available in Norte de Santander and consequently to foster the implementation of PV 

systems in the region. Basically, the objective of the model is to define a mathematical relationship 

from specific input data (climatological variables) and output values (irradiation data) with high 

accuracy. For this reason, for the construction of the input-output links of the model, the AI 

techniques selected require a training process with the input data and its expected output.  

In this sense, as only three municipalities have climatological stations with irradiation 

measurements for the training and validation process of the networks, just three models can be 

constructed for their analysis.  

Considering the above, three models will be generated and evaluated in terms of the estimation 

accuracy to guarantee the reliability of their results. Later, these will be implemented in other 

zones with similar weather and geographical conditions to define their degree of adaptability in 

places where irradiation measurements are not available. For this reason, the present study seeks 
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to be a contribution to the results of the PERS project, considering that a similar methodology is 

applied, but using AI models instead of empirical ones, because different authors have reported 

in the literature that AI models have superior performance than empirical models. 

Thus, as the locations without irradiation data will use the indirect estimation models to predict 

the solar information, these must employ input variables present in the largest number of stations 

in order to cover a wider zone of the Department. Therefore, the first filter to identify the 

climatological variables that will be applied as input in the construction of the model is their 

availability among the 25 weather stations indicated in the previous section; the second filter is 

selecting the variables that have demonstrated to have high correlation with solar radiation and 

hence, their use is extensive in the literature.  

After a thorough revision of the stations and research in the literature according to the previous 

filters, the variables selected to participate in the construction of the model were: humidity, 

temperature, sunshine, and wind speed. 

Having defined the input variables of the model, the main steps for its construction are the 

following: 

1. Pre-processing of the data. 

2. Selection of the network topology, training and validation of the models. 

The previous steps are detailed in the next sub-sections. 

4.2.1. Pre-processing stage: 

In some occasions, the information recorded for the different climatological variables presents 

errors such as missing data, over-peak or atypical measurements mainly related to malfunction 

of the measuring instruments [53]. This can carry out inaccuracies in the construction of the 

model, so that correction techniques must be applied to delete those errors and guarantee a 

correct analysis of the data. In addition to this, not only errors must be identified but problems in 

the structure of the data, consequently, several organization algorithms are developed to solve it. 

Before explaining the techniques and algorithms used in this stage, the data obtained for this 

research study are presented. 

Data from 2005 to 2017 with intervals of 1 hour were obtained from IDEAM. The number of data 

points in hourly intervals for each variable are presented in table 9. The period between samples 

was established based on the minimum interval available from the IDEAM for most parameters 

under evaluation. 

Station Radiation Humidity Wind speed Temperature 

Universidad Francisco de 
Paula Santander 

73.617 81.708 392.470 76.576 

Universidad de 
Pamplona 

32.250 35.781 206.093 35.756 

Alcaldía de Herrán 38.759 52.465 350.288 61.293 
 

Table 9. Distribution of the amount of data provided by the IDEAM. 
 

The sensor used by the IDEAM for the irradiation measurements is the CM11 from the company 

ADOLF THIES GMBH & Co. KG. As it can be observed from table 9, the amount of data points 

for the variable wind speed is much larger than the one presented for the other variables; the 

reason for that is because wind speed was provided in intervals of 10 minutes instead of 1 hour 

as the other ones.  

Based on the above, an average of the data for each hour was calculated in order to obtain the 

same period for all variables. It is worth to mention that although several data points were not 
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provided in the file supplied by the IDEAM (in a similar way to the other variables), in this case no 

technique to replace those values was implemented, assuming that the changes between the 

intervals of 15 minutes were too small so that their absence to affect the final average. The final 

amount of wind speed data used for the pre-processing stage were: 68.688, 35.882 and 60.256 

for the stations in Cúcuta, Pamplona and Herrán, respectively. 

 

In this sense, sunshine data were not provided directly from IDEAM since some weather stations 

with irradiation measurements, do not record that variable. For this reason, the data for that 

variable were calculated from the irradiation data considering the concept of sunshine duration 

given by the IDEAM in [66], where it defines sunshine as the sum of the subperiods during which 

the direct solar irradiance exceeds 120 W/m2. These hourly calculations were compared with daily 

data from other stations in the same city to guarantee the reliability of the process. 

 

After presenting the data to analyze in the pre-processing stage, the different steps with their 

corresponding algorithms to perform this stage are described below. From this section on, all the 

algorithms for the manipulation of data were implemented using the software Matlab R2017a from 

Mathworks which is a well-known and specialized tool for this type of processing. 

 

- Step 1: Organization of the data 

Data from IDEAM were supplied in a .txt file which was converted into spreadsheets in Microsoft 

Excel Professional 2016 to facilitate the access from several algorithms in Matlab.  

In this first step, the set of data were organized taking into account the following considerations: 

1. The experimental data or measurements were limited in a time range from 7:00 to 18:00 

by day, because solar radiation exists only in this interval. This is due to the absence of 

seasons which causes that solar radiation has presence in a constant hourly range during 

the whole year. 

2. The experimental data or measurements not recorded in the original file were included 

with a value of zero, except if the missing data covered the whole day. In the latter case, 

a notification is generated, considering that days with more of two missing data are deleted 

in the next steps (which is detailed later). 

3. The experimental data or measurements are distributed sequentially, so that any data out 

of its corresponding set was re-located (either in the course of the day or month). 

A flowchart of the algorithm used for this first step is displayed in figure 16.  

- Step 2: Interpolation and extrapolation of missing data 

After distributing the data sequentially in sets of 12 values per day (range from 7:00 to 18:00), this 

step must analyze which of these sets represent a reliable data sample; for this, a similar concept 

to the one used in [53] was applied, to determine the maximum amount of missing data that can 

be tolerated in a specific group. There, it is posed that if close 16,6 % of the data of the set were 

lost, this set of data should be deleted. Adapting this criterion to the sets of data from step 1, only 

2 missing data can be allowed in each set (irradiance hours in a day), being this limit the 16,6 % 

of the sample under evaluation. In this way, the considerations in the algorithm applied in this 

step are the following: 

 

1. Days with more than 2 missing data are deleted of the total group of data, and these are 

reported in a excel file for future consultation. 

2. Days with 2 missing data or less use interpolation or extrapolation techniques according 

to the case to fill them and re-build the irradiance profile of the day [17]. The interpolation 

method implemented in the algorithm was the Piecewise Cubic Hermite Interpolating 
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Polynomials (PCHIP) [53] and for the extrapolation process a Polynomial Regression 

based on data modeling in Matlab [67] was applied. The results are also exported in a 

excel file to continue with their processing in the next step. 

A wider description of the interpolation and extrapolation techniques is given in [68], [69] and [70]. 

 
 

Figure 16. Flowchart of the algorithm in Matlab for the first step of the preprocessing of data: Organization. 
 

The amount of previous or subsequent data used in each process (both in the interpolation and 

extrapolation) depended on the location of the missing data. It is needed much more data when 

these were adjacent; and if additionally adjacent missing data were located in the limits of the 

day, i.e., at 7h or 18h, both the interpolation as the extrapolation process should be applied. 

Figure 17 shows the flowchart of the algorithm in Matlab used in this step. Finally, the results of 

the second step are presented in tables 10, 11, and 12. Table 10 shows the amount of deleted 

days by the algorithm; table 11 presents the percentage over the total amount of data for the 

interpolated and extrapolated data points; table 12 contains the final amount of data that the 

outlier detection algorithms will analyze in the next steps.  
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Figure 17. Flowchart of the algorithm in Matlab for the second step of the pre-processing of the data: Interpolation 
and extrapolation processes. 

It is important to indicate that table 12 presents the final amount of data that are evaluated by the 

methods to detect atypical values, however, the irradiation data must still be analyzed by the 

extraterrestrial solar radiation criterion (explained later) before being processed by those 

algorithms. 

Station Irradiation Humidity Wind speed Temperature 

Universidad Francisco de 
Paula Santander 

966 515 314 545 

Universidad de Pamplona 138 180 131 255 

Alcaldía de Herrán 202 495 202 213 
 

Table 10. Days deleted from organized data because of the excess of missing data. 
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Station Irradiation Humidity Wind speed Temperature 

Universidad Francisco de 
Paula Santander 

4,62 % 1,79 % 0,73 % 1,81 % 

Universidad de Pamplona 1,04 % 1,02 % 0,41 % 1,03 % 

Alcaldía de Herrán 1,40 % 1,33 % 0,38 % 0,90 % 
 

a.  
 

Station Irradiation Humidity Wind speed Temperature 

Universidad Francisco de 
Paula Santander 

1,00 % 0,50 % 0,39 % 0,92 % 

Universidad de Pamplona 0,95 % 0,30 % 0,30 % 0,30 % 

Alcaldía de Herrán 1,87 % 2,10 % 0,47 % 0,77 % 
 

                                                                               b. 
 

Table 11. Percentage of missing values: a. Interpolated. b. Extrapolated. 
 

Station Irradiation Humidity Wind speed Temperature 

Universidad Francisco de 
Paula Santander 

30.312* 37.884 33.492 35.904 

Universidad de Pamplona 15.540* 17.004 17.496 16.104 

Alcaldía de Herrán 19.368* 27.396 30.012 30.408 
*Values modified in subsequent step. 

 
Table 12. Total amount of data points for the outlier detection algorithms. 

- Step 3: Handling of atypical values 

 

To identify erroneous or outlier data, two methods were applied: analysis of standardized 

residuals [53] and the Chauvenet criterion. In addition to this, incorrect records of the global solar 

radiation are revealed using daily clearness index (𝐾𝑡) as an indicator. 𝐾𝑡 is calculated as the ratio 

of daily global solar radiation intensity measured to the daily extraterrestrial solar radiation on a 

horizontal surface, being the latter defined as the beam of nearly parallel incident sunrays on top 

of the Earth’s atmosphere, before penetrating it and suffering losses by the different factors 

present in its trajectory to the ground [71]. The upper and lower limits for 𝐾𝑡 represent a clear sky 

and completely cloudy sky, respectively. When the daily clearness index was outside the range 

of 0,015 to 1, the data were considered erroneous and deleted. This analysis is applied to the 

irradiation data before using the outlier detection. Each one of these methods are explained in 

the next sections. 

1. Analysis of Standardized Residuals: 

It is a measure of the intensity between the difference of an observed and expected (estimated) 

value. It is a normalization method used to compare the residual data of a model; this, since 

typically the standard deviations of residuals in a sample vary greatly from one data point to 

another even when the all errors have the same standard deviation (particularly in regression 

analysis). Thus, it does not make sense to compare residuals at different data points without first 

standardizing. Standardized residual is a statistical process very common for the detection of the 

outliers, and it can be used as a general rule based on the following considerations [72]: 

- If the standardized residual is negative so the observed data is much less than the expected 

value; this concept of “negative” can be limited for values smaller than −2. 

- If the residual is positive so the observed data is much greater than the expected value; in a 

similar way to the previous concept, “positive” can be limited for values higher than 2. 
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These statements which constitute the rule for the standardized residual technique is analog to 

the empirical rule: 68 95 99,7 for normal distributions, where the 95 % of the data are inside of 

the area limited to two standard deviations from the average of the data [68]. Then, if the residual 

is ±3, this means that it is a rare event. Mathematically, the concept is given by equation 1 [73]. 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 =  
𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙
          𝐸𝑞. 1 

Where the residual is the difference between the observed data (experimental) of the independent 

variable 𝑦 and the expected data estimated by fitting a model as a linear or polynomial regression 

𝑦̂: 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = 𝑦 − 𝑦̂ 

Note that the term residual is different to the one of error, since the latter is considered as the 

difference between the observed data and the real value of an amount of interest (for instance, 

the population mean), and not by an estimated value (for instance, the sample mean) as in the 

residual concept [74]. 

In Matlab, the application of the standardized residual process is supplied for the detection of the 

outliers with linear regression assumptions; for this case, assuming that the 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 matrix is a 

table of 𝑛 by 4 containing four types of residuals, with a single row for each observation, the 

standardized residual is defined as the set of raw residuals divided by their estimated standard 

deviation [75]. For a specific observation 𝑖, the standardized residual appears as: 

𝑠𝑡𝑖 =  
𝑟𝑖

√𝑀𝑆𝐸(1 − ℎ𝑖𝑖)
 

Where 𝑀𝑆𝐸 is the mean squared error and ℎ𝑖𝑖 is the leverage value for observation 𝑖, and it is 

handled by the object 𝑚𝑑𝑙 for the fitting of the model from the functions 𝑓𝑖𝑡𝑙𝑚 or 𝑠𝑡𝑒𝑝𝑤𝑖𝑠𝑒𝑙𝑚 in 

collaboration with the dot notation 𝑚𝑑𝑙. 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙. 𝑟𝑎𝑤. On the contrary, for polynomial regressions 

the analysis suggested is based on the Curve Fitting app and in its graphic results which can be 

obtained through the option Residual Plot, as it is presented in [76]. 

Therefore, to apply the concept of standardized residual in data whose fitting models (estimated 

values) for calculating the residuals, need different methods to a linear regression (as it is the 

case of the current work), Matlab requires the development of an own and custom algorithm for 

their handling. For this reason, an algorithm for the detection of outliers considering the 

characteristics of this statistical method was developed with the following considerations: 

- Data sets of 12 values from step 2 were acquired, and a polynomial regression fitting to the 

daily irradiance profile was performed. 

- The corresponding residual for each data from the previous point was determined, and the 

standard deviation for these residual values was defined. 

- The standardized residual for each data based on equation 1 is obtained, and subsequently 

it is compared with the limits mentioned in the general rules for this concept, i.e., if the result 

was higher than 2 or smaller than -2, the data was considered as an atypical value and later, 

it was deleted. A report about this was generated with the date and value of the analyzed 

variable. The data deleted were interpolated or extrapolated according to its position. 

As an example of the above, the irradiance data point at 15:00 on January 2, 2014 in Cúcuta was 

cataloged as an atypical value by the standardized residual algorithm, and the detection and 

modification process of this data was as follows: the experimental data for this day, i.e., data given 

as result of the interpolation and extrapolation algorithm were used to obtain the coefficients of a 

polynomial structure based on a regression process, which act as the expected values mentioned 
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in the definition of the concept of standardized residual; both the experimental and expected data 

can be visualized in figure 18a. The residual for each data is calculated and presented in table 

13. The standard deviation for the set of residuals of the table 13 is calculated considering 

equation 2. 

𝜎 = √
∑ (𝑟𝑖 − 𝑟̂)2𝑁−1

𝑖=0

𝑁 − 1
         𝐸𝑞. 2 

 

Where 𝑟𝑖 represents the residual in the position 𝑖, 𝑟̂ is the average residual and 𝑁 is the number 

of the data point, which for this case is 12. The standard residual for each hour is presented in 

table 14, where it can be observed that the corresponding irradiation data point at 15:00 on 

January 2, 2014 (highlighted) exceeds the limits established as criterion in the outlier detection. 

 
a. 

 
b. 

 
Figure 18. Standardized residual process: a. Detection of outlier. b. Correction of outlier. 

Hour* 7 8 9 10 11 12 13 14 15 16 17 18 

E. D.1 
(Wh/m2) 

21 192 429 593 722 602 482 293 496 139 61 10 

F. D.2  
(Wh/m2) 

-7,04 251,2 435,3 548,3 595,4 584,1 524,4 428,3 310,4 187,3 78,1 4,1 

Residual 
(Wh/m2) 

28,04 -59,2 -6,34 44,7 26,6 17,9 -42,4 -135 185 -48,3 -17 5,9 

     * Hour in 24h format. 
        1 Indicative for: Experimental data. 
        2 Indicative for: Fitting or expected data. 

 
Table 13. Example data for the application of the standardized residual criterion. 

Hour* 7 8 9 10 11 12 13 14 15 16 17 18 

S. R.1 0,36 -0,77 -0,08 0,58 0,34 0,23 -0,55 -1,76 2,41 -0,62 -0,22 0,07 

      * Hour in 24h format. 
         1 Indicative for: Standardized residual. 

 
Table 14. Standardized residuals for data in table 13. 

After outlier detection, this is deleted and subsequently interpolated as it is shown in figure 18b. 

This process is cyclical for all days of the years evaluated, and for each one of the variables under 

analysis (humidity, temperature, wind speed, sunshine and irradiation). An overall flowchart of the 

standardized residual algorithm that was applied is displayed in figure 19. 

 

At this point, it is worth to mention the degree of the polynomial used in the regression process; 

for its selection, several samples (three for each month of the year by all the years and stations) 

Outlier 

(15,496) 
Interpolation 

(15,216) 
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were analyzed in the Curve Fitting Tool of Matlab in order to identify the degree with the best 

results for each variable and to be able to implement it in general form for all data under 

evaluation. At the end of this process, a 4th degree polynomial regression was applied because it 

presented average R-square values close to 1 and average Sum of Squares due to Error (SSE) 

values close to 0 (as it is shown in table 15), which indicates that the model has a smaller random 

error component, and that the fit will be more useful for prediction [77]. 

 

 
Figure 19. Flowchart of the standardized residual algorithm implemented in Matlab. 

 

Variable Average R-square Average SSE 

Irradiation 0,9871 17,02 

Humidity 0,9732 4,87 

Temperature 0,9741 1,79 

Wind speed 0,9845 2,03 
 

Table 15. Fit indicators for each variable under evaluation. 
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In a similar way, a degree higher than 4 showed a better R-square and SSE value but the 

generated regressions were more sensitive to atypical values as it is shown in figure 20 for a set 

of irradiation data; only with the participation of one atypical value, the model calculated by the 

regression presented large variations looking for the best fit to the experimental values instead of 

determining a model for the expected values. This was the other criterion to define a 4 th degree 

polynomial regression instead of one with a higher degree. A 4th degree regression maintains the 

equilibrium between the indicators which show a good fit and the stability to atypical values.  

The results of the analysis of standardized residuals are presented in table 16 for each of the 

stations. 
 

Station Irradiation Humidity Wind speed Temperature 

Universidad Francisco de 
Paula Santander 

5,18 % 5,08 % 4,47 % 5,24 % 

Universidad de Pamplona 5,12 % 4,90 % 4,52 % 4,96 % 

Alcaldía de Herrán 5,24 % 5,20 % 4,47 % 5,05 % 
 

Table 16. Percentage of modified data by the analysis of standardized residuals. 
 

 

a. 

 

b. 

 
Figure 20. Polynomial regression for a set of irradiation data: a. With 4th degree. b. With 6th degree. 

Outlier 

Outlier 
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2. Chauvenet criterion: 

 

Chauvenet’s criterion is a method that can identify the bad data or wild point and discard them 

from experimental series. In [78], it was used as atypical values detection criterion for a polynomial 

parametric equation obtained from experimental data, similar to the application which is looked 

for in the current work. Other investigations have also used this criterion as an outlier detection 

mechanism for different types of experimental data [79] [80]. 

 

Chauvenet’s criterion states that if the expected number of measurements is at least as deviant 

as the suspect measurement (where the term “suspect” makes reference to the possible atypical 

value in evaluation) is less than one half, then the suspect measurement should be rejected [81]. 

For instance, for a set of data of 𝑁 measurements: 

𝑥1, … . . , 𝑥𝑁 

of a single quantity 𝑥. From all 𝑁 measurements, it can be calculated 𝑥 (mean of the 

measurements) and its standard deviation 𝜎𝑥. If one of the measurements (called 𝑥𝑠𝑢𝑠) differs 

from 𝑥 so much that it looks suspicious, then find: 

𝑡𝑠𝑢𝑠 =
|𝑥𝑠𝑢𝑠 − 𝑥|

𝜎𝑥
      𝐸𝑞. 3 

the number of standard deviations by which 𝑥𝑠𝑢𝑠  differs from 𝑥. Next, from Appendix A, we can 

find 𝑃𝑟𝑜𝑏(𝑤𝑖𝑡ℎ𝑖𝑛 𝑡𝑠𝑢𝑠𝜎), which is the probability to locate 𝑥𝑠𝑢𝑠  inside of 𝑡𝑠𝑢𝑠 times the standard 

deviation of the distribution. With this, the probability outside of the range given by 𝑡𝑠𝑢𝑠 times the 

standard deviation can be calculate as: 

𝑃𝑟𝑜𝑏(𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑡𝑠𝑢𝑠𝜎) = 1 − 𝑃𝑟𝑜𝑏(𝑤𝑖𝑡ℎ𝑖𝑛 𝑡𝑠𝑢𝑠𝜎)  

which determines the probability that a legitimate measurement would differ from 𝑥 by 𝑡𝑠𝑢𝑠 or 

more standard deviations. Thus, for a 𝑡𝑠𝑢𝑠 = 2,45 the probability of 𝑃𝑟𝑜𝑏(𝑜𝑢𝑡𝑠𝑖𝑑𝑒 2,45𝜎) = 1 −

0,9857 = 0,0143, where the integer and the first decimal of 𝑡𝑠𝑢𝑠 determine from the first column 

of table A1 in Appendix A, the row which will intercept the column of the same table defined by 

the second decimal of 𝑡𝑠𝑢𝑠. This interception locates the probability value 𝑃𝑟𝑜𝑏(𝑤𝑖𝑡ℎ𝑖𝑛 𝑡𝑠𝑢𝑠𝜎) 

corresponding to the analyzed 𝑥𝑠𝑢𝑠 . Finally, multiplying by 𝑁, the total number of measurements, 

gives: 

𝑛 = (𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑎𝑠 𝑑𝑒𝑣𝑖𝑎𝑛𝑡 𝑎𝑠 𝑥𝑠𝑢𝑠) 

= 𝑁 × 𝑃𝑟𝑜𝑏(𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑡𝑠𝑢𝑠𝜎) 

If this expected number 𝑛 is less than one half, then, according to Chauvenet’s criterion, 𝑥𝑠𝑢𝑠  can 

be rejected. This means: 

𝑛 < 0,5      𝑡ℎ𝑒𝑛 𝑥𝑠𝑢𝑠  𝑐𝑎𝑛 𝑏𝑒 𝑑𝑒𝑙𝑒𝑡𝑒𝑑 

Table A1 in Appendix A is named normal table and it is very common in handling probabilities for 

normal distributions. Because tables are used for calculating probabilities with variables that 

follow a normal distribution and since it would be impossible to have a table for each possible 

normal distribution, this last is transformed in a standard normal distribution, such that its mean 

(𝑥) is zero and its standard deviation (𝜎) is one, i.e., 𝑁(0,1). It is achieved using equation 3, 

where: 1) a data shift is performed by subtracting 𝑥 to each one of the data points, so that the 

data becomes “centered” in zero in the representation of its density function; 2) the standard 

deviation is equal to 1, by dividing the previous result by the standard deviation of the normal 

distribution. This transformation is called standardizing or normalizing of the variable [82], 

although the term “normalizing” can make reference to different processes, and the data resulting 
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from this, are known as z-values, z-scores or normal scores, represented in the previous 

explanation as 𝑡𝑠𝑢𝑠. A graphical representation of this process is shown in figure 21. 

 
Figure 21. Graphical representation of the standardizing process. 

 

In this way, the Chauvenet criterion is applicable only to normal distributions (as the previous use 

of the normal table suggests it), and although, the irradiance profile and other variables (humidity, 

wind speed, temperature and sunshine) seem to have a probability distribution similar to a normal 

distribution, a normality test is performed to verify this. The procedure used for the application of 

this test is explained in Appendix B. Therefore, each one of the data points is evaluated for 

determining if the set where these belong, represents a normal distribution or not for the 

application of the Chauvenet’s criterion. A more detailed information about the standard normal 

distribution and the t-test (including the characteristics of the t-distribution) can be found in [82] 

and [83]. 

Considering the previous analysis, an algorithm to apply the Chauvenet’s criterion was developed 

and its flowchart is presented in figure 22, based on the following procedure where the evaluation 

of the normality is included: 

- The data obtained after the application of the standardized residual method (as in previous 

analysis in sets of 12 values by day) are verified to determine if its probability distribution is 

a normal distribution for the evaluation of the Chauvenet’s criterion. 

- If the previous step is validated, the normal distribution is transformed in a standard normal 

distribution, calculating the probability of occurrence of each value outside of its z-score. After 

this, by multiplying this probability with the number of data points in the set, the Chauvenet’s 

criterion is evaluated, deleting the value that does not meet the established requirements. 

- The deleted data are interpolated or extrapolated according to the position inside of the set 

and a report about these data is generate for the future review. 

At the end, all data sets shown a normal distribution, so the criterion could be applied, and the 

results of this analysis are presented in table 17 for each one of the stations. 

Station Irradiation Humidity Wind speed Temperature 

Universidad Francisco de 
Paula Santander 

0,46 % 2,97 % 1,48 % 3,13 % 

Universidad de Pamplona 1,00 % 2,37 % 1,42 % 2,20 % 

Alcaldía de Herrán 0,73 % 2,24 % 2,10 % 1,13 % 
 

Table 17. Percentage of modified data by the analysis with Chauvenet’s criterion. 

3. Daily clearness index (𝐾𝑡) test: 

In several works, extraterrestrial solar radiation has been used as a tool in the error detection in 

the data of the irradiance profile for solar estimation applications [45] [84]. In [53], the authors 

applied an indirect way using 𝐾𝑡 as an indicator, in order to identify if the experimental values 

were bigger than the calculated ones from the concept of extraterrestrial solar radiation, which 

would represent an error. 
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Figure 22. Flowchart for Chauvenet’s criterion algorithm in Matlab. 

 

For a better understanding of the above, some concepts are called and described in Appendix C. 

There, the procedure to calculate the indicator 𝐾𝑡 is detailed to follow its application in the 

algorithm developed in this analysis.  

The algorithm elaborated in Matlab for the execution of this criterion meets the following sequence 

of steps: 

- Data are evaluated by days; from the concept in Appendix C, 𝛼 is calculated from the 

corresponding location of the day under assessment. With this, the declination angle and 

the incident extraterrestrial solar radiation is determined. Later, 𝜔 is obtained and finally, 

the daily extraterrestrial solar radiation is defined with the respective latitude of the place 

where the data are supplied. 

- Average daily solar radiation is calculated from the experimental values for the days 

analyzed, and together to the results of the previous point, the daily clearness index is 

established, deleting the data set (data in a day) whose 𝐾𝑡 is outside of the range mentioned 

at the beginning of the section step 3. A report about it is generated by the algorithm. 

- The procedure is repeated for all days of the year. Note that the interpolation process is not 

applied here, because the elimination of all data of the day is performed.  

The flowchart of this algorithm developed in Matlab is similar to the one used in the Chauvenet’s 

criterion just that applying the range for the 𝐾𝑡 indicator. The amount of data with errors for all 

cases, i.e., for all years in each one of the stations did not surpass 1 % of the total data, which 

were deleted before continuing with the error detection criteria by hour of the irradiation data. 
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- Step 4: Integration of data 

After organizing the data, to detect and modify the atypical values in their structure, an algorithm 

to integrate the information of the different variables by station was developed. This took each 

variable and deleted the data whose hours and days were absent in the other variables for each 

year and station. At the end, the same amount of data for each variable is obtained, allowing to 

mix all data in the same file. 

The amount of data resulting from the integration process is presented in table 18. These data 

are normalized in the next step to start the training and validation of the ANN. From table 18 can 

be deducted that the ANN has a total of 52.740 data points by each one of the evaluated variables 

for its training, validation and testing process. A total of 263.700 data points are processed to 

construct the estimation model in the present work. 

 

Year 
Universidad Francisco de 
Paula Santander station  

Universidad de 
Pamplona station 

Alcaldía de 
Herrán station 

2006 2.568 NS 300 

2007 3.012 NS 2.100 

2008 3.048 NS 1.020 

2009 NS NS 1.212 

2010 1.776 NS 576 

2011 3.264 636 84 

2012 2.340 108 816 

2013 1.368 3.792 1.440 

2014 2.700 2.100 2.520 

2015 3.156 864 1.368 

2016 NS 4.104 4.104 

2017 NS 1.236 1.128 

Total 23.232 12.840 16.668 
                                    NS=Not supplied. 

Table 18. Final amount of data points for the normalization process. 

- Step 5: Normalization 

The normalization process is a common method used in the pre-processing of data, and it 

consists of handling the input data in a smaller range from a wider one. The normalization range 

can vary since it must be specified according to the activation function that will be used in the 

network [28]. Then the appropriate input variables are determined to ensure optimum accuracy 

of the model. According to [16], the data can be restricted within a range between 0 and 1 to 

minimize the regression error, improve precision, and maintain correlation among the dataset. In 

addition to this, the activation functions deployed in Matlab for the training of the AI models 

mentioned at the end of the section 3.1.1 are designed for ranges between -1 and +1 (except the 

purelin function) so that a range from 0 to 1 is viable for its application. Therefore, this is the first 

applied normalization range to the data; its implementation is defined by the following formula [4] 

[16]: 

𝑋𝑛𝑜𝑟𝑚 =
𝑋𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
    𝐸𝑞. 4 

where 𝑋𝑛𝑜𝑟𝑚 is the normalized data; 𝑋𝑎𝑐𝑡𝑢𝑎𝑙 is the original input; and 𝑋𝑚𝑎𝑥 and 𝑋𝑚𝑖𝑛 are the 

minimum and maximum values of the input data, respectively. 

If the data are pre-processed, then post-processing is required ahead of the calculation or 

analysis on the performance of the forecasting model. In PV power forecasting, the most 

commonly used post-processing techniques are anti-normalization and wavelet reconstruction 
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[16]. If normalized data are used in the forecasting model, then the forecasted value should be 

anti-normalized to extract the actual forecasting PV power and analyze the performance of the 

model. Meanwhile, wavelet reconstruction is adopted to extract the actual forecasting PV power 

if the model input data are pre-processed by wavelet decomposition (WD). 

Other expressions can be found in the literature [36] [29] for applying different normalization 

ranges, being the range from -1 to +1 one of the most common (due to the coupling with the 

ranges of the activations functions) after the one mentioned from equation 4. It is from the above 

reason that this range is also used, and its results were compared with the ones obtained from 

equation 4, in order to select the best performance. The formula for the application of this range 

is presented in equation 5. 

𝑋𝑛𝑜𝑟𝑚 = (𝑀𝑎𝑥 − 𝑀𝑖𝑛) (
𝑋𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
) − 𝑀𝑖𝑛       𝐸𝑞. 5 

where 𝑀𝑎𝑥 and 𝑀𝑖𝑛 represent the top and bottom limits of the normalization range, i.e., +1 and -

1, respectively for this case.  

A simple algorithm of conversion was implemented in this step to transform both the input and 

output data used in the construction of the AI models. 

4.2.2. Design stage: Structure of the network 

After the pre-processing stage, the network is ready to train the connections between the 

climatological variables (inputs) and the irradiation estimation (output) for both, the ANN and the 

ANFIS models. For this, the present section deals with the following procedure for the two AI 

techniques: first, different structures and learning techniques are used with the four climatological 

variables (assuming that their participation in group will show the highest accuracy of the model) 

for the Universidad Francisco de Paula Santander station in order to find the topology with the 

best performance. Subsequently, a brief analysis of the input data is performed to examine its 

influence and participation in the model. After this, the best results from the previous analysis, are 

extended for the implementation of the ANN and ANFIS models of the remaining two stations in 

evaluation (Universidad de Pamplona station and Alcaldía de Herrán station), completing the 

three models expected for the municipalities assessed in this study. Finally, an error comparison 

is carried with other works in the literature to estimate the behavior of the models. From here on, 

the municipalities will be called cities for the reader to have a better understanding. 

- Creation of the ANN structure: 

The ANN was developed in Matlab through its Neural Network Toolbox which provides a 

framework for designing and implementing deep neural networks with algorithms, pre-trained 

models, and apps. It is widely used because it allows to perform tasks of classification, regression, 

clustering, dimensionality reduction, time-series forecasting, and dynamic system modeling and 

control in a fast and effective way. 

For the creation of the network, the Neural Network Toolbox requests the following parameters: 

topology, training algorithm, training and target data, number of neurons and layers, type of 

activation function in each layer and the performance indicator to evaluate the training of the 

network. The different options that Matlab offers are implemented, taking as initialization point 

those parameters which showed better results in the literature for solar estimation models: 

1. Topology: Feed forward back propagation [4] [28] [29] [53] [85]. 

2. Training algorithm: Levenberg–Marquardt back-propagation [4] [28] [29] [53] [54] [85]. 

3. Number of hidden layer: 1 [4] [29] [53]. 

4. Number of neurons: In [4] a range from 3 to 20 neurons was evaluated with a final value of 10 

for the best performance. In [29] the evaluated range was between 1 and 30 neurons, obtaining 
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the best result with a hidden layer of 24 neurons; and in [53] a range until 80 neurons was 

implemented with similar results for values between 10 and 20 units. Since for this parameter, 

there is not a fixed value to show a globalized result, a range between 5 and 30 neurons was 

applied, considering that the most promising results were found in this interval. 

5. Activation function: The hyperbolic tangent sigmoid function and linear function are generally 

used in the hidden and output layer respectively, so that these were the ones used for the first 

construction of the network [29] [53]. Other options were also evaluated, for instance, the 

hyperbolic tangent sigmoid function for both layers (hidden and output, the input layer does 

not use any activation function since it does not perform any processing data, as it was 

mentioned in previous sections) which presented the best results in [4] and [85].  

6. Performance indicator: In the Neural Network Tool interface, three error indicators can be 

selected to analyze the performance of the network: MSE, SSE (mentioned in previous 

sections) and MSEREG which measures network performance as the weight sum of two 

factors: the mean squared error and the mean squared weight and bias values. The first two 

are the most common, but in order to be able to compare the results of the model with those 

in the literature, MSE was selected as performance target. This parameter is very important 

because the ANN will try to reach that value in the training process; if the MSE value is not 

achieved after repeated attempts for convergence, other parameters as the number of epochs 

or validation checks are analyzed for the finalization of the training process. These 

characteristics are explained in the next sections. 

The initial input data used for the training were obtained by the normalization algorithm for the 

variables of humidity, temperature, wind speed, and sunshine; the target data was the 

corresponding irradiation values for each combination. 

One of the problems that occur during neural network training is the presence of an effect called 

overfitting. The error on the training set is driven to a very small value, but when new data is 

presented to the network the error is large. The network has memorized the training examples, 

but it has not learned to generalize to new situations. For this reason, there are two methods for 

improving generalization that are implemented in Neural Network Toolbox™ software: 

regularization and early stopping. The second one is the default method for improving 

generalization; this technique is automatically provided for all of the supervised network creation 

functions, including the backpropagation network [86]. 

In this technique the available data is divided into three groups. The first group is the training set, 

which is used for computing the gradient and updating the network weights and biases. The 

second one is the validation set. The error on the validation set is monitored during the training 

process. The validation error normally decreases during the initial phase of training, and so does 

the training set error. However, when the network begins to overfit the data, the error on the 

validation set typically begins to rise. When the validation error increases for a specified number 

of iterations, the training is stopped, and the weights and biases at the minimum of the validation 

error are returned. 

The final group is the test set error. It is not used during training, but it is used to compare different 

models. It is also useful to plot the test set error during the training process. If the error in the test 

set reaches a minimum at a significantly different iteration number than the validation set error, 

this might indicate a poor division of the data set. 

From the total data points, 80 %, i.e., 42.192 of the 52.740 data for each variable, were used for 

the training, validation and testing of the network, as it was done in [28] and [29], and the 

remaining 20 % for the simulation process. The data used for the training, validation and testing 

were taken randomly of the 80 % of the total data mentioned by the dividerand function with a 

relationship of 70:15:15, respectively, which can be varied according to the needs of the ANN. 
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The simulation process is applied with different data than the data used in the training, validation 

and testing processes, and it is implemented as an indicator of the network performance when 

data are unknown for the model. Here, the output must be analyzed in an independent way of the 

Neural Network Tool, since it does not analyze the output data in this mode (simulation). 

To start the training process, it is needed to establish the stop and run parameters. The first are 

the characteristics which lead the execution of the learning algorithm and indicate when it must 

stop. As it was mentioned previously, the main objective for the training process is to reach the 

error defined by the indicator selected in the creation of the network, that for this case was the 

MSE; but when the algorithm detects that the error does not decrease considerably with each 

epoch, and that this error is the minimum which the network with the current characteristics can 

achieve, then the algorithm uses other parameters to stop the training; some of them are: 

- Number of epochs: It represents the maximum number of cycles or epochs that the 

algorithm will perform. 

- Training time: Maximum execution time of the algorithm. 

- Minimum performance gradient: It indicates the performance of the gradient, and since this 

determines the changes of the weights and biases, a small value will indicate that the 

network is not applying significant changes in the updating of the weights and that is near 

to reach its goal. 

- Maximum validation failures: Maximum number of iterations when the error starts to 

increase after rising a minimum. 

On the other hand, the run parameters define the form in which the training is executed and 

depend on the training algorithm to implement. For the case of the Levenberg–Marquardt back-

propagation algorithm, the following parameters are requested: 𝑚𝑢, 𝑚𝑢_𝑖𝑛𝑐, 𝑚𝑢_𝑑𝑒𝑐 and 

𝑚𝑢_𝑚𝑎𝑥, which express the initial factor 𝑚𝑢, its increase and decrease, and the maximum value 

that 𝑚𝑢 can rise before stopping the training. The factor 𝑚𝑢 is a value used to calculate the 

Jacobian 𝑗𝑥, objective of the back-propagation algorithm, with respect to the weight and bias 

variables 𝑋. Each variable is adjusted according to Levenberg-Marquardt method: 

𝑗𝑗 = 𝑗𝑥 × 𝑗𝑥  and  𝑗𝑒 = 𝑗𝑥 × 𝐸 

𝑑𝑥 = −(𝑗𝑗 + 𝐼 × 𝑚𝑢)/𝑗𝑒 

where 𝐸 is all errors and 𝐼 is the identity matrix. 

The adaptive value 𝑚𝑢 is increased by 𝑚𝑢_𝑖𝑛𝑐 until the change above results in a reduced 

performance value. The change is then made to the network and 𝑚𝑢 is decreased by 𝑚𝑢_𝑑𝑒𝑐. 

Training stops when 𝑚𝑢 exceeds 𝑚𝑢_𝑚𝑎𝑥. A more detailed information about the Levenberg–

Marquardt back-propagation algorithm in Matlab can be consulted in [87]. 

Table 19 shows the training parameters used for the creation of the ANN, based on the criteria 

presented in [29]. Different trainings were applied, varying the number of neurons as first 

evaluation parameter, taking into account that there is not a globalized criterion for its selection. 

The results in terms of performance with respect to the applied number of neurons after the 

training is shown in tables 20a and 20b, for the data normalized from equation 4 and 5, 

respectively. In these tables, the two best results are highlighted for visual identification.  

Apart of the MSE indicator, table 20 presents the R indicator provided by Matlab after the training; 

R Values measure the correlation between outputs and targets from a linear regression. An R 

value of 1 means a perfect linear relationship, and 0 a random relationship. For the case of the 

MSE indicator, lower values are better, and zero value means no error. Thus, the best model is 

that whose combination presents the lowest MSE with the highest R. 
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Parameter Value 

Maximum number of epochs to train 1000 

Performance goal  0 

Maximum validation failures 6 

Minimum performance gradient 1e-5 

Initial mu 0,001 

Mu decrease factor 0,1 

Mu increase factor 10 

Maximum mu 1e10 

Maximum time to train in seconds Inf 
 

Table 19. Training parameters. 

Number of neurons MSE R 

5 0,0274 0,832 

10 0,0260 0,843 

15 0,0264 0,842 

20 0,0267 0,842 

25 0,0263 0,843 

30 0,0260 0,843 
 

a. 

Number of neurons MSE R 

5 0,104 0,844 

10 0,102 0,846 

15 0,101 0,847 

20 0,102 0,846 

25 0,102 0,846 

30 0,102 0,847 
 

b. 
 
Table 20. Performance indicators for each process of construction of the model in terms of the number of neurons in 

the hidden layer: a. Data normalized from equation 4. b. Data normalized from equation 5. 

As it can be observed in table 20, there is not a significant variation in the performance indicators 

for changes in the number of neurons in the hidden layer with the implementation of the 

Levenberg–Marquardt back-propagation algorithm. In contrast, the normalization range 

demonstrated to have a large impact in the results, whereby the range applied from equation 4 is 

expected to be the one used in the training process. Therefore, the number of neurons was 

selected according to the lowest computational capacity that this parameter required for a final 

value of 10 in the first range and 15 for the second one.  

 

In addition to this, other available learning algorithms were implemented; considering the previous 

analysis, the same variations in the number of neurons were applied. These as in the Levenberg–

Marquardt back-propagation algorithm did not expose large effects in the performance of the 

training. The best result for each algorithm in terms of the number of neurons is shown in table 

21 for the two different normalizations, in order to compare the performance among the learning 

strategies. 

 

Although the results presented in table 21 are very similar, it verifies that the best performance is 

obtained with the Levenberg–Marquardt back-propagation, following the conclusions in other 

research studies. It is worth to mention that all algorithms finished its training process after 

reaching the number of validation checks in less than 1000 epochs except the Gradient Descent 

with Momentum algorithm which needed about 2500 epochs to obtain a performance close to the 

other ones. This indicates that the Gradient Descent with Momentum algorithm was about two 

times slower in its execution respect to rest of the algorithms. 

In this way, the Levenberg–Marquardt back-propagation algorithm is confirmed as learning 

strategy of the ANN. The results shown in table 21 were obtained using the hyperbolic tangent 

sigmoid function (tansig) as activation function in the hidden layer, and the linear function (purelin) 

in the output layer according to the analyzed literature. Therefore, to identify if this is the best 

combination, the different activation functions offered by Matlab were applied, generating the 

results displayed in tables 22a and 22b. These results correspond to the best parameters 
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obtained until this point for each type of applied normalization, i.e., a feed-forward topology with 

the Levenberg–Marquardt back-propagation algorithm and one hidden layer of 10 neurons for 

table 22a, and a similar structure but with 15 neurons for the table 22b. 

Algorithm Number of neurons MSE R 

Levenberg–Marquardt back-propagation 10 0,0260 0,843 

Gradient Descent back-propagation 
algorithm 

25 0,0314 0,815 

Gradient Descent with Momentum 5 0,0311 0,815 

Resilience back-propagation 20 0,0272 0,838 

Scaled conjugate Gradient 20 0,0279 0,835 

Conjugate Gradient back-propagation 
with Fletcher-Reeves Updates 

25 0,0293 0,828 

Conjugate Gradient back-propagation 
with Polak-Riebre Updates 

25 0,0281 0,834 

Broyden-Fletcher Goldfarb Shanno 15 0,0282 0,834 
 

a. 

Algorithm Number of neurons MSE R 

Levenberg–Marquardt back-propagation 15 0,101 0,846 

Gradient Descent back-propagation 
algorithm 

25 0,163 0,741 

Gradient Descent with Momentum 5 0,112 0,829 

Resilience back-propagation 20 0,117 0,819 

Scaled conjugate Gradient 20 0,111 0,835 

Conjugate Gradient back-propagation 
with Fletcher-Reeves Updates 

25 0,107 0,837 

Conjugate Gradient back-propagation 
with Polak-Riebre Updates 

25 0,109 0,839 

Broyden-Fletcher Goldfarb Shanno 15 0,105 0,838 
 

b. 
 

Table 21. Performance comparison among learning algorithms for a feed-forward back-propagation topology of 3 
layers: a. Data normalized from equation 4. b. Data normalized from equation 5. 

As with the learning strategy, the combination of the activation functions tansig-purelin mentioned 

in the literature reached the best performance indicator (highlighted in blue in the tables), and 

therefore, it is used in the implementation of the ANN. The worst performance was obtained for 

the combination purelin-logsig highlighted in red in the tables; it is observed that the presence of 

the logsig function in the output layer seems to be the cause of this behavior, since the worst 

results in the combinations were generated for this relation, although it is a unipolar function 

optimized at least for the first normalization range. The network shows good indicators up to here, 

but parameters as the number of layers and topology were modified to find out if these could offer 

better benefits to the estimation.  

 

In terms of the number of layers, ANNs of 2 and 3 hidden layers were developed; for the first, 

different combinations from 5 to 30 neurons between the layers were applied and it was found 

that the performance indicator did not obtain better results than the ANN with one hidden layer. 

The MSE range generated for these combinations was between 0,0265 (for the combination 20-

20 neurons) and 0,0278. Similarly, for the ANNs with 3 hidden layers, different combinations with 

the same range of number of neurons were implemented without exceeding the performance 

indicator obtained with one layer, but they did increase the use of the computational resources in 

their execution. This verifies the concept exposed in [53] where the authors argue that only one 

hidden layer is needed for this type of model. 
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Activation function 
MSE R 

Hidden layer Output layer  

tansig tansig 0,0261 0,842 

tansig purelin 0,0260 0,843 

tansig logsig 0,0813 0,674 

purelin purelin 0,0341 0,786 

purelin  tansig 0,0289 0,824 

purelin logsig 0,0833 0,632 

logsig logsig 0,0812 0,677 

logsig tansig 0,0269 0,839 

logsig purelin 0,0261 0,842 
 

a. 
 

Activation function 
MSE R 

Hidden layer Output layer  

tansig tansig 0,104 0,842 

tansig purelin 0,105 0,843 

tansig logsig 0,326 0,677 

purelin purelin 0,136 0,786 

purelin  tansig 0,115 0,824 

purelin logsig 0,333 0,633 

logsig logsig 0,328 0,679 

logsig tansig 0,104 0,839 

logsig purelin 0,106 0,841 
 

b. 
 

Table 22. Comparison in terms of performance for different combination of the activation functions: a. Data 
normalized from equation 4. b. Data normalized from equation 5. 

For the analysis of the topology, Cascade-Forward Back Propagation Network (CFB) and Radial 

Basis Neural Network (RB) were evaluated taking into account that these topologies have been 

used in the literature for solar estimation [54] [88] [89].  

 

Considering that the data normalized in a range between 0 and 1 has shown the best results in 

the different analysis, its application was the only one used for continuing with the evaluation 

based on the topologies; the comparative is displayed in table 23, where it can be concluded that 

the feed-forward back propagation topology is the best choice for the model. In table 23, Elman 

Back Propagation network does not show the value for the indicator R because Matlab only use 

the MSE indicator for the training in this topology. Thus, the final characteristics of the ANN are 

indicated in table 24. The execution time for all trainings were between 1 and 4 minutes. 

 

Topology MSE R 

Feed forward back propagation 0,0260 0,846 

Cascade-Forward Back Propagation Network 0,0571 0,863 

Elman Back Propagation Network 0,0576 - 
 

Table 23. Performance of three topologies for the best behavior of the design parameters evaluated. 

Parameter Value or description 

Topology Feed forward back propagation 

Training algorithm Levenberg–Marquardt back-propagation 

Number: of hidden layer/of neurons 1/10 

Activation function combination  tansig-purelin (hidden-output layer) 
 

Table 24. Final characteristics of the implemented ANN. 
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- Analysis of the ANN input data: 

 

After defining the structure of the ANN, the contribution of the input data to the model performance 

is analyzed. The input data are composed by humidity, temperature, wind speed and sunshine 

values where each one of these has a participation in the model accuracy depending on its 

influence and correlation on the solar radiation. For this analysis, the Spearman’s rank correlation 

coefficients [20] are used to determine the correlation among variables. The definition and 

calculation of Spearman’s rank correlation coefficient is as follows: 

 

𝜌𝑥,𝑦 =
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑁

𝑖=1

√∑ (𝑥𝑖 − 𝑥̅)2𝑁
𝑖=1 ∑ (𝑦𝑖 − 𝑦̅)2𝑁

𝑖=1

       𝐸𝑞. 6 

 

where 𝑁 denotes the number of samples, 𝑥𝑖 = {𝑥1, … . , 𝑥𝑁} and 𝑦𝑖 = {𝑦1, … , 𝑦𝑁} are the variables 

to relate, 𝑥̅ and 𝑦̅ are mean values of the two variables, and 𝜌 denotes the usual Pearson 

correlation coefficient utilized to rank the variables. Only if all 𝑁 ranks are distinct integers, it can 

be calculated by using: 

𝑟𝑠 = 1 −
6 ∑ 𝑑𝑖

𝑁
𝑖=1

𝑁(𝑁2 − 1)
          𝐸𝑞. 7 

 

where 𝑑𝑖 is the difference between two ranks of each sample. If |𝑟𝑠| > 0,8, the two variables have 

a strong correlation, if 0,2 < |𝑟𝑠| < 0,8, the two variables have a moderate correlation, and if the 

calculations show a |𝑟𝑠| < 0,2, there is a weak correlation between the two variables. 

 

Therefore, the Spearman’s rank correlation coefficients among variables and the irradiation are 

presented in table 25, based on the previous equations. 
 

Spearman Humidity Temperature Wind Speed Sunshine Irradiation 

Humidity 1 -0,8826 -0,6701 -0,4146 -0,5890 

Temperature -0,8826 1 0,6130 0,4901 0,8206 

Wind speed -0,6701 0,6130 1 0,4477 0,5641 

Sunshine -0,4146 0,4901 0,4477 1 0,8225 

Irradiation -0,5890 0,7206 0,5641 0,7225 1 
 

Table 25. Correlation among climate variables and solar radiation based on Spearman´s rank coefficients. 

In this way, it can be observed that there is a strong correlation between the temperature and 

sunshine with the solar radiation, a weak correlation of this variable with the humidity, and a 

moderate relationship with the wind speed. Then, considering the ANN with the characteristics 

showed in table 24, several combinations of the input variables were implemented to identify its 

effect on the performance of the estimation and corroborate the behavior shown in table 25. Table 

26 presents the variation of the MSE and R indicators for each combination of inputs. 

 

Variables MSE R 

H,T,W,S 0,0257 0,843 

T,W,S 0,0279 0,831 

H,W,S 0,0341 0,786 

H,T,S 0,0285 0,828 

H,T,W 0,0348 0,784 

T,S 0,0298 0,815 
                             Where: H=Humidity, T=Temperature, W=Wind speed and S=Sunshine. 
 

Table 26. Performance of the ANN for different combination of the input variables. 
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The results observed in table 26 verify the assumptions applied at the beginning of the ANN 

analysis, where it was argued that the participation of all the variables should generate the best 

model; from this, the individual impact of each variable was evaluated by its absence in the 

training of the network, verifying the correlation obtained in table 25, except for the last 

combination which removes the participation of humidity and wind speed variables of the training. 

 

The results in table 26 express that the variables with the largest influence are the temperature 

and the sunshine, while humidity and wind speed did not generate a significant impact, although 

wind speed is slightly more correlated than humidity. Due to the low individual effect of humidity 

and wind speed, the absence of these variables in the input data of the network could be taken 

into account for places that do not contain them. Despite of this, the results in table 26 shows that 

the contribution of these variables is additive whereby if these are available, they can represent 

a factor to increase (slightly) the model accuracy. 

 

Following the analysis presented in [4], the final allocation of weights from the input layer to the 

hidden one conducted by the Levenberg-Marquardt training algorithm is presented in table 27, 

with the corresponding bias value for each neuron. The weights between the hidden and output 

layer are displayed in table 28, with the output bias for the neuron in the output layer of  𝐵𝑖𝑎𝑠𝑜𝑢𝑡 =

−0,2098. 

 

Neurons Weightsi,j Humidity Temperature Wind speed Sunshine Biasin 

1 𝜔𝑖,1 1,6667 1,4161 -0,21971 1,169 -2,4896 

2 𝜔𝑖,2 0,25031 -1,6255 -1,0005 1,5786 -1,9363 

3 𝜔𝑖,3 -0,95382 1,7498 -0,88941 1,1982 1,3831 

4 𝜔𝑖,4 1,4612 -1,6129 0,90166 0,80516 -0,8298 

5 𝜔𝑖,5 1,6384 1,5719 -0,31681 -0,97069 -0,2766 

6 𝜔𝑖,6 -1,6339 -0,45976 1,0414 1,4942 -0,2766 

7 𝜔𝑖,7 -1,6285 1,1113 -1,1426 1,0028 -0,8298 

8 𝜔𝑖,8 0,065555 1,4482 -0,73774 -1,8847 1,3831 

9 𝜔𝑖,9 1,8767 -0,038279 1,5692 0,46069 1,9363 

10 𝜔𝑖,10 -1,0369 1,8928 -1,0044 -0,72889 -2,4896 

 Average 0,1705745 0,5453661 -0,179891 0,412437  
*Where 𝑖 = 1 for humidity, 𝑖 = 2 for temperature, 𝑖 = 3 for wind speed, 𝑖 = 4 for sunshine, and 𝑗 is the neuron number. 

 
Table 27. Allocation of weights by the training algorithm. 

Neuron 1 2 3 4 5 

Weightk,g 0,31396  0,79068  -0,99612  0,77937  0,10378  

Neuron 6 7 8 9 10 

Weightk,g -0,71936  0,10274 -0,7997  -0,90887  0,5864 
 

Table 28. Weights between hidden and output layer for UFPS station. 

The analysis of the contribution of each parameter shows that the most positive weight allocated 

indicates the highest contribution on a particular neuron in the hidden layer. To simplify the 

analysis, an average was taken for all weights assigned to a particular input parameter. It was 

observed that the temperature had the most positive weight, indicating the highest contribution. 

This was followed by sunshine, wind speed and finally, relative humidity. This order of weights is 

also in agreement with the expected contribution which was determined in the previous analysis 

in the tables 25 and 26. 

 

In this sense, the final ANN structure for the Universidad Francisco de Paula Santander station is 

presented in figure 23. 
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Figure 23. ANN structure with the best performance for the UFPS Station. 

The falling curve of the MSE and the evolution of the gradient of the algorithm for the training, 

validation and testing process are displayed in figures 24a and 24b, respectively. In the first 

graphic, we can observe that the minimum error is achieved close to the epoch 100. In the second 

one, it is worth to note that the validation check was executed 6 times before the error started to 

increase in the epoch 102. To this point the learning algorithm determines that the error does not 

fall as in the previous validations and therefore, the training process ends indicating that the ANN 

has reached its best performance with the given characteristics. 

 

The structure in figure 23 is the one defined to globalize and implement in different zones of the 

region, thus, data from the other stations, i.e., from the Universidad de Pamplona and Alcaldía de 

Herrán stations were adapted to construct the estimation model for the locations of Pamplona 

and Herrán. It means that the structure in figure 23 was trained with the new data to establish the 

corresponding weights and bias values which could model the irradiation in the aforementioned 

cities. Table 29 presents the weights obtained for each ANN in Pamplona and Herrán, and table 

30 their corresponding weights between the hidden and output layer as in the analysis of the 

Universidad Francisco de Paula Santander station. The output bias for the last layers for the city 

of Pamplona and Herrán, were 0,8229 and −1,1485, respectively. 

 
 

 
 

a. 
 

 
 

b. 

Figure 24. Characteristics of the training process: a. MSE falling curve in the learning process. b. Evolution of the 
gradient in the Levenberg–Marquardt back-propagation algorithm. 
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Neurons Weights Humidity Temperature Wind speed Sunshine Biasin 

1 𝜔𝑖,1 0,65865 -0,83486 -0,84895 7,5793 8,083 

2 𝜔𝑖,2 0,15098 0,3521 0,30315 1,452 -0,41638 

3 𝜔𝑖,3 -1,0265 3,1569 -0,1542 1,1115 -3,4383 

4 𝜔𝑖,4 2,9196 5,289 -6,0418 -0,95441 -1,847 

5 𝜔𝑖,5 0,63389 2,7232 0,030707 -3,4606 4,8308 

6 𝜔𝑖,6 2,0543 2,2369 -6,2051 -1,424 -2,2048 

7 𝜔𝑖,7 -0,35894 3,0372 1,9327 2,6695 -1,7615 

8 𝜔𝑖,8 2,7585 1,5013 -1,9248 4,0579 4,0292 

9 𝜔𝑖,9 1,7733 0,73603 -1,4597 4,5215 4,6032 

10 𝜔𝑖,10 1,6176 -3,0221 0,36307 -1,2466 3,4822 

 Average 1,118138 1,517567 -1,4004 1,4306  
*Where 𝑖 = 1 for humidity, 𝑖 = 2 for temperature, 𝑖 = 3 for wind speed, 𝑖 = 4 for sunshine. 

 

a. 
 

Neurons Weights Humidity Temperature Wind speed Sunshine Biasin 

1 𝜔𝑖,1 -1,1136 0,93932 -1,0046 -1,56 2,2359 

2 𝜔𝑖,2 -2,1054 1,7954 -2,0379 -2,8894 3,8792 

3 𝜔𝑖,3 -0,54881 -1,1614 0,19828 1,9224 -1,0858 

4 𝜔𝑖,4 -0,08757 -0,31474 -1,7954 -1,8741 1,9645 

5 𝜔𝑖,5 -4,5443 -1,6274 1,3805 3,7179 -4,6142 

6 𝜔𝑖,6 0,34143 2,4075 0,8928 9,9624 -10,1941 

7 𝜔𝑖,7 0,52436 0,44175 -2,0191 -1,8841 2,1724 

8 𝜔𝑖,8 -7,0463 2,3139 0,11936 4,4521 -6,7346 

9 𝜔𝑖,9 -4,4612 3,3916 2,8839 3,1745 -3,9029 

10 𝜔𝑖,10 -0,061374 0,19098 -0,19747 -0,94056 1,1067 

 Average -1,9102764 0,8377 -0,157963 1,408114  
*Where 𝑖 = 1 for humidity, 𝑖 = 2 for temperature, 𝑖 = 3 for wind speed, 𝑖 = 4 for sunshine. 

 

b. 
 

Table 29. Weights from the training of the ANN: a. For the city of Pamplona. b. For the city of Herrán. 

Neuron 1 2 3 4 5 

Weightk,g -2,1759  -0,087314  -1,2434  0,09966  -1,0924  

Neuron 6 7 8 9 10 

Weightk,g -0,10544  0,042353  -1,7051  2,9407  -0,91491 
 

a. 
 

Neuron 1 2 3 4 5 

Weightk,g 4,6683  -2,1787  -0,21685  -2,5345  -0,80084  

Neuron 6 7 8 9 10 

Weightk,g 0,71794  1,9092  0,40604  0,34688  -1,3032 
 

b. 
 

Table 30. Weights between hidden and output layer for ANN developed for: a. Pamplona. b. Herrán. 

- ANN error analysis: 
 

In order to compare the results of the ANN in figure 23 with other models in the literature, different 

error indicators were calculated: RMSE, NRMSE, MAE, MAPE and R2. Equations from 8 to 12 

show the mathematical expressions for each indicator, respectively. 
 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑋𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑋𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑)2

𝑁

𝑖=1

  (𝑊ℎ/𝑚2 𝑜𝑟 𝑀𝐽/𝑚2)   𝐸𝑞. 8 



 
 

57 
 

𝑁𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑋𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑−𝑁 − 𝑋𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑−𝑁)2

𝑁

𝑖=1

    (𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠)      𝐸𝑞. 9 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑋𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑋𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑|

𝑁

𝑖=1

   (𝑊ℎ/𝑚2 𝑜𝑟 𝑀𝐽/𝑚2)       𝐸𝑞. 10 

𝑀𝐴𝑃𝐸 = (
1

𝑁
∑ |

𝑋𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑋𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑

𝑋𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
|

𝑁

𝑖=1

) × 100   (%)       𝐸𝑞. 11 

 

𝑅2 = 1 −
∑ (𝑋𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑋𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑)2𝑁

𝑖=1

∑ (𝑋𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑)2𝑁
𝑖=1

   (𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠)          𝐸𝑞. 12 

 

The MAE is defined as a quantity which is used to measure how close the predicted values are 
with measured values. The RMSE indicates the level of scatter that the ANN model produces. 
Lower RMSE indicates that the developed ANN model is having good prediction accuracy [29]. 

𝑅2 in a similar way to the 𝑅 indicator, shows the correlation between the expected and estimated 

data. Larger 𝑅2 values indicate a stronger matching of trends in the measured data by the model 
results [53]. Finally, the MAPE indicator represents the average percentage of the difference 
between the predicted and real values [4].  
 

The results for each station are presented in table 31. This table indicates the error indicators 
both training and simulation processes; the latter was implemented with the remaining 20 % of 
the total data for each station (not used in the training process). Although the original data 
provided by the IDEAM expresses the irradiation in Wh/m2, table 31 also portrays the data in 
MJ/m2 for comparison purposes, since this unit is also common in the literature. According to the 
International System of Units the equivalence between these units is 1 𝑊ℎ = 3,6𝐸 −
3 𝑀𝑒𝑔𝑎 𝐽𝑜𝑢𝑙𝑒𝑠. A comparison of the measured and estimated data is generated in the figures 25, 
26 and 27 for the cities under consideration with four random days in the months of January, April, 
August, and December of the last years provided by the IDEAM for each station. Since there are 
no seasons in Colombia, these months were selected trying to include different scenarios 
throughout the year. 
 

 Cúcuta Pamplona Herrán 

 Training Simulation Training Simulation Training Simulation 

RMSE 
(Wh/m2) 

167,47 173,8 113,61 117,6 115,24 116,7 

MAE 
(Wh/m2) 

121,51 130,2 76,18 80,1 78,9 80,3 

MAPE (%) 19,55 21,3 17,08 19,7 17,36 18,4 

R2 0,8941 0,887 0,9139 0,9078 0,9148 0,9101 

NRMES 0,1597 0,163 0,1085 0,1107 0,1117 0,1191 
 

a. 
 

 Cúcuta Pamplona Herrán 

 Training Simulation Training Simulation Training Simulation 

RMSE 
(MJ/m2) 

 0,60288 0,6256 0,4089 0,4233 0,4148 0,4201 

MAE 
(MJ/m2) 

0,4374 0,4687 0,2742 0,2883 0,2840 0,289 

MAPE (%) 39,55 41,3 27,08 29,7 27,36 28,4 
 

b. 
 

Table 31. Error indicators of ANN model for each one of the evaluated cities in: a. Wh/m2. b. MJ/m2. 
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a. 

 
b. 

 
c. 

 
d. 

 
Figure 25. Measured vs. Estimated data for hourly estimation model in the city of Cúcuta: a. January 8, 2015.           

b. April 6, 2015. c. August 23, 2015. d. December 19, 2015. 

 
a. 

 
b. 

 
c. 

 
d. 

 
Figure 26. Measured vs. Estimated data for hourly estimation model in the city of Pamplona: a. August 15, 2016.         

b. December 2, 2016. c. January 6, 2017. d. April 14, 2017. 
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a. 

 
b. 

 
c. 

 
d. 

 
Figure 27. Measured vs. Estimated data for hourly estimation model in the city of Herrán: a. August 6, 2016.               

b. December 12, 2016. c. January 7, 2017. d. April 21, 2017. 

- Effect of the estimation range: 

 

Some authors [4] [30] argued to use monthly solar estimation instead of its daily forecasting by 

the fact that the daily solar radiation series is unstable due to the fast changes in weather 

conditions. Considering this, it can be expected that the hourly solar estimation presents even 

greater variations. Despite the above, each time series has its advantages according to the 

application as it will be exposed in the next sections. 

In order to analyze the changes in terms of performance of the mentioned time series, daily and 

monthly estimation models were trained for each of the stations analyzed in the hourly scale and 

their results are presented below. 

Since the data in previous sections were provided and organized in hourly intervals, an algorithm 

in Matlab was developed to group them in daily and monthly periods and later, these were 

normalized applying equation 4. For the monthly case, the same criteria used in the hourly 

analysis for the amount of missing data was performed. Thus, if a month had more than 5 missing 

data (close to 16 % of the total data in a month), this month was not taken into account in the 

evaluation. For 5 or less missing values the interpolation process was applied to fill the data and 

to obtain the corresponding monthly irradiation data.  

Adopting the same ANN structure that the one used in the hourly analysis, the results for daily 

and monthly estimation are shown in table 32. Unlike table 31 the MSE and R values of the 

training process are included, and results in the simulation part for the monthly scale are not 

shown because the amount of data were not enough to support both processes (training and 

simulation). 
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  Cúcuta Pamplona Herrán 

  Training Simulation Training Simulation Training Simulation 

Daily 

RMSE (Wh/m2) 881 959,2 786,22 738,66 636,64 590,03 

MAE (Wh/m2) 695,4 760,33 631,96 612,46 498,35 481,1 

NRMES 0,1169 0,1238 0,1259 0,1183 0,1008 0,0935 

MAPE 15,39 17,52 15,8 14,29 13,9 12,86 

R2 0,961 0,9398 0,9354 0,937 0,96 0,9627 

MSE 0,0128 - 0,0154 - 0,00957 - 

R 0,775 - 0,796 - 0,836 - 

Monthly 

RMSE (Wh/m2) 3707,4 - 1327,4 - 4651,2 - 

MAE (Wh/m2) 2588,8 - 1097,3 - 3443,1 - 

NRMES 0,0842 - 0,0885 - 0,079 - 

MAPE 1,72 - 9,68 - 2,92 - 

R2 0,9714 - 0,9852 - 0,98 - 

MSE 0,00115 - 6,3E-11 - 9,28E-06 - 

R 0,947 - 0,792 - 0,947 - 
 

a. 
 

  Cúcuta Pamplona Herrán 

  Training Simulation Training Simulation Training Simulation 

Daily 
RMSE (MJ/m2) 3,17 3,45 2,83 2,65 2,29 2,12 

MAE (MJ/m2) 2,5 2,73 2,27 2,2 1,79 1,73 

Monthly 
RMSE (MJ/m2) 13,34 - 4,77 - 16,74 - 

MAE (MJ/m2) 9,31 - 3,95 - 12,39 - 
 

b. 
 

Table 32. Error indicators for daily and monthly estimation models: a. Results in Wh/m2. B. Results in MJ/m2. 

As it can be identified in a comparison between tables 31 and 32, the increase of the estimation 

period improves the performance of the model; there is an important decrease of indicators as 

the MAPE and NRMSE, and a growth in the correlation between the measured and estimated 

irradiation, evaluated by the coefficient of determination 𝑅2. The MAPE decreased from 19,55 % 

in the hourly model to 1,72 % for the monthly one in the city of Cúcuta (UFPS station). In the city 

of Pamplona, it dropped from 19,07 % to 9,68 %, and in the city of Herrán it was reduced from 

17,36 % to 2,92 %. In a similar comparison, the coefficient of determination 𝑅2 increased from 

0,8941 to 0,9714, from 0,9139 to 0,9852 and from 0,9148 to 0,98, for the cities of Cúcuta, 

Pamplona and Herrán, respectively. A similar comparison to that in figures 25, 26, and 27 for the 

hourly estimation is performed in figures 28, 29, and 30 for the daily estimation model for a pair 

of months with the data provided for last year by the IDEAM which met the minimum amount of 

missing data allowed for the analysis. 

In a similar way to the previous analysis with the daily estimation, the results of the monthly model 

are portrayed in figures 31a, 31b and 31c for the cities of Cúcuta, Pamplona and Herrán, 

respectively; in these figures, the months with less than 5 missing values of the last two years for 

each station were plotted. The good results expressed in table 32 for monthly estimation are 

confirmed by the closeness between the measured and estimated data in those figures. 

In this study, we consider the MAPE indicator as one of the most accurate for comparison 

purposes because it is as a normalized error, since it defines the error with respect to the real or 

measured value, as it is shown in equation 11; meanwhile the other indicators calculate an error 
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which depend on the range of the variable under analysis. For instance, a RMSE of 200 Wh/m2 

could be a result better than 150 Wh/m2, although 200 Wh/m2 is higher than 150 Wh/m2, if the 

range of the variable for the first one is 1000 Wh/m2 and for the second one 500 Wh/m2. Therefore, 

the MAPE is used as reference for the evaluation of the models and the rest of error indicators to 

compare with other works. 

According to [90], in practical applications, MAPE ≤ 10 % means high accuracy, 10 % ≤ MAPE ≤ 

20 % means good prediction, 20 % ≤ MAPE ≤ 50 % means reasonable prediction and MAPE ≥ 

50 % means inaccurate prediction. Taking the above into account, the hourly and daily models 

could perform estimations with a good accuracy and the monthly prediction with a high precision, 

referring to tables 31 and 32.  

On the other hand, the results in terms of the error indicators from some works in the literature 

for the different estimation ranges are presented in table 33, and the research studies where the 

error is equal or higher than those presented in the current work are highlighted in blue as a 

performance indicator. This analysis shows that the monthly model has better results than several 

works in the literature, and that the hourly and daily models record similar conclusions mainly in 

reference to the 𝑅2 indicator. 

One could argue that using the error indicators only to select which model is better than other 

could be irresponsible considering that each model is trained with very different conditions and 

objectives. In consequence, the comparison in table 33 is only an overview intended to show what 

was expected by the models. The real advantages and performance conclusions are evaluated 

in specific cases for sizing PV systems in the Norte de Santander region in the next sections of 

the document, where a comparison with similar characteristics is performed.  
 

 
a. 

 

b. 
 

Figure 28. Measured vs. Estimated data for daily estimation model in the city of Cúcuta: a. January, 2015.                
b. June, 2015. 
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a. 

 
b. 

 

Figure 29. Measured vs. Estimated data for daily estimation model in the city of Pamplona: a. March, 2017.              
b. April, 2017. 

 
a. 

 
b. 

 

Figure 30. Measured vs. Estimated data for daily estimation model in the city of Herrán: a. February, 2017.               
b. April, 2017. 
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a. 

 
 

b. 

 
 

c. 
 

Figure 31. Measured vs. Estimated data for monthly estimation model in the city of: a. Cúcuta. b. Pamplona.             
c. Herrán. 
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Reference Input parameters ANN type 
Data recording 

interval 
Error indicator 

Ibrahim [48] 
Sunshine ratio, humidity, ambient 

temperature, month and day number, and 
number of hours by day. 

Feed-forward ANN 
topology 

1 year 
MAPE(%)= 17,15 

RMSE(%)= 26,44 

Chen et al. 
(2013) in [30] 

Temperature, Solar radiation, 
Sky condition 

Feed-forward Neural 
Network with fuzzy logic 

No supplied MAPE(%)= 6,03 

Benmouiza and 

Cheknane 

(2013) in [30] 

Global horizontal solar radiation 

time series 

Feed-forward Neural 
Network 

1 year 

NRMSE= 0,2003 

RMSE(Wh/m2)= 64,34 

Khosravi [91] 
Local time, temperature, pressure, 

wind speed, and relative humidity 

Radial basis function 

neural network 
2010-2016 

R(%)= 88,1 

RMSE(Wh/m2)= 150,141 

Multilayer feed-forward 

neural network 

R(%)= 98,87 

RMSE(Wh/m2)= 41,08 

Shaddel [92] 

Declination angle, Solar altitude angle, 

Horizontal global irradiance, Extraterrestrial 

horizontal solar irradiation 

Multilayer perceptron 

(MLP) using feed-forward 

back-propagation (BP) 

2013 

R2(%)= 92,42 

MAE= 0,0284 

RMSE= 0,055 

Renno [93] 

Clearness index (kt), declination 

angle (d), hour angle (HRA) and global 

normal irradiance 

(GNI) 

Feed-forward neural 

network 
8 months 

MAPE(%)= 5,57 

RMSE(Wh/m2)= 17,7 

R2(%)= 99,4 

Ihya [94] 
Clearness index, hour of the day, solar 

altitude 

MLP (Multi-Layers 

Perceptron) 

Artificial Neural Network  

2009-2011 

R(%)= 94 

RRMSE(%)= 20 

 

a. 
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Reference Input parameters ANN type 
Data recording 

interval 
Error indicator 

Lunche 
Wang [Ya] 

Air temperature, air pressure, relative 
humidity, water vapor pressure and 

sunshine duration 

ANN multilayer perceptron 
(MLP), Generalized 

Regression Neural Network 
(GRNN), Radial Basis 

Neural Network (RBNN). 

1961-2014 

R2(%)= 73-92 

RMSE(Wh/m2)= 538,89 - 908,34 

MAE(Wh/m2)= 425 - 636,11 

Quej [53] 

Minimum and 
maximum air temperatures, rainfall and 

global solar radiation. 

Feed-forward ANN 
topology 

2000-2014 

R2(%)= 62,7 - 68 

RMSE(Wh/m2)= 708,61 – 764,7 

MAE(Wh/m2)= 520,28- 602,78 

Yildirim 

[28] 

Global solar radiation with 

Actinographies and sunshine duration 

Feed-forward, back-
propagation, multilayer 

perceptron 
neural network 

1997-2007 

R2(%)= 96,11 

RMSE(Wh/m2)= 38,88 

Bou-Rabee 

[31] 
- 

Multilayer feed-forward 

ANN 
2007-2010 MAPE(%)= 86,3 

Xue [95] 

Month of the year, sunshine duration, 

mean temperature, rainfall, wind speed, 

relative humidity, daily global solar 

radiation Hg. 

Back propagation neural 

network 
1995-2014 

R2(%)= 94 - 95,7 

RMSE(Wh/m2)= 213,89 - 255,5 

MAE(Wh/m2)= 188,33 - 224,44 

Zou [96] 

Sunshine duration hours, temperature, 

relative humidity, precipitation, air 

pressure, water vapor pressure, and 

wind speed 

ANN multilayer perceptron 

(MLP) with Back 

Propagation 

1994-2010 
RMSE(Wh/m2)= 302,78 - 736,12 

R2(%)= 80 - 94 

Marzouq 

[97] 

Rainfall, wind direction, daily 

temperature gradient and global solar 

irradiation at the top of the atmosphere 

Feed-forward Multi-Layer 

Perceptron (MLP) with 

evolutionary 

artificial neural networks 

(EANN) 

2009-2015 

R2(%)= 97,5 

RRMSE(%)= 17,85 

MAPE(%)= 18,46 

 

b. 
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Reference Input parameters ANN type 
Data recording 

interval 
Error indicator 

Chiteka [4] 

Altitude, latitude, longitude, 
humidity, pressure, clearness 

index and average 
temperature 

Multilayer feed-forward 
back propagation 

2004-2005 

R2(%)= 98,86 

RMSE(Wh/m2)= 223 

MAE(Wh/m2)= 170 

MAPE(%)= 2,56 

Alsina [27] 

Top of Atmosphere (TOA) 
radiation, 

day length, number of rainy 
days and average rainfall, 

latitude and altitude 

Feed-forward Multi-
Layer Perceptron 

(MLP) 
1 year MAPE(%)= 1,67 - 4,25 

Neelamegam [29] 

Latitude, longitude, altitude, 
year, month, mean ambient 

air temperature, mean station 
level pressure, mean wind 
speed and mean relative 

humidity 

Feed-forward ANN 
topology 

200-2009 

R2(%)= 93,63 - 95,45 

MAPE(%)= 0,11 - 4,24 

RMSE(Wh/m2)= 289,33 - 300,53 

Jiang (2009) in [30] 
Longitude, Latitude, Altitude, 

Sunshine percentage 
Feed-forward back-

propagation 
1995-2004 

R2(%)= 95 

RMSE(Wh/m2)= 238,89 

Ozgoren 
et al. (2012) in [30] 

Latitude, longitude, altitude, 
Month, mean 

land surface temperature 

Feed-forward back-
propagation 

2000-2006 MAPE(%)= 5,34 

Celik [90] 
Monthly mean sunshine 
duration, monthly mean 

temperature, altitude, month 

Back propagation 
multilayer perceptron 

ANN 
2000-2010 

MAPE(%)= 2,802 - 4,162 

MAPE(%)= 4,082 - 5,27 

MAPE(%)= 3,303 - 6,82 

MAPE(%)= 3,174 - 6,301 

Mohammadi et al. 
(2015) in [14] 

Sunshine, temperature No supplied No supplied MAPE(%)= 13,43 

 

c. 
 

Table 33. Error indicator for several models in the literature: a. Hourly. c. Daily. c. Monthly. 
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- Creation of the ANFIS structure: 

Using the same data as in the analysis of the ANN model, several ANFIS structures were 

implemented, considering the three design parameters for this type of networks: the number of 

membership functions, their type and the learning strategy to apply. Fuzzy Logic Toolbox™ software 

from Matlab was the tool used for the ANFIS implementation, since it provides command-line 

functions and an app for training Sugeno-type fuzzy inference systems using specific input/output 

training data. Unlike the Neural Network Toolbox™ (which uses the MSE indicator), Fuzzy Logic 

Toolbox™ uses the RMSE as error indicator for the training, checking and testing processes, so this 

is the selection parameter of the best structure for the estimation model.  

In this type of systems, the expected output is a linear expression as it was indicated in chapter 2; 

an important step is the initialization of its coefficients to carry out a faster and more accurate training. 

Thus, a qualitative analysis of the correlation of the input variables with the irradiation is performed 

to establish a first approximation of the links input-output of the network, and to initialize the 

coefficients of the ANFIS linear outputs. The results of the analysis were the following: 

- It is expected a decrease of irradiation to an increase in humidity values due to the 

presence of the water vapor particles in the line of sun sight. 

- It is expected an increase of the irradiation to an increase of the air temperature. 

- It is expected an increase of the irradiation with the increase of the sunshine. 

- It is expected a decrease of the temperature with the increase of the wind speed, which 

decrease the capability of the air to maintain water (decrease the relative humidity) and 

improves the reception of solar radiation. 

It is worth to indicate that the humidity data evaluated in this work are referred to the concept of 

relative humidity for each city; this means that the features of the concept “relative” were taken into 

account in the previous arguments. A brief explanation of this is given below. 

The amount of water vapor particles in the air is known as humidity. A mass of air can contain a 

certain amount of water vapor particles, and this amount depends on the temperature. As the air 

temperature increases, the air is able to hold more humidity. Therefore, the air has less capacity to 

contain water vapor at 5 ºC than at 15 ºC. When a mass of air reaches the maximum amount of water 

vapor that it can hold at a specific temperature, it is said that the air is saturated. Considering this, 

since the saturation state of the air can vary according to the temperature, the term of relative 

humidity is used to standardize the measurement; thus, the relative humidity relates the amount of 

water vapor present in a mass of air respect to the amount of water vapor which could be present in 

the same mass of air, if it were totally saturated. 

Therefore, an increase in the relative humidity value does not necessarily represent an increase of 

the humidity or the amount of water vapor particles, if temperature variations are present. In this way, 

in order to establish first expected conditions of the irradiation with respect to the humidity, it is 

assumed that the amount of water vapor particles in the evaluation zones is constant, and thus, the 

changes in the relative humidity values indicate variations in the amount of water vapor particles that 

the air can group.  

Based on all the above, for the number of Membership Functions (MFs) evaluated, a specific number 

of rules was expected (as it was indicated in chapter 2), and according to the possible combinations 

of the input data in these MFs, the corresponding coefficients of each linear output of the Sugeno 

relation if-then were predicted. It is expected that this initialization process improves the update of 

the weights in the training of the ANFIS. 
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Thus, the number of MFs under evaluation were 2, 3, and 4 and the initial parameters for the mapping 

of the MF in an input range [0,1] (defined by the normalization range selected) of each variable are 

shown in table 34, in terms of their most common shapes. 

  Triangular Trapezoidal Bell-shaped 

Number of 
MF by input 

𝒊 𝒂 𝒃 𝒄 𝒂 𝒃 𝒄 𝒅 𝒂 𝒃 𝒄 

2 
1 -1 0 1 -1 -0,3 0,3 1 0,45 2 0 

2 0 1 2 0 0,7 1,3 2 0,45 2 2 

3 

1 -0,5 0 0,5 -0,5 -0,1 0,1 0,5 0,25 2 0 

2 0 0,5 1 0 0,4 0,6 1 0,25 2 0,5 

3 0,5 1 1,5 0,5 0,9 1,1 1,5 0,25 2 1 

4 

1 -0,33 0 0,33 -0,33 -0,1 0,1 0,33 0,2 2 0 

2 0 0,33 0,67 0 0,23 0,43 0,67 0,2 2 0,35 

3 0,33 0,67 1 0,33 0,57 0,77 1 0,2 2 0,7 

4 0,67 1 1,33 0,67 0,9 1,1 1,33 0,2 2 1 
    {𝑎, 𝑏, 𝑐} is the parameter set indicated in figure 10. 
 

Table 34. Parameters for the implemented membership functions. 
 

Figures 32, 33 and 34 show graphs of the triangular, trapezoidal and bell-shaped membership 

functions used in the training process, respectively, for the parameters exposed in table 34. The 

performance results for each of the ANFIS structures are presented in table 35. The error indicator 

applied in this table is the NRMSE, because the data used in the training are the data normalized 

from the Universidad Francisco de Paula Santander station and the RMSE is the performance 

indicator in the ANFIS training in Matlab, as it was indicated previously. In the training, two learning 

strategies were implemented: one based on the back-propagation approach and another on a derived 

hybrid algorithm.  
 

 
a. 

 
b. 

 

 
c. 

 

Figure 32. Graphical representation of the membership functions in Matlab: Triangular. 
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a. 

 
b. 

 

 
c. 
 

Figure 33. Graphical representation of the membership functions in Matlab: Trapezoidal. 

 
a. 

 
b. 

 

 
c. 
 

Figure 34. Graphical representation of the membership functions in Matlab: Bell-shaped. 
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Membership functions Number of MF NRMSE Epochs Time (min.) 

Triangular 

2 0,1876 50 12:23 

3 0,1601 30 27:30 

4 0,1592 6 57:14 

Trapezoidal 

2 0,1620 40 18:21 

3 0,1613 25 29:10 

4 0,1612 4 87:20 

Bell-shaped 

2 0,1604 60 21:32 

3 0,1602 20 11:02 

4 0,1596 6 59:15 
 

a. 
 

Membership functions Number of MF NRMSE Epochs Time (min.) 

Triangular 

2 0,1619 5 1:20 

3 0,1601 5 6:10 

4 0,1592 5 27:05 

Trapezoidal 

2 0,1620 10 1:40 

3 0,1613 5 5:10 

4 0,1612 5 32:14 

Bell-shaped 

2 0,1624 10 1:50 

3 0,1602 5 5:50 

4 0,1596 5 29:32 
 

b. 
 

Table 35. Performance of the ANFIS implementations: a. With back-propagation algorithm. b. With hybrid algorithm. 

Considering the results in table 35, it can be observed that the number of membership functions does 

not generate a large impact in the performance of the model but increases the execution time and 

the computational resources for its implementation. Therefore, an ANFIS structure with two triangular 

membership functions, linear output relationship and a hybrid optimization method (with better 

execution time than back-propagation algorithm also in table 35) is enough for the solar estimation 

model. In table 35 was included the execution time because it varies very much for each 

implementation unlike of the ANN approach which was very stable and short among changes. 
 

- Analysis of the ANFIS input data: 
 

As with the data of the ANN, the influence of each input was analyzed in this section. Figure 35 shows 

the participation of each variable with respect to the output according with a  report of the Fuzzy Logic 

Toolbox™ from Matlab; humidity has a contribution close to 14 %, the temperature about 26 %, the 

wind speed with a value slightly higher than 14 % and finally, the sunshine duration with a 40 %. The 

report corroborates that the four variables contribute to the construction of the model; moreover, the 

type of relationship presented in this figure verifies the behavior assumed in the qualitative analysis 

where the humidity was described as having an inversely proportional correlation and the rest of 

variables a directly proportional one. 
 

The last conclusion is reinforced by figure 36 where the relationships temperature - sunshine duration 

and humidity - wind speed with the output are displayed. When the temperature and the sunshine 

duration are at the maximum point, the irradiation obtains its maximum value; and when the humidity 

and the wind speed achieve its minimum and maximum value, respectively, the trajectory of the 
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sunlight obtains the best conditions for its reception in ground. Therefore, these variables become 

suitable input elements for the ANFIS estimation model. 
 

 
a.                                                                                    b. 

 
                                                             c.                                                                                        d. 

 

Figure 35. Correlation among input variables with the output in the ANFIS structure. 

 
a. 

 
b. 

 

Figure 36. Relationship between input and output data from the qualitative analysis. 

- ANFIS error analysis: 

 

As in the ANN analysis, the error indicators were calculated and these are portrayed in table 36, but 

unlike ANN, this table includes the three time intervals considering that the details and reasons for 

their implementation were already presented previously. In this sense, table 36 describes again the 

effect of the estimation range in the accuracy of the model. For higher time scales, the model reduced 

the distance between the predicted and measured data. Values in MJ/m2 are not displayed because 

ANFIS results will not be compared with other works in the literature. That is because the goal of 

implementing the ANFIS model is to determine if it could contribute with better benefits than the ANN 

model in the specific solar prediction of the region under assessment.  
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Since the MAPE indicator is the choice in the present work to compare the performance results, a 

juxtaposition of this parameter between the ANN and ANFIS models is presented in table 37. 

 

As it is observed in table 37, ANFIS generates slight improvements in the performance of the model 

in hourly scale; but in the other time series it becomes to reach variations of up 37 % (with a MAPE 

of 13,9 in ANN model to 8,77 in ANFIS model) in the daily scale for the city of Herrán and results with 

almost null errors in the monthly scale for the same place. In this way, the ANFIS model could be a 

more reliable source than the ANN model in several time scales, but its results are not as forceful as 

for designating to ANFIS above ANN in all cases. It is worth to note that in table 36 and 37, there are 

not results for the simulation part as in the ANN analysis for monthly scale; this is because the amount 

of data is limited and was decided to use all data just for the training process.  

 

Although error indicators give a preliminary idea of the performance of the models, the real 

advantages of these will be analyzed in the next section where their application in the sizing of a PV 

system is performed. 
 

  Cúcuta Pamplona Herrán 

  Training Simulation Training Simulation Training Simulation 

Hourly 

RMSE (Wh/m2) 171,9 184,09 105,4 119,59 85,4 107,8 

MAE (Wh/m2) 128,3 132,84 69,9 77,9 60,3 70,4 

NRMES 0,162 0,175 0,108 0,113 0,0971 0,1034 

MAPE 18,2 18,7 13,9 142 10,1 11,8 

R2 0,889 0,8727 0,898 0,901 0,923 0,9138 

Daily 

RMSE (Wh/m2) 910,4 948,7 794,6 834,38 610,3 729,88 

MAE (Wh/m2) 847,6 890,6 680,4 763,4 473,4 555,8 

NRMES 0,158 0,1625 0,112 0,1296 0,0898 0,0955 

MAPE 11,7 12,2 12,01 13,17 8,77 9,3 

R2 0,93 0,9265 0,918 0,911 0,933 0,9244 

Monthly 

RMSE (Wh/m2) 47,15 - 96,14 - 0,552 - 

MAE (Wh/m2) 27,91 - 58,93 - 0,44 - 

NRMES 0,0011 - 0,0014 - 9,48e-6 - 

MAPE 1,87 - 5,07 - 3,6e-4 - 

R2 0,9998 - 0,9998 - 0,9999 - 

 
Table 36. Error indicators for the develop ANFIS models for the evaluated cities in the estimation ranges: Hourly, daily 

and monthly. 

  Cúcuta Pamplona Herrán 

  Training Simulation Training Simulation Training Simulation 

Hourly 
ANN 19,55 21,3 17,08 19,7 17,36 18,4 

ANFIS 18,2 18,7 13,9 14,2 10,1 11,8 

Daily 
ANN 15,39 17,52 15,8 14,29 13,9 12,86 

ANFIS 11,7 12,2 12,01 13,17 8,77 9,3 

Monthly 
ANN 1,72 - 9,68 - 2,92 - 

ANFIS 1,87 - 5,07 - 3,6e-4 - 

 
Table 37. Comparison between the ANN and ANFIS results in terms of the MAPE indicator. 
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Chapter 5 

Comparison for a specific case: PV sizing 
 

After analyzing the error indicator between the developed models and similar works in the literature, 

it is found that the models have the expected performance, and that ANFIS presents a slight 

improvement with respect to the model based on ANN. Despite of the above, these results are 

compared with other irradiation information sources, in order to identify the specific advantages for 

the sizing of PV systems in the evaluated cities, being this one of the most important goal of the 

current work. 

Considering the information sources in section 4.1.1, the AI models are tested against these sources 

for the sizing of PV systems, taking as reference the irradiation data provided by IDEAM in hourly 

scale (called measured in tables from here on). The sizing of a grid-connected application for two 

particular cases (low and high power consumption) and a stand-alone PV system for only one 

scenario in each city will be used to evaluate the models. 

The methodology and results of the comparison are described below. 

5.1. Grid-connected PV system sizing: 

The grid-connected design is based on the energy balance method and the average value of Peak 

Sun Hours (PSH) included in equation 13. 

𝐸𝐷𝐶 = 𝑁𝑠𝐺𝑁𝑝𝐺𝑉𝑚𝑀𝑟𝐼𝑚𝑀𝑟(𝑃𝑆𝐻̅̅ ̅̅ ̅)𝐷      𝐸𝑞. 13 

Where 𝑁𝑠𝐺 is the number of modules in series, 𝑁𝑝𝐺 is the number of branches in parallel, 𝑉𝑚𝑀𝑟 and 

𝐼𝑚𝑀𝑟 are the voltage and current coordinates of the Maximum Power Point (MPP) of a single PV 

module under standard conditions, and 𝐸𝐷𝐶 is the DC output energy generated by the PV generator 

along a period of D days having an average daily value of peak solar hours defined by equation 14. 

 

𝑃𝑆𝐻̅̅ ̅̅ ̅̅ =
∫ 𝐺(𝑡) ∙ 𝑑𝑡

.

1 𝑦𝑒𝑎𝑟

(365𝑑𝑎𝑦𝑠/𝑦𝑒𝑎𝑟)(1000𝑊/𝑚2)
      𝐸𝑞. 14 

 

Being 𝐺(𝑡) the global solar radiation on a horizontal surface. Likewise, the DC peak power PDcpeak, of 

the PV system can be written as: 
 

𝑃𝐷𝐶𝑝𝑒𝑎𝑘 = 𝑁𝑠𝐺𝑁𝑝𝐺𝑉𝑚𝑀𝑟𝐼𝑚𝑀𝑟     𝐸𝑞. 15 

 

Which is used to define the efficiency 𝜂 as follows: 
 

𝜂 =
𝑃𝐴𝐶𝑝𝑒𝑎𝑘

𝑃𝐷𝐶𝑝𝑒𝑎𝑘
 

 

Being 𝑃𝐴𝐶𝑝𝑒𝑎𝑘  the AC peak power; this variable must be smaller than the nominal power of the inverter 

𝑃𝑛𝑜𝑚. Therefore, with the input requirements of the inverter selected for the design (the maximum 

input current, Imax) and the PV module to implement (voltage range for a correct MPPT), the number 

of parallel branches and the amount of PV modules in series for the string, can be calculated as: 
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𝑁𝑝𝐺 ≤
𝐼𝑚𝑎𝑥

𝐼𝑚𝑀𝑟
   𝐸𝑞. 16 

 

𝑁𝑠𝐺 =
𝑃𝐴𝐶𝑝𝑒𝑎𝑘

𝜂𝑁𝑝𝐺𝑉𝑚𝑀𝑟𝐼𝑚𝑀𝑟
     𝐸𝑞. 17 

 

Where the value of 𝑁𝑠𝐺  must be limited by the range in equation 18. 
 

𝑉𝑚𝑖𝑛𝑀𝑃𝑃𝑇 ≤ 𝑁𝑠𝐺𝑉𝑚𝑀𝑟 ≤ 𝑉𝑚𝑎𝑥𝑀𝑃𝑃𝑇         𝐸𝑞. 18 

 

The range in the equation18 avoids: 1) with its low limit, that a part of the PDC generated by the PV 

modules will not be converted for the inverter, since when the power at the inverter input is lower 

than a minimum called lower threshold voltage, the inverter output is left open, and 2) with the high 

limit, to damage physical structure of the inverter due to overload. 

 

The total area for the PV modules is given by equation 19 where Am is the individual area of the 

module. 
 

𝐴 = 𝑁𝑠𝐺𝑁𝑝𝐺𝐴𝑚         𝐸𝑞. 19 

 

Because the PSH is one of the most important parameters in the presented design method, figure 

37 displays it for each one of the analized information sources. The PSH used as reference was 

calculated from the last four years of irradiation data provided by the IDEAM in each city because 

these years were the most representative by having the largest amount of data per year in a 

consecutive way. Thus, the data from the other sources were adapted to try of keeping the same 

conditions respect to the reference and to be able to obtain a reliable comparison. 

 

For Cúcuta, the data from PVGIS, NASA and the AI models have the same conditions for the 

calculation of PSH; the same days for the years 2012, 2013, 2014 and 2015 were averaged to 

calculate the PSH values from these sources. PSH for Global Solar Atlas is obtained from its long-

term yearly average and for PERS project in a graphical way for the monthly averages values of 2015 

presented in the results of its public report. Although these two last sources do not have the same 

conditions with respect to the other ones, they are included in the analysis in order to identify their 

impact if these were the only sources a designer would have access to. 

 

For the cities of Pamplona and Herrán the conditions for the comparison vary more. Since information 

until 2017 from IDEAM was obtained, the reference value is updated for the last four years until 2017, 

i.e., reference PSH is the average of the years: 2014, 2015, 2016 and 2017. Similarly, the values for 

the AI models were also updated. The conditions for the rest to the sources remain equal than for 

the city of Cúcuta, except for the data provided by the NASA which can also be downloaded for the 

years 2016 and 2017. Here, it can be remarkable to mention that the reference and AI models value 

were not calculated for the last years from 2015 to maintain the conditions with PVGIS for the 

following reasons: 1) To analyze the impact of the updated information assuming that nowadays, a 

designer only had access to the data from PVGIS; 2) because the data for the years 2012 and 2013 

in these cities were not as representative as the years 2016 and 2017 for the calculations. 

 

After the calculations and as it is observed in figure 37, it was found that the NASA supplied the same 

data for the three cities (graphically it is determined in figure 37b and 37c, since in 37a the data 
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correspond to other years), which does not have a large impact in cities with similar irradiation 

conditions (as Pamplona and Herrán) but could affect the analysis of the other cities of the region 

with a much more diverse climate. The percentage of separation respect to the reference also is 

displayed in figure 37 on top of each bar. 

 

a. 

 

b. 

 

c.  

Figure 37. PSH for each one of the information sources in: a. Cúcuta. b. Pamplona. c. Herrán. 
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To begin the sizing process, two elements must be defined: the PV module and the inverter to use. 

So, a brief review about the selection process of these is presented in the following sub-sections. 

 

5.1.1. PV module selection: 

Photovoltaic modules are typically rated between 50 W and 350 W with products specialized for 

building integrated PV systems (BIPV) at even larger sizes. One of the most used PV modules is the 

wafer-based crystalline silicon module which have commercial efficiencies between 14 and 22,8 % 

[98]. Crystalline silicon modules consist of individual PV cells connected together and encapsulated 

between a transparent front, usually glass, and a backing material, usually plastic or glass.  

No specific standards, policy or specifications are available to pick a PV module, but some features 

can be used as selection guidelines, such as the type of technology (polycrystalline and 

monocrystalline types being very common), the number of cells (typically between 60 or 72 PV cells 

connected in series [99]) and the output power according to the application. In the literature for roof-

top PV systems there is a wide variety of models, but in [100], where the authors perform a study of 

the economic feasibility analysis of small scale PV systems in 13 countries, they encourage the use 

of the SolarWorld 245W Polycrystalline PV module due to its good score in the PV+Test2.0 

certification where the durability, electrical safety, workmanship, performance, documentation and 

guarantee of the PV modules are evaluated. According to [101], this test is a independent certification 

supported by the German certifier TÜV, with the participation of 21 leading brands, and whose last 

version presented the results shown in table 38 for the best 9 positions. Additional information about 

the test can be found in [102].  

Assessment 
Qualitative 

result 
Manufacturer Model 

92,29 Excellent 
Paneles solares 

SolarWorld 
SW260 Poly -> SW290 
Mono (Nuevo Standar) 

91,3 Excellent (-) Paneles solares Schott Schott Poly 290 

90,7 Excellent (-) SHARP solar NU-180E1 

89,8 Good (+) IBC IBC Monosol 240 ET 

89,0 Good (+) Mitsubishi Electric PV-TD185MF5 

88,5 Good (+) Jetion JT235PCe 

88,1 Good (+) Conergy PowerPlus 225P 

84,3 Good Sovello SV-X-195-fa1 

80,0 Good (-) Perfect Solar PS230-6P-TOP 
 

Table 38. Results of the PV+Test for the top 9 PV panels. 

The PV + Test score grades range from the highest, which is Excellent, to the Very Poor. In each 

grade, depending on the results, you can carry (+) or (-) as a classification of intermediate grades.  

Under this criterion, the PV module type SolarWorld SW260 Poly was the choice for the analysis; its 

main operating characteristics under Standard Test Conditions (STC) are presented in table 39.  

5.1.2. Selection of the inverter: 

The inverter should fulfill the waveform requirements of the load or grid, and have a high efficiency 

in order to reduce the loss of energy generated by the PV modules. In [100], [99], [103], [104] and 

[105], the authors coincide in that the Sunny production line from SMA Solar Technology AG is an 

adequate option for residential applications, and even for commercial systems; hence, the Sunny 
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Boy 3000TL-US inverter is selected and its characteristics are depicted in table 40. A wide operating 

range, efficiency close 100 % and enough nominal power for the system are the principal selection 

criteria for this device. A more detailed analysis for the inverter selection must be performed for a 

real implementation but this is not the goal of this section, since the main objective is to identify the 

variation in the sizing of a standard system by using different solar radiation sources. 

Parameter Value 

Output power 290 Wp 

MPP Voltage 31,9 V 

MPP Current 9,2 A 

Open circuit voltage 39,6 V 

Short-circuit current 9,75 A 

Efficiency 17,3 % 

Number of cells 60 

Length 1675 mm 

Width 1001 mm 

Height 33 mm 

Output tolerance +/-2,0 % 
 

Table 39. Characteristics of the selected PV module. 

Variable Description 

Nominal output AC power (kW) 3 

Maximum AC Apparent Power (kVA) 3 

Rated MPPT voltage range (V) 175 – 480 

Maximum input DC voltage (V) 600 

Maximum input DC current (A) 15 

Lower threshold voltage (V) 125 

AC grid frequency (Hz) 50/60  

MPP Trackers 2 

Maximum efficiency (%) 97.2 

Harmonics (%) <4 
 

Table 40. Technical data for the selected inverter. 

Thefore, considering the information in figure 37 and the characteristics of the elements of the system 

(PV module and inverter), table 41 shows the different PV sizes in terms of the number of modules 

for each one of the information sources, taking into account the previous expressions (Eq. 13 to Eq. 

19). The load used in table 41 of 8 kW and 24 kW correspond to the daily average power consumption 

of two residences in the city of Cúcuta; the first scenario, considered a low consumption, and the 

second one a high consumption; since the latter contains several equipment not common in a typical 

house of the city, such as air conditioners, electrical garage, dryer, among others, which increase the 

normal power requirements of a house in Cúcuta. 

 

As observed in table 41a, the sizing for the city of Cúcuta does not have a large impact if the 

information is taken from a source or another, except for the NASA database, with an oversizing of 

about 20 % as it was expected from the calculation of its PSH. Despite of the above, for the other 

cities, the NASA obtains a correct sizing with respect to the irradiation values measured from IDEAM, 

and the variations are obtained for the data from PVGIS, GSA and empirical models generated by 
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PERS, with an oversizing of close 15 % for the first two sources (1 and 3 modules, for the 8 kW and 

24 kW system, respectively) and an undersizing of the same value for the last one. 
 

  8 kW system 24 kW system 

 
PSH 

Modules in 
series 

Parallel 
branches 

Area (m2) 
Modules 
in series 

Parallel 
branches 

Area (m2) 

Measured 5,13 5 

1 

8,38 5 

3 

25,15 

PVGIS 5,02 5 8,38 5 25,15 

GSA 5,293 5 8,38 5 25,15 

NASA 4,21 6 10,06 6 30,18 

ANN model 5,318 5 8,38 5 25,15 

ANFIS model  5,32 5 8,38 5 25,15 

Empirical model 5,35 5 8,38 5 25,15 
 

a.  
 

  8 kW system 24 kW system 

 
PSH 

Modules in 
series 

Parallel 
branches 

Area (m2) 
Modules 
in series 

Parallel 
branches 

Area (m2) 

Measured 3,8 7 

1 

11,74 7 

3 

35,21 

PVGIS 4,52 6 10,06 6 30,18 

GSA 4,53 6 10,06 6 30,18 

NASA 4,1 7 11,74 7 35,21 

ANN model 3,858 7 11,74 7 35,21 

ANFIS model  3,852 7 11,74 7 35,21 

Empirical model 3,71 7 11,74 7 35,21 
 

b. 
 

  8 kW system 24 kW system 

 
PSH 

Modules in 
series 

Parallel 
branches 

Area (m2) 
Modules 
in series 

Parallel 
branches 

Area (m2) 

Measured 3,807 7 

1 

11,74 7 

3 

35,21 

PVGIS 4,25 6 10,06 6 30,18 

GSA 4,39 6 10,06 6 30,18 

NASA 4,1 7 11,74 7 35,21 

ANN model 3,857 7 11,74 7 35,21 

ANFIS model  3,997 7 11,74 7 35,21 

Empirical model 3,63 8 13,41 8 40,24 
 

c. 
 

Table 41. PV system sizing for a residential application for the city of: a. Cúcuta. b. Pamplona. c. Herrán. 
 

In this way, the first conclusion from table 41 is that the AI models are suitable for proper sizing in all 

the scenarios under analysis. Secondly, the participation of the updated data has an impact over the 

sizing which represents an advantage of the AI models with respect to sources as PVGIS, that for an 

assessment in the same period shows very good results (case of Cúcuta) but for a period out of its 

range not so much. 



 
 

79 
 

In spite of the previous analysis, it is known that the accuracy in the sizing of a grid-connected PV 

system is not an indispensable factor for the requirements of its application because the grid acts as 

support in the case of that the energy from the PV system fails by low irradiation (or other external 

factor). Thus, in this type of system, the correct sizing plays a more economic role applied to the 

exchange of energy with the grid, that although is also important, is not fundamental for the operation 

of the load or even for the confort of the final user. In this way, a high precision sizing is more 

necessary in off-grid systems, and for this reason, this scenario is analyzed in more detail below. 

5.2. Stand-alone PV system sizing: 

Autonomous or stand-alone photovoltaic systems (SAPVS) are installations with photovoltaic 

modules and batteries designed to meet some load without any connection to the electric grid [106]. 

In the literature, various methods for the sizing of this type of system have been developed, which 

differ in terms of their simplicity or reliability. The construction of the sizing curve based on the loss 

of load probability (LLP), is one of these; it is characterized by its high reliability and accuracy in the 

design, but also by the need of using solar radiation measurements in the long term which are not 

always available. Since the first features are fundamental in the present research study, this is the 

method implemented for the sizing of the stand-alone system and its step-by-step method is 

explained below. 

The merit of a SAPVS should be judged in terms of the realibility of the electricity supply to the load. 

This is usually quantified by the concept of loss of load probability, defined as the ratio between the 

energy deficit and the energy demands both on the load, over a long period of time [107]. In statistical 

terms, the LLP value refers to the probability of the system to be unable to meet the demand. The 

main reason for this failure is the stochastic characteristics of the solar radiation that affect the sizing 

process [108]. 

A LLP analysis for SAPVS sizing is characterized by two dimensionless parameters according to 

[107]: 𝐶𝑆, related to the capacity of the storage system, and 𝐶𝐴, the mean or minimum capacity of the 

PV panels array, defined as: 

𝐶𝑆 =
𝐶𝑈

𝐿
=

𝑁𝐵𝑉𝐵𝐶𝐵𝐷𝑂𝐷

𝐿
    𝐸𝑞. 20 

𝐶𝐴 =
𝜂𝐴𝐺𝑑(𝛽)̅̅ ̅̅ ̅̅ ̅̅

𝐿
    𝐸𝑞. 21 

where 𝑁𝐵 is the number of batteries (supposed all equal), 𝑉𝐵 the nominal voltage of one battery (in 

V), 𝐶𝐵 the nominal or rated capacity of each battery (in 𝐴 ⋅ 𝑠), 𝐷𝑂𝐷 the maximum allowable depth of 

discharge of each battery (dimensionless), 𝐶𝑈 the maximum useful capacity of the batteries (in W), 𝐿 

the mean daily energy load (in W), 𝜂 is the average whole energy transmission efficiency of the PV 

system from the PV array to the load, 𝐴 the array area (in m2), and 𝐺𝑑(𝛽)̅̅ ̅̅ ̅̅ ̅̅  is a representative daily 

insolation on the plane (with tilt 𝛽) of the array (in W/m2). 

The physical sense of 𝐶𝑆 and 𝐶𝐴 is clear: 𝐶𝑆 represents the number of days the batteries are at full 

capacity and with no energy income could feed the load (assumed constant), while 𝐶𝐴 means the 

number of loads (each one with value L) that are expected to be fed by the PV array alone. This work 

is concerned with fixed tilt plants (no Sun tracking), so 𝛽 is supposed to be constant for a certain 

installation [106]. 
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Given a location and a load, two general ideas are intuitive: Firstly, it is possible to find many different 

combinations of 𝐶𝐴  and 𝐶𝑆  leading to the same Loss of load probability (LLP) value. Secondly, the 

larger the PV-system is, the greater the cost and the lower the LLP [109]. The traditional problem 

given by Egido and Lorenzo [107] is formulated as follows: Which pair of 𝐶𝐴 and 𝐶𝑆 values lead to a 

given LLP value at the minimum cost? 

In order to give solution to the previous question, several methods are shown in the literature in how 

to calculate the optimal sizing parameters for a constant LLP by means of the graphical 

representation of 𝐶𝐴 respect to 𝐶𝑆. Each point of the 𝐶𝐴 − 𝐶𝑆 plane represents a size of a PV system. 

This allows to obtain the reliability map as figure 38 shows. The lines are the loci of all the points 

corresponding to the same LLP value. Because of that, these are called isoreliability lines. The 

definition of 𝐶𝐴  and 𝐶𝑆 implies that this map is independent of the load and depens only on the 

meteorological behavior of the location. It will be observed that the isoreliability lines are, very close 

to, a hyperbola with their asymptotes parallel to the 𝑥 and 𝑦 axis, respectively. 

 

Figure 38. Reliability map. 

On the other hand, given an LLP value, the plot of the cost of the PV system corresponding to the 

isoreliability line is, approximately, a parabola having a minimum that defines the optimal solution to 

the sizing problem [107], as it is observed in figure 39. 

 

Figure 39. Iso-reliability curve for a specific LLP with its corresponding plot of cost indicating the optimal pair 𝐶𝐴𝑂𝑆, 𝐶𝑆𝑂𝑆. 

The methods to apply the LLP concept include: intuitive methods, where the size of the system is 

taken in such way to ensure the load demand without giving a relation between the number of panels, 

batteries and the LLP. Analytical methods, based on the graphical information obtained from the iso-
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probability curves, and the numerical methods, which are based on a detailed simulation of the PV 

system in small scales (daily, hourly, etc.). The advantages of the numerical methods are the 

precision and the simplicity of choosing different elements of the system [108], so that is the choice 

to calculate the reliability map in this work. 

5.2.1. Numerical method: 

As it was indicated, the pair of 𝐶𝐴 and 𝐶𝑆 in this method is calculated by means of a rather detailed 

simulation of the PV system. To explain this, the system showed in figure 40 is analyzed; it is 

assumed that all the consumption occurs during night and that the battery is free of energy losses.  

Based on the above, the auxiliar generator operates as a support to the battery and to the load, when 

the energy provided by the PV array is not enough. If the simulation is carried out over a great number 

of days 𝑁, in order to be statistically meaningful, then the LLP value for the stand-alone system (i.e. 

the system of the figure 40, excluding the auxiliar generator) is given by equation 22: 

𝐿𝐿𝑃 =
∑ 𝐸𝐴𝑈𝑋𝑗

𝑁
𝑗=1

∑ 𝐿𝑗
𝑁
𝑗=1

    𝐸𝑞. 22 

Where 𝑗 indicates the day in evaluation. 

 

Figure 40. Schematic of the photovoltaic system used for the numerical method. 

Because long term averages of daily irradiation incident on surfaces other than horizontal are not 

generally available, it is useful to define a parameter to relate it: 

𝐶′𝐴 =
𝜂𝐴𝐺𝑑(0)̅̅ ̅̅ ̅̅ ̅̅

𝐿
= 𝐶𝐴

𝐺𝑑(0)̅̅ ̅̅ ̅̅ ̅̅

𝐺𝑑(𝛽)̅̅ ̅̅ ̅̅ ̅̅
     

Where 𝐺𝑑(0)̅̅ ̅̅ ̅̅ ̅̅  is the mean daily irradiation on an horizontal surface. In practical cases, PV designers 

can directly obtain the value of 𝜂𝐴 (and consequently, the required number of PV modules) from 𝐶′𝐴. 

In general, since the long term irradiation data are common in a monthly or annual basis, the daily 

irradiation data for the expressions above are the result of averages in these periods; moreover, in 

[107], the authors indicated that the location dependence of the results can be reduced by correlating 

the collector area to the irradiation worst month, defined as the month with the lowest relation 

between solar irradiation and energy consumption.  

The simulation algorithm to identify the behavior of the system is structured in the analysis of the 

state of charge (SOC) in the battery, and it has different derivations from the one shown by Egido 
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and Lorenzo [107] in the literature [109] [106] [110] [111]. In the present work, the algorithm 

developed for the calculation of the pairs 𝐶𝐴, 𝐶𝑆 is shown below. It is valid to use a constant load to 

obtain a first perspective of the system behavior; in addition to this, the following analysis implies the 

use of a constant PV array efficiency, which is supported in a research study referenced in [107], 

where they indicated that for the same LLP value using daily timesteps and a constant efficiency, 

similar results were obtained than using hourly timesteps and considering the efficiency dependence 

on solar irradiance, ambiente temperature and battery state of charge as shown in equation 23, 

particularly for 𝐶𝑆 ≥ 2: 

 𝜂𝑡 = 𝜂𝑝(1 − 𝐵 ∙ (𝑇𝑐 − 𝑇𝑟))      𝐸𝑞. 23 

Where, 𝜂𝑝 is the efficiency of a solar cell at a referenced solar radiation (i.e. 1000 W/m2), 𝐵 is the 

temperature coefficient (between 0,004 and 0,006), 𝑇𝑐 is the cell temperature in °C and 𝑇𝑟 is the 

reference temperature of the panel (generally equal to 25 °C with air mass AM = 1,5). 

Despite of this, a comparison between these timesteps is evaluated in next sections. The steps of 

the curves generation algorithm are the following: 

Step 1: Initialization and loading the data 

𝐿𝐿𝑃𝑠 = 0,01, 𝐿 = 8𝑘𝑊, 𝜂 = 0,175, 𝐺 = 𝐷𝑎𝑖𝑙𝑦 𝑖𝑟𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 𝑑𝑎𝑡𝑎, 𝐶𝑠 = 1, 𝐶𝐴 = 1,

                         𝑆𝑂𝐶1 = 0,          𝐸𝐴𝑈𝑋1
= 0, 𝐸𝑟𝑟 = 1 × 10−3 

Step 2: Calculate the fixed variable in the time period  

𝐴 =
𝐶𝐴𝐿̅

𝜂𝐺𝑑
̅̅̅̅

,     𝐶𝑈 = 𝐶𝑆𝐿̅ 

Step 3: Calculate the state of charge of the baterry for each day 

𝑆𝑂𝐶𝑑 = 𝑚𝑖𝑛 (𝑆𝑂𝐶𝑑−1 +
𝜂𝐴𝐺𝑑

𝐶𝑈
; 1) 

The state of charge is obtained from its value for the previous day plus the energy produced by the 

array during the day. After this, the energy supplied by the auxiliar generator keeps the battery 

charged to the level of the load if the stored energy is lower than its requirements: 

𝑆𝑂𝐶𝑑 ≥
1

𝐶𝑆
⟹ 𝐸𝐴𝑈𝑋𝑑

= 0 

𝑆𝑂𝐶𝑑 <
1

𝐶𝑆
⟹ 𝐸𝐴𝑈𝑋𝑑

= (
1

𝐶𝑆
− 𝑆𝑂𝐶𝑑) ∗ 𝐿𝑑 ∗ 𝐶𝑆     𝑎𝑛𝑑     𝑆𝑂𝐶𝑑 =

1

𝐶𝑆
 

Finally, the state of charge of the battery at the end of the day is established: 

𝑆𝑂𝐶𝑑 = 𝑆𝑂𝐶𝑑 −
𝐿𝑑

𝐶𝑈
 

Step 4: Calculate the LLP value from equation 22 for the total data. 

Step 5: Determine the error with respect to the desired LLPs to continue or stop the iteration process.  

𝐼𝑓 𝑎𝑏𝑠(𝐿𝐿𝑃 − 𝐿𝐿𝑃𝑠) > 𝐸𝑟𝑟, 𝑡ℎ𝑒𝑛 go to the step 6; 𝑒𝑙𝑠𝑒 go to the step 7. 
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Step 6: Define if the current LLP value is above or below of the desired LLPs to apply the increase 

or decrease in the 𝐶𝐴 value.  𝐼𝑓 𝐿𝐿𝑃 > 𝐿𝐿𝑃𝑠, 𝑡ℎ𝑒𝑛 𝐶𝐴 = 𝐶𝐴 + 0.001;  𝑒𝑙𝑠𝑒 𝐶𝐴 = 𝐶𝐴 − 0.001.  Go to step 

2. 

Step 7: Save the pair of 𝐶𝐴, 𝐶𝑆, and increase the 𝐶𝑆 value. 𝐼𝑓 𝐶𝑆 = 10, 𝑡ℎ𝑒𝑛 stop the algorithm. 𝑒𝑙𝑠𝑒 go 

to the step 2.    

The previous algorithm follows the original metodology presented by Egido and Lorenzo in [107], but 

assuming the strategy applied by Lucio et. al. in [106] in which the auxiliar generator supplies only 

the energy left to 𝐿 (no more to fully charge the battery), and the operation of the algorithm used by 

Mellit in [109]. 

The simulations were performed for typical values of LLP of 0,1, 0,5 and 0,01 and the results for each 

city are shown in figure 41.The data used to construct the curves correspond to the period between 

2012 and 2015 for Cúcuta, and 2014 - 2017 for Pamplona and Herrán. In general, the worst month 

in terms of irradiation is selected to apply the method, which is usually December in the Northern 

Hemisphere; but due to the proximity to the Equator line of the places under evaluation, or otherwise, 

because the lack of the seasons, is not very clear to select a specific month as that with the lowest 

irradiation year after year. For instance, for the city of Cúcuta, March in 2012 was one of the months 

with the lowest irradiations of that year, but in 2014 it was one of the months with the highest 

irradiation. While in 2013 and 2015 irradiation values for March were located in the average of those 

years. In addition to this, the variation from month to month do not change as much as in countries 

with seasons in the Northern and Southern Hemispheres. 

Therefore, the months with the lowest irradiation among the years analized for each city were 

evaluated; in some cases, two or three months in the year showed the lowest irradiation with small 

differences, so we determined a limit to categorize a month with this characteristic as it is indicated 

in table 42. Thus, from this information the days with low irradiation can also be categorized 

considering the monthly average daily irradiation in each case (showed in table 42 too). 

Period of classification for low 
irradiation 

Cúcuta 
(kWh/m2) 

Pamplona 
(kWh/m2) 

Herrán 
(kWh/m2) 

Monthly limit <138 <100 <100 

Daily limit <4,6 <3,4 <3,4 
 

Table 42. Limits to classify a month and a day with low irradiation. 

In this way, in order to cover the behavior of the whole year not only were selected the days inside 

of the months with the lowest irradiation, but also the days during the year with values lower than the 

limit established in table 42. Therefore, bad weather conditions in other periods of the year which 

affect the solar radiation are analyzed to increase the accuracy of the curve and the final sizing of 

the system.  

 

Considering the concept given by Egido and Lorenzo for the optimal pair of 𝐶𝐴, 𝐶𝑆, table 43 shows 

just an approximation of these values for each city, since many combinations of PV modules and 

batteries can be evaluated for optimazing, in economic terms, the values of 𝐶𝐴 and 𝐶𝑆 (as in [108]), 

which exceeds the scope of the current study. Furthermore, figure 41 depicts the LLP for the same 

cities. To identify the accuracy of the information sources, their isoreliability curves for a LLP of 0,01, 

0,05 and 0,1 for each city are portrayed in figure 42, and several sizings based on these curves are 

described in table 44. The battery Trojan J305G was used for the calculations, with a nominal 

capacity of 315 Ah and a voltage of 12 V. 
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From table 44, we can observe that the sizing based on the lowest irradiation days presents small 

variation among the different information sources and the reference. Data from PVGIS showed the 

largest amount of differences (highligthed in ligth red in table 44) for the sizing in the three cities 

although for the city of Cúcuta the evaluation period was the same that the one used by the rest of 

the sources (as it has been indicated during this section). Data from NASA on the other hand, using 

the same value for the city of Pamplona and Herrán (which could have been the same for Cúcuta if 

the evaluation period was also the same), obtained good results for the three cities.  

A first comparison between the LLP sizing method and the energy balance method used in the grid-

connected application allows us to conclude that data from NASA has a higher precision when it uses 

the days with the worst irradiation conditions and data from PVGIS when uses sizing methods with 

average annual values. In the same way, AI models obtained good results in both sizing processes 

with the least variations with respect to the reference. 

 

 Cúcuta Pamplona Herrán 

LLP 𝐶𝐴 𝐶𝑆 𝐶𝐴 𝐶𝑆 𝐶𝐴 𝐶𝑆 

0,01 1,08 2,3 1,04 2 1,06 2 

0,05 0,97 1,8 0,97 1,8 0,967 1,8 

0,1 0,9 1,46 0,9 1,48 0,9 1,6 
 

Table 43. Optimal pairs 𝐶𝐴, 𝐶𝑆 for different LLP values in daily scale analysis. 

 

a. 

 

b. 

 

c. 

Figure 41. Iso-reliability curves for the cities: a. Cúcuta. b. Pamplona. c. Herrán. 
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a. 

 

 

 
b. 
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c. 

Figure 42. Iso-reliability curves comparison for the different information sources: a. Cúcuta. b. Pamplona. c. Herrán. 

  Measured PVGIS NASA ANN ANFIS 

 Cs 
Number of 

panels 
Number of 
batteries 

Number 
of panels 

Number 
of panels 

Number 
of panels 

Number 
of panels 

0,01 

1 13 2 12 12 13 13 

2 9 4 9 8 10 9 

3 8 6 8 8 8 8 

5 8 11 8 8 8 8 

10 8 21 8 8 8 8 

0,5 

1 10 2 8 9 9 9 

2 8 4 7 8 8 8 

3 8 6 7 8 8 8 

5 8 11 7 8 8 8 

10 8 21 7 8 8 8 

0,1 

1 8 2 7 8 8 8 

2 7 4 7 7 7 7 

3 7 6 7 7 7 7 

5 7 11 7 7 7 7 

10 7 21 7 7 7 7 
 

a. 
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  Measured PVGIS NASA ANN ANFIS 

 Cs 
Number of 

panels 
Number of 
batteries 

Number 
of panels 

Number 
of panels 

Number 
of panels 

Number 
of panels 

0,01 

1 15 2 14 16 15 16 

2 11 4 11 11 11 11 

3 11 6 11 11 11 11 

5 11 11 11 11 11 11 

10 11 21 11 11 11 11 

0,5 

1 12 2 11 12 12 12 

2 10 4 10 10 10 10 

3 10 6 10 10 10 10 

5 10 11 10 10 10 10 

10 10 21 10 10 10 10 

0,1 

1 10 2 9 10 11 11 

2 10 4 9 10 10 10 

3 10 6 9 10 10 10 

5 10 11 9 10 10 10 

10 10 21 9 10 10 10 
 

b. 
 

  Measured PVGIS NASA ANN ANFIS 

 Cs 
Number of 

panels 
Number of 
batteries 

Number 
of panels 

Number 
of panels 

Number 
of panels 

Number 
of panels 

0,01 

1 18 2 15 16 19 20 

2 11 4 11 11 12 12 

3 11 6 11 11 12 11 

5 11 11 11 11 11 11 

10 11 21 11 11 11 11 

0,5 

1 13 2 11 12 13 13 

2 10 4 10 10 10 11 

3 10 6 10 10 10 10 

5 10 11 10 10 10 10 

10 10 21 10 10 10 10 

0,1 

1 11 2 10 10 11 11 

2 10 4 10 10 10 10 

3 10 6 10 10 10 10 

5 10 11 10 10 10 10 

10 10 21 10 10 10 10 
 

c. 
 

Table 44. PV system sizes for the different information sources in terms of the autonomy days for a constant load of  
8 kW: a. Cúcuta. b. Pamplona. c. Herrán. 

 

Now, although Egido and Lorenzo found in a previous research study that the hourly timestep 

compared the daily one has similar results, Benmouiza et. al. in [108] showed that the sizing based 

on an hourly analysis can generate better results than the daily or monthly scales, indicating that 
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daily analysis is not always the best choice because it does not give all the dynamic characteristics 

of the solar radiation and does not contemplate the presence of bad weather conditions, which can 

occur even outside the worst month of the year. Thus, following the metodology in [108], hourly 

isoreliability curves were obtained for each city to determine if that improves the sizing results, which 

would represent an advantage of the ANN and ANFIS models with respect to the other informations 

sources, since these models can provide hourly information that most of the other sources can not 

(except the PVGIS source which also supplies information in hourly scale, but even so, it is outdated 

respect to the artificial intelligence models).  

The metodology is the following: First, time series data mining was applied to hourly solar radiation 

data. It consists of grouping similar elements into clusters that have the same characteristics in order 

to obtain the hours with the lowest irradiation inside the total data provided by the IDEAM, being this 

the equivalent step to the selection of the worst irradiation month used in the daily scale analysis. For 

this purpose, several methods have been proposed in the literature based on unsupervised clustering 

methods such as k-means and fuzzy c-means (FCM) algorithms; the latter was the one selected 

because fuzzy c-means presents more precise results compared with k-means algorithm [108].  

Due to the nonlinearity of the solar radiation data, before applying the FCM method, phase space 

reconstruction is implemented to overcome this issue. Phase space reconstruction is a technique 

which presents the data in high dimensional space based on Takens theorem for a better 

understanding and analysis of the underlying dynamical of the system. It consists of determining the 

minimum embedding dimension for a time series, being the time delay embedding method one of its 

most common versions [108]. A scalar time series 𝑥(𝑡𝑖) is embedded into an m-dimensional space 

denoted 𝑋(𝑡𝑖); as it is expressed in equation 24: 

𝑋(𝑡𝑖) = 𝑥(𝑡𝑖), 𝑥(𝑡𝑖 + 𝜏), … . , 𝑥(𝑡𝑖 + (𝑚 − 1)𝜏)     𝐸𝑞. 24 

where, 𝑖 = (1,2, … , 𝑀), 𝜏 is the delay time, 𝑚 is the embedding dimension and 𝑀 is the number of 

embedded points in the m-dimensional space given by equation 25.  

𝑀 = 𝑁 − (𝑚 − 1)𝜏   𝐸𝑞. 25 

where, 𝑁 is the total number of points of the time series and 𝑋(𝑡𝑖) is the embedded time series into 

an m-dimensional space.  As it is observed, to use the concept of the phase space reconstruction, 

two parameters must be defined: the number of delay and the embedding dimensions (𝑚). For the 

first, the mutual information method proposed by Fraser and Swinney was used [108]. The optimum 

delay is equal to the first minimum of the plotted mutual information expressed by the following 

equation: 

𝐼(𝑥(𝑡), 𝑥(𝑡 − 𝜏)) = ∑ ∑ 𝑝(𝑥(𝑡), 𝑥(𝑡 − 𝜏)) log
𝑝(𝑥(𝑡), 𝑥(𝑡 − 𝜏))

𝑝(𝑥(𝑡))𝑝((𝑡 − 𝜏))
𝑦𝜖𝛾𝑥𝜖𝜒

 

Where 𝐼(𝑥(𝑡), 𝑥(𝑡 − 𝜏)) is the mutual information and 𝑝(𝑥(𝑡), 𝑥(𝑡 − 𝜏)) is the joint probability mass 

function for the marginal probability mass functions 𝑥(𝑡) and 𝑥(𝑡 − 𝜏). For the second one, the false 

nearest neighbour method was used to choose the suitable number of the embedding dimension 

[108]. This method determines the nearest neighbour of every point in a given dimension, and then 

checks if there are close neighbors in the higher dimension. 

Both methods were executed in Matlab from algorithms available in its repository; hourly data of the 

last two years provided by the IDEAM for each city were used, despite of in [108] only used one year 

of data; these are: 2014-2015 for Cúcuta, and 2016-2017 for Pamplona and Herrán. Unlike the daily 
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scale analysis, the hourly method does not require a long term of data since it analyzes the behavior 

during all days covering different situations in the year. In a similar way to [108], it was found that a 

delay of one and two embedding dimensions are enough for the phase space reconstruction of the 

time series evaluated as it is shown in figure 43. 

 
a. 

 
b. 

 

Figure 43. Parameters for the phase space reconstruction: a. Number of delay. b. Minimum embedding dimensions. 
 

With the parameters defined for the set of data, the reconstructed phase space of the solar radiation 

data is clustered using the fuzzy c-means algorithm. In this method, as in the fuzzy logic approach, 

each point belongs to a cluster with some degree of  belonging defined by a membership grade. The 

FCM algorithm minimizes an objective function 𝐽𝐹𝐶𝑀 that calculated the weighted within-group sum 

of squared errors as expressed in equation 26: 

𝐽𝐹𝐶𝑀 = ∑ ∑ 𝑢𝑖𝑘
𝑞 ∙ 𝑑2(𝑥𝑘 , 𝑣𝑖)

𝑐

𝑖=1

𝑛

𝑘=1

   𝐸𝑞. 26 

where, 𝑛 is the length of the data, 𝑐 is the number of clusters defined by the c-means algorithm, 𝑢𝑖𝑘 

is the degree of membership of 𝑥𝑘 in the 𝑖𝑡ℎ cluster, 𝑞 is the is a weighting exponent on each fuzzy 

membership, it is a real number greater than 1 (typically 𝑞 =  2), 𝑋 =  (𝑥1, 𝑥2, … 𝑥𝑛) is the data in the 

m-dimensional vector space, 𝑣𝑖 is the center of the cluster 𝑖, 𝑑2(𝑥𝑘 , 𝑣𝑖) is the distance measured 

between data 𝑥𝑘 and cluster center 𝑣𝑖. 

The summary of the FCM algorithm is illustrated by the following steps: 

1. Initialize the values 𝑐, 𝑞 and the error 𝜀. 

2. Initialize the cluster centre matrix 𝑉(𝑡=0) = [𝑣𝑖
(𝑡=0)] and the membership matrix 𝑈(𝑡=0) =

[𝑢𝑖𝑘
(𝑡=0)]. 

3. Increase the time 𝑡 and calculate the new 𝑐 cluster centers 𝑉𝑡: 

𝑉𝑡 =
∑ ((𝑢𝑖𝑘)(𝑡))𝑞𝑥𝑘

𝑛
𝑘=1

∑ ((𝑢𝑖𝑘)(𝑡))𝑞𝑛
𝑘=1

 

4. Calculate the new membership values 𝑈(𝑡+1): 

𝑈(𝑡+1) = [𝑢𝑖𝑘
(𝑡=0)]

1

∑ (
𝑑𝑖𝑘
𝑑𝑗𝑘

)𝑐
𝑗=1

2
𝑞−1

 

Where 𝑑𝑖𝑘 = ‖𝑥𝑘 − 𝑣𝑖‖, and 1 ≤ 𝑘 ≤ 𝑛;  1 ≤ 𝑖 ≤ 𝑐. 

First minimum 
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5. If  ‖𝑈(𝑡) − 𝑈(𝑡+1)‖ < 𝜀 stop. Otherwise, increase 𝑡 and go to Step (3). 

The FCM algorithm depends strongly on the position of the initialization points. Hence, an important 

task in the FCM algorithm is choosing the correct number of clusters in order to avoid the problem of 

falling in a local minimum. Several techniques were proposed in the literature to solve this problem, 

such as the sub-clustering method and the mountain method. As in [108], the sub-clustering 

technique was used to decide the number of clusters. This method is an iterative process that 

supposes each point is a potential cluster center according to its location to other data points. The 

algorithm is summarized as follows: 

– Choose a point that has the probability of being the highest potential cluster center. 

– Delete all the points which are inside the radius of the first cluster center (the radius is defined 

by the neighborhoods of the center), and recalculate the potential of the other points to 

determine the next cluster center. 

– Repeat this step until all the data are within the radius of a cluster center. 

Matlab provides a graphic GUI to apply the sub-clustering method and later, the FCM algorithm. For 

the first method, it is required a . 𝑑𝑎𝑡 file with the data to be clustered, specified as an 𝑀 − 𝑏𝑦 − 𝑁 

array, where 𝑀 is the number of data points and 𝑁 is the number of data dimensions with their delays. 

Thus, the number of rows of the array is given by 𝑅𝑜𝑤𝑠 = 𝑡𝑜𝑡𝑎𝑙_𝑑𝑎𝑡𝑎 − (𝑚 × 𝜏). To obtain the centers, 

other parameters are included by Matlab: 

– Influence range: Range of influence of the cluster center for each input and output assuming 

the data falls within a unit hyperbox, with values between 0 and 1. Specifying a smaller range 

of influence usually creates more and smaller data clusters, producing more fuzzy rules. 

– Squash factor: It is used for scaling the range of influence of cluster centers, specified as a 

positive scalar. A smaller squash factor reduces the potential for outlying points to be 

considered as part of a cluster, which usually creates more and smaller data clusters. 

– Acceptance ratio: Defined as a fraction of the potential of the first cluster center, above which 

another data point is accepted as a cluster center, specified as a scalar value in the range [0, 

1]. The acceptance ratio must be greater than the rejection ratio. 

– Rejection ratio: Defined as a fraction of the potential of the first cluster center, below which 

another data point is rejected as a cluster center, specified as a scalar value in the range [0, 

1]. The rejection ratio must be less than the acceptance ratio. 

In the order as they appear above, the value for each parameter implemented in the simulation were: 

0,7, 1,25, 0,5 and 0,15. For each city, the number of centers obtained was 3 by dimension, which 

was used to initialize the FCM algorithm. The results from the FCM algorithm in each city are shown 

in figure 44, where the phase space reconstruction for the hourly irradiation data at time 𝑡 and 𝑡 + 1 

are represented. As it is observed in figure 49, the clustering has been performed in three groups 

which clearly define three irradiation levels: low, medium and high solar radiation with a 

corresponding hourly pattern. Low irradiation is presented mostly between 7h-9h and 16h-18h, as it 

was expected. Medium irradiation among 9h-11h and 2h-4h, and finally, the highest irradiation is 

obtained at noon. From this, the data in blue in figure 44 which represented the hours with the lowest 

irradiation were used in the construction of the isoreliability curves to compare the sizing results with 

the ones given in daily scale. 

Therefore, figure 45 shows the hourly isoreliablity curves for each city with LLP of 0,01, 0,05 and 0,1; 

considering the load profile N° 1 in [108], and based on this plot, the optimal values for each curve 

are described in table 45 (under the same conditions that table 43). 



 
 

91 
 

 
a 

 
b. 

 
c. 

 

Figure 44. Space phase reconstitution clustered for hourly solar radiation: a. Cúcuta. b. Pamplona. c. Herrán. 

Taking into account the more efficient sizing (LLP=0,01), a comparison between the daily and hourly 

results is performed and shown in figure 46. Considering this figure, we can observe the improvement 

of the isoreliability curve in hourly scale with respect to the daily one in each one of the cases. In a 

similar way to [108], the results allow us to establish that the daily analysis is not always the best 

choice, and that the hourly evaluation could define a better sizing in a specific place, with the 

advantages of requiring a lower amount of data. Improvements of 35 %, 27 % and 28 % from the 

daly analysis with respect to the hourly one, for a 𝐶𝑆 = 1,5 onward in Cúcuta, Pamplona and Herrán, 

respectively, represents a significant reduction in the sizing of the system. 

 
a. 

 
b. 
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c. 

 

Figure 45. Iso-reliability curves for hourly analysis: a. Cúcuta. b. Pamplona. c. Herrán. 
 

 Cúcuta Pamplona Herrán 

LLP 𝐶𝐴 𝐶𝑆 𝐶𝐴 𝐶𝑆 𝐶𝐴 𝐶𝑆 

0,01 0,65 1,4 0,73 1,4 0,72 1,4 

0,05 0,56 1,3 0,5 1,32 0,57 1,3 

0,1 0,49 1,27 0,46 1,27 0,49 1,25 
 

Table 45. Optimal pairs 𝐶𝐴, 𝐶𝑆 for different LLP values in daily scale analysis. 

Thus, the ANN and ANFIS models acquire an advantage regarding to the other information sources 

indicated in the previous section, by allowing the acquisition of updated data for the application of 

sizing LLP methods in a hourly scale. In order to indicate the accuracy of the AI models with respect 

to the measured data, a comparison for the isoreliability curve with a LLP=0,01 is performed in figure 

47 for each city, where are also included the data from PVGIS. It is important to note that the data 

from PVGIS only has the same period of evaluation in the city of Cúcuta, i.e., data until 2015. For the 

other cities, the curves for data measured and AI models are updated until 2017, which can represent 

a disadvantage for the curve from PVGIS data. 

 
a. 

 
b. 

 

~35% 

 

~27% 
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c. 

 

Figure 46. Comparison between hourly and daily LLP method with a LLP=0,01: a. Cúcuta. b. Pamplona. c. Herrán. 

 
a. 

 
b. 

 
c. 

Figure 47. Comparison in hourly scale for the sizing with a LLP=0,01: a. Cúcuta. b. Pamplona. c. Herrán. 
 

Figure 47 shows that the AI models fit the curve of measured data with high accuracy (with an 𝑅2 ≅
0,99) for the three cities. The results for the data from PVGIS present a low 𝑅2 for the three cities due 
to the large difference that it shows for a 𝐶𝑆 = 1 where the 𝐶𝐴 value can reach up to three times the 
reference value (measured data); deleting this value, the adjustment improves considerably to the 

similar values achieved for the AI models, except for the city of Pamplona where the 𝑅2 obtained was 
of 0,937 (even without taking into account the first value). 

~28% 
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Chapter 6 

Expansion of the models 
 

AI models were implemented in three cities of the Department of Norte de Santander considering 

that in these locations there were irradiation data available for the training of the networks. Thus, with 

specific climatological data acting as inputs and their corresponding irradiation values different links 

were constructed which later, with only the input variables, could estimate the irradiation profile with 

a high reliability. Therefore, since the places under analysis have measured solar information, the 

main objective of the implementation of the models was to verify their behavior and guarantee that 

this type of structures can be used as solar information sources with a high accuracy in other places. 

Despite of the above, additional benefits in the cities evaluated can be obtained from the proposed 

AI models such as: updated data (for instance for the city of Cúcuta where irradiation values are 

accessible until the year 2015, while other climatological variables are available until 2018), 

adaptation of this type of models in photovoltaic management system for analysis of grid integration 

or system information for easier access that the current ones offered by the IDEAM. 

Since the benefits of the AI models mentioned above are out of the focus of this work, their 

implementation in the cities of Cúcuta, Pamplona and Herrán is used only as a reference for their 

expansion and application in other places of Norte de Santander where irradiation data are not 

directly measured. 

To expand the models to other places in Norte de Santander that lack irradiation measurements, the 

following comparison process is performed: the model for the city of Herrán is evaluated with input 

data from the meteorological stations of the cities of Cúcuta and Pamplona; this considering that the 

cities of Herrán and Pamplona have similar geographical and weather conditions, hence, the model 

of Herrán can be analyzed in other location with similar conditions (Pamplona) and in another location 

with very different characteristics (Cúcuta). These scenarios are exposed in table 46 where the main 

geographical characteristics and the limits of the climatological variables required by the models are 

shown for the three cities. 

City Altitude Latitude Longitude 
Temperature Humidity Wind speed Sunshine 

Min Max Min Max Min Max Min Max 

Cúcuta 311 7,898 -72,487 15,3 38,8 27 99 2e-16 7 0 1 

Pamplona 2362 7,360 -72,667 7,5 21,5 19 100 0,083 7 0 1 

Herrán 2040 7,506 -72,485 8 28,6 29 100 0,067 7 0 1 
 

Table 46. Main geographical characteristics and climate conditions for the cities of Cúcuta, Pamplona and Herrán. 

In a similar way to the one exposed in section 4.2.2, a 20 % of the total data was used to assess the 

Herrán’s model from the information provided by the IDEAM for the cities of Cúcuta and Pamplona, 

obtaining the results displayed in table 47. In this table several error indicators of the Herrán’s model 

are compared with the ones calculated for the models trained with data of the same city. 

 

The analysis of table 47 shows that the Herrán’s model was implemented with success in the city of 

Pamplona with very small error variations; on the other hand, the results in the city of Cúcuta 

demonstrated variations with respect to the own model of up to 21,7 % and 23 % for the RMSE and 
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MAPE indicator, respectively,  although they do not represent a very large deviation, they could 

represent a significant loss of accuracy in the sizing process.  

 
 Cúcuta Pamplona 
 Own model Hérran model Own model Hérran model 

RMSE (Wh/m2) 173,8 211,53 117,6 120,34 

MAE (Wh/m2) 130,2 148,97 80,1 82,46 

MAPE 21,3 26,2 19,7 19,85 

R2 0,887 0,7594 0,9078 90,24 

NRMES 0,163 0,2018 0,1107 0,1156 
 

Table 47. Comparison of the error indicators for the Herrán’s model in other cities. 

For the simulation of the data with the Herrán’s model, the own normalization range in each case 

were applied, i.e., the normalization process used in the original model for Cúcuta and Pamplona 

was maintained since adapting the climatological data from these cities to the normalization range 

for Herrán led to greater errors. This is particularly important because it can be inferred that the data 

from other locations must be coupled to the structure of the model, which could decrease the reliability 

of the estimation. 

 
 

Figure 48. Expansion of the estimation models in Norte de Santander. 

The process to obtain the results in table 47 was performed again using the Pamplona’s model with 

the input data from Herrán and Cúcuta presenting a similar behavior to the Herrán’s model with data 

from Pamplona and Cúcuta Therefore, the conclusions from this section suggest that models trained 

in a specific place can be implemented in other locations if they have similar geographical and 

weather conditions. This is very important as an outcome of this research study; based on the 

previous argument, we can state that for different zones of the Department of Norte de Santander 

which do not currently have solar irradiation measurements, but they measure temperature, 

sunshine, wind speed, and humidity, we can use the proposed AI models to estimate the solar 

radiation in a reliable way for the sizing process of PV systems. 
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Norte de Santander Station recommended 

Station Municipality 
Altitude 

(m) 
Latitude Longitude Station Municipality Altitude (m) Latitude Longitude 

Ábrego Centro 

Administrativo 
Ábrego 1430 8,0872 -73,2231 

Metromedellín Medellín, Antioquia 1456 6,33 -75,55 Ragonvalia Ragonvalia 1550 7,5766 -72,4838 

La Playa La Playa 1500 8,2175 -73,235 

Aguas Claras Ocaña 1430 8,3152 -73,3575 

Tibú Tibú 50 8,6383 -72,7267 San Marcos San Marcos, Sucre 27 8,6 -75,14 

Salazar Salazar 860 7,7746 -72,8306 Villeta 
Villeta, 

Cundinamarca 
880 5,02 -74,47 

Silos Silos 2765 7,2075 -72,753 San Cayetano 
San Cayetano, 

Cundinamarca 
2807 5,33 -74,02 

Escuela 

Agronómica 

Cáchira 

Cáchira 1882 7,7352 -73,0516 Villamaría Villamaría, Caldas 1898 5,05 -75,51 

Instituto 

Agronómico 

Convención 

Convención 1076 8,4705 -73,3438 Maceo Maceo, Antioquia 1112 6,57 -74,79 

Risaralda* El Zulia 90 8,233  -72,533 
Vizcaina-La 

Lizama 

Barrancabermeja, 

Santander 
129 6,98 -73,71 

*Station suspended currently. 
 

Table 48. Stations recommended for the construction of irradiation estimation models with application in Norte de Santander. 

Considering the previous conclusion, table 48 relates the different meteorological stations which measure the four variables used as inputs 

in the AI models for Norte de Santander and several meteorological stations in other places of the country that could be used for the 

creation of the model for the first stations due to the similarity of their geographical and weather conditions. In this table, despite of that 

the Risaralda station in El Zulia is suspended, it is included in the analysis considering its possible activation in the future. 
 

With the information in table 48, a map showing weather stations from different places in Colombia with solar information matching the 

weather conditions of places within Norte de Santander is shown in figure 48. In this map, the stations recommended in table 48 are 

associated with the geographical points of Norte de Santander where could be used. Therefore, the present research proposes a new 

solar information source with application in different zones of the Department with a high reliable level for the sizing of PV systems as a 

tool for the penetration of this technology in the next years.  
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Chapter 7 
Conclusions and recommendations  
 

Irradiation indirect estimation models have been developed for three cities of the Department of Norte 

de Santander (Colombia), using AI techniques (ANN and ANFIS) from climatological variables of 

easy access in the region (humidity, temperature, wind speed and sunshine) in hourly, daily and 

monthly scale. A first performance analysis showed that the models have the expected behavior 

obtaining estimation errors lower than several works in the literature mainly in the highest time scale, 

demonstrating that improvements in the results of each model can be achieved by increasing the 

estimation period. Between the two AI proposed models, it was found that ANFIS offers better 

performance with respect to ANN, although the difference is not very significant to categorize the 

ANFIS model as the best alternative for the estimation process.  

In addition to this, ANN and ANFIS models were evaluated together with other solar information 

sources (satellite and empirical ones) in specific sizing cases of PV systems in order to identify the 

benefits of these models in this field. The AI models performed estimations very close to the reference 

in all the scenarios, unlike the rest of the databases analyzed, which according to the time scale 

required in the sizing method, presented large variations in the accuracy of the results. This 

represents an important advantage for the deployment of this type of models in the region, because 

not only these models can be used in several sizing methods that require different time scales (which 

is not common for all information sources since only one of them has data available in all scales) but 

also because their application guarantees a high level of precision and reliability. 

It is worth to indicate that the goal of this research study is not to verify if the available solar 

information sources are accurate or not (since a more extensive and deep study about it is needed 

and also considering that this document assumed that the data from IDEAM are the closest to the 

real values of interest); in a similar way, the final purpose is not to recognize the best sizing method 

for a PV system. The main objective is to analyze the impact of an alternative solar information source 

based on AI techniques; thus, considering this approach and the obtained results, we can conclude 

that the AI proposed models are a remarkable tool for the description of solar radiation profiles in 

Norte de Santander if these models are trained with enough reliable data, and therefore, these can 

exert a positive influence in the implementation of PV systems. 

Besides, after the validation of the three developed models, we found that their application is not 

limited just to the places where the models were trained, but also to zones with similar weather and 

geographical conditions; thus, models constructed from different regions of Colombia could be 

adapted for predicting irradiation data with a high accuracy in cities of Norte de Santander where this 

variable is not directly measured (as table 48 suggests). The above can be used as a strategy to 

mitigate the negative effects of lacking accurate information of this variable on the growth of the PV 

technology in the country; effects that were identified by the government of Colombia in the last years. 

Finally, we recommend for future works to broaden the scope of the model, i.e., to test the model in 

many more locations to define the maximum and minimum geographical and weather conditions that 

the prediction can tolerate; in this sense, it could be possible to cover a greater number of areas with 

the same model and reduce the list displayed in table 48. Further, there are models in the literature 

that combine training data from more than one station to extend the application range; this option 

could be also performed and compared with the initial recommendation to find the choice with the 

best results for the estimation. This could be done not only in terms of performance but also based 

on complexity, computational cost and reduction of resources for its realization. 
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APPENDIX A 

t 0 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 

0 0 0,8 1,6 2,39 3,19 3,99 4,78 5,58 6,38 7,17 

0,1 7,97 8,76 9,55 10,34 11,13 11,92 12,71 13,5 14,28 15,07 

0,2 15,85 16,63 17,41 18,19 18,97 19,74 20,51 21,28 22,05 22,82 

0,3 23,58 24,34 25,1 25,86 26,61 27,37 28,12 28,86 29,61 30,35 

0,4 31,08 31,82 32,55 33,28 34,01 34,73 35,45 36,17 36,88 37,59 
           

0,5 38,29 38,99 39,69 40,39 41,08 41,77 42,45 43,13 43,81 44,48 

0,6 45,15 45,81 46,47 47,13 47,78 48,43 49,07 49,71 50,35 50,98 

0,7 51,61 52,23 52,85 53,46 54,07 54,67 55,27 55,87 56,46 57,05 

0,8 57,63 58,21 58,78 59,35 59,91 60,47 61,02 61,57 62,11 62,65 

0,9 63,19 63,72 64,24 64,76 65,28 65,79 66,29 66,8 67,29 67,78 
           

1 68,27 68,75 69,23 69,7 70,17 70,63 71,09 71,54 71,99 72,43 

1,1 72,87 73,3 73,73 74,15 74,57 74,99 75,4 75,8 76,2 76,6 

1,2 76,99 77,37 77,75 78,13 78,5 78,87 79,23 79,59 79,95 80,29 

1,3 80,64 80,98 81,32 81,65 81,98 82,3 82,62 82,93 83,24 83,55 

1,4 83,85 84,15 84,44 84,73 85,01 85,29 85,57 85,84 86,11 86,38 
           

1,5 86,64 86,9 87,15 87,4 87,64 87,89 88,12 88,36 88,59 88,82 

1,6 89,04 89,26 89,48 89,69 89,9 90,11 90,31 90,51 90,7 90,9 

1,7 91,09 91,27 91,46 91,64 91,81 91,99 92,16 92,33 92,49 92,65 

1,8 92,81 92,97 93,12 93,28 93,42 93,57 93,71 93,85 93,99 94,12 

1,9 94,26 94,39 94,51 94,64 94,76 94,88 95 95,12 95,23 95,34 
           

2 95,45 95,56 95,66 95,76 95,86 95,96 96,06 96,15 96,25 96,34 

2,1 96,43 96,51 96,6 96,68 96,76 96,84 96,92 97 97,07 97,15 

2,2 97,22 97,29 97,36 97,43 97,49 97,56 97,62 97,68 97,74 97,8 

2,3 97,86 97,91 97,97 98,02 98,07 98,12 98,17 98,22 98,27 98,32 

2,4 98,36 98,4 98,45 98,49 98,53 98,57 98,61 98,65 98,69 98,72 
           

2,5 98,76 98,79 98,83 98,86 98,89 98,92 98,95 98,98 99,01 99,04 

2,6 99,07 99,09 99,12 99,15 99,17 99,2 99,22 99,24 99,26 99,29 

2,7 99,31 99,33 99,35 99,37 99,39 99,4 99,42 99,44 99,46 99,47 

2,8 99,49 99,5 99,52 99,53 99,55 99,56 99,58 99,59 99,6 99,61 

2,9 99,63 99,64 99,65 99,67 99,68 99,69 99,7 99,71 99,72  

           

3 99,73          

3,5 99,95      
 

   

4 99,994          

4,5 99,9993          

 

Table A1. The percentage probability, 𝑃𝑟𝑜𝑏(𝑤𝑖𝑡ℎ𝑝𝑜𝑢𝑡 𝑡𝜎) = ∫ 𝐺𝑋,𝜎(𝑥)𝑑𝑥
𝑋+𝑡𝜎

𝑋−𝑡𝜎
 as a function of t. Appendix B in [81]. 
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APPENDIX B 

The most notable goodness of fit tests are the chi square, Cramér–Von Mises, Kolmogorov–Smirnov, 

Shapiro–Wilk and Anderson–Darling tests; but the Anderson–Darling test is currently considered to 

be superior [112], being one of the most powerful tools when normality is tested [113]. Therefore, this 

method is the selected one for he verification process. 

As a test of goodness of fit, Anderson Darling test is used to determine whether sample belongs to a 

certain distribution by calculating the Anderson-Darling statistic between cumulative distribution 

function (CDF) and empirical probability density function (EDF) [114]. Let 𝑥1, … . , 𝑥𝑁 be the 𝑁 

observations of the given sample, whose normality test based on the Anderson-Darling method 

follows the procedure below. 

First, the set of ranges are sorted in ascending order: 

𝑥1 ≤ 𝑥2 ≤ 𝑥3 … . , 𝑥𝑁 

and, since the possible underlying normal distribution is unknown, the mean and variance are 

estimated, being the first one the average of the data and the second one calculated from equation 

2. With 𝐹(𝑥) being the standard normal CDF as: 

𝐹(𝑥) =
1

2
+

1

2
𝑒𝑟𝑓 (

𝑥 − 𝑥

√2𝜎
) 

Considering that the error function is defined by: 

erf(𝑥) =
2

√𝜋
∫ 𝑒−𝑡2

𝑑𝑡
𝑥

0

 

and using the standardized sample or z-scores from equation 3, the Anderson-Darling statistic 𝐴2 

can be computed as: 

𝐴2 = − ∑
2𝑖 − 1

𝑁
[ln 𝐹(𝑧𝑖) + ln(1 − 𝐹(𝑧𝑁+1−𝑖))]

𝑁

𝑖=1

− 𝑁 

where 𝑧𝑖 represents the corresponding z-scores of each measurements or sample in the set. Then, 

the null hypothesis 𝐻0 (in inferential statistics, the null hypothesis is a general statement or default 

position that there is no relationship between two measured phenomena, or no association among 

groups; for this case, the hypothesis are 𝐻0 which assumes that the sample is normally distributed 

and 𝐻1 which defined the contrary), can be rejected if the modified statistic exceeds a given threshold: 

𝐴2∗
≜ 𝐴2 (1 +

4

𝑁
−

25

𝐿2 ) > 𝛾𝛼 

The threshold 𝛾𝛼 is fixed for a chosen level of significance 𝛼, where 0 ≤ 𝛼 ≤ 1 is defined as: 

𝛼 = 𝑃{𝐴2∗
> 𝛾𝛼 | 𝐻0} 

that is, the probability of rejecting the null hypothesis while true. It can be obtained numerically by 

Monte Carlo simulations, although equation 8 shows an expression for its calculation [115]: 

𝛾𝛼 = 𝑎𝛼 (1 +
𝑏0

𝑁
+

𝑏1

𝑁2)   
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in which values of 𝑎𝛼, 𝑏0 and 𝑏1 are given in table B1 for a prescribed significance level 𝛼. 

Significant level 𝜶 𝒂𝜶 𝒃𝟎 𝒃𝟏 

0,2 0,5091 -0,756 -0,39 

0,1 0,6305 -0,75 -0,8 

0,05 0,7514 -0,795 -0,89 

0,025 0,8728 -0,881 -0,94 

0,01 1,0348 -1,013 -0,93 

0,005 1,1578 -1,063 -1,34 
 

Table B1. Coefficients to obtain the critical values for Anderson-Darling Goodness of Fit Test. 

 

The detection probability can then be straightforwardly computed as: 

𝑃𝑑 = 𝑃{𝐴2∗
> 𝛾𝛼 | 𝐻0} = 1 − 𝛼 

Therefore, by means of the Anderson-Darling method each one of the sets (groups of 12 values 

which represent the evaluation range by day) of the variables were assessed with a level of 

significance 𝛼 = 0,05 as in [79], with which a critical value 𝛾𝛼 = 0,697 was obtained, following the 

process presented in a summarized form below. 

Algorithm: Anderson-Darling test for Normality of ranges between node 𝑖 and 𝑗 

Require: {𝑑̂(𝒍)
𝑖,𝑗}

𝐿

𝑙=1
, 𝛼 

1: Sort ranges in ascending order: 𝑑̂(1)
𝑖,𝑗 ≤ 𝑑̂(2)

𝑖,𝑗 ≤∙∙∙≤ 𝑑̂(𝐿)
𝑖,𝑗. 

2: Estimate mean and standard deviation of the sample. 

3: Compute the standardized sample {𝜔(𝑙) =
𝑑̂(1)

𝑖,𝑗−𝝁̂

𝜎
}

𝐿

𝑙=1
 

4: Evaluate 𝐴2 and 𝐴2∗ statistics. 

5: if 𝐴2∗ ≥ 𝛾𝛼 then 

6:   Reject the null hypothesis: the sample is not normally distributed. 

7: else 

8:   Accept the null hypothesis: the sample is normally distributed. 

9: end if 

 

As a complement, a t-test is applied to confirm the assumption in terms of the type of distribution of 

the sample [78]. For this case, a two-sided t-test is implemented, which is typically applicable when 

there are two tails in the structure, such as in the normal distribution, and correspond to considering 

either direction significant. The terminology "tail" is used because the extreme portions of 

distributions, where observations lead to rejection of the null hypothesis, are small and often "tail off" 

toward zero as in the normal distribution or "bell curve". This test is supported by the equation B1 

and it is illustrated in figure B1 [83]. 

−𝑡 𝛼
2,𝑁−1

  ≤   
√𝑁(𝑥 − 𝑥)

𝜎
  ≤   𝑡 𝛼

2,𝑁−1
      𝐸𝑞. 𝐵1 

where 𝛼 is called the level of significance of the test, is usually set in advance, with commonly chosen 

values being 𝛼 = 0,1, 0,05, 0,005 and 𝑡 𝛼
2

,𝑁−1 is the 100 𝛼/2 upper percentile value of t-distribution 
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with 𝑁 − 1 degrees of freedom. In statistics, a t-distribution is a family of curves depending on a single 

parameter 𝑣 (the degrees of freedom), where 𝑣 can be 𝑣 = 1, 2, 3, … and as it becomes larger, the t-

distribution becomes more and more like a standard normal density [116].  

 
 

a.  
b. 

Figure B1. A t-distribution: a. Effect of the increase of the degrees of freedom. b. Comparison between a t-distribution with 

a standard normal distribution. 

The probability density function (pdf) of the t-distribution or Student's t distribution is given by equation 

B2. 

𝑦 = 𝑓(𝑥|𝑣) =
Γ (

𝑣 + 1
2

)

Γ (
𝑣
2

) √𝑣𝜋 (1 +
𝑥2

𝑣
)

𝑣+1
2

    𝐸𝑞. 𝐵2 

where 𝑣 is the degrees of freedom and Γ(𝑣) is the Gamma function. The result 𝑦 is the probability of 

observing a particular value of 𝑥 from a Student’s t distribution with 𝑣 degrees of freedom. 

Table A3 (from the Appendix of Tables in [83]) presents several values of 𝑡𝛼,𝑁 for a wide variety of 

values of 𝑁 and 𝛼. For the assessment in this alternative method, again an 𝛼 = 0,05 was selected 

and a 𝑡 𝛼
2

,𝑁−1 = 2,201 (for a 𝑁 = 12) were used in the calculation of the verification process. 

 

Figure B2. The two-sided t-test. 
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APPENDIX C 

As it was mentioned in section 4.2.1 (step 3), 𝐾𝑡 is defined as the ratio 𝐻/𝐻𝑒𝑥𝑡, where 𝐻 and 𝐻𝑒𝑥𝑡 are 

the monthly average of the daily solar irradiation and the daily extraterrestrial solar irradiation on a 

horizontal surface, respectively. To be able speaking about daily extraterrestrial solar radiation is 

needed before speaking about the solar constant (𝐼0); it is the amount of energy coming from the Sun 

that perpendicularly affects a surface of unitary area placed outside the Earth's atmosphere, at an 

average distance of 150 × 106 km from the Sun [117]. 

The value of the solar constant has been investigated; nowadays improvements are made in the 

instruments and in the methodologies for its determination as the average value of numerous 

measurements. The value currently used is 1.370 𝑊/𝑚2 and oscillates approximately 1,2 𝑊/𝑚2 

between the maximum and the minimum of the cycle. This value has been adopted as a solar 

constant in different parts of the world, including some educational exercises at NASA. However, the 

value adopted as solar constant by the World Meteorological Organization (WMO) until the last 

calibration performed during the year 2000 is: 𝐼0̅ = 1.367 𝑊/𝑚2 with an error of ±7 𝑊/𝑚2. 

As the intensity of the solar energy varies inversely proportional to the square of the distance to the 

Sun, then in the translational movement of the Earth in Earth orbit changes the Earth-Sun distance 

during the year, causing a variation of incident extraterrestrial solar radiation on a surface normal to 

the solar ray, as illustrated in figure C1. 

 
Figure C1. Movement of the Earth around Sun. 

 

Analytically, incident extraterrestrial solar radiation can be determined by equation C1, for a day. 

𝐼𝑛𝑑 = 𝐼0̅ (
𝑅0

𝑅
)

2

      𝐸𝑞. 𝐶1 

where the ratio 𝑅0/𝑅 is a Fourier series which represents the Earth-Sun distance with a maximum 

error of 0,01 percent. This relationship is explained with more detailed as follows. The Earth in its 

movement around the Sun describes an elliptical orbit in which the average Earth-Sun distance is 

approximately 149,46 × 106 km (value called an Astronomical Unit U. A.). The orbit of the Earth can 

be described in polar coordinates by the following expression: 

𝑅 =
𝑎(1 − 𝑒2)

(1 + 𝑒 cos 𝛼)
    𝐸𝑞. 𝐶2 

 

where: 𝑅 = 𝐸𝑎𝑟𝑡ℎ − 𝑆𝑢𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒, 𝛼 = 𝐸𝑎𝑟𝑡ℎ 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑖𝑛 𝑡ℎ𝑒 𝑜𝑟𝑏𝑖𝑡, 𝑒 = 𝑒𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦  

𝑜𝑓 𝑡ℎ𝑒 𝐸𝑎𝑟𝑡ℎ′𝑠 𝑜𝑟𝑏𝑖𝑡 (𝑒 = 0,01673), 𝑎 = 𝑎𝑠𝑡𝑟𝑜𝑛𝑜𝑚𝑖𝑐𝑎𝑙 𝑢𝑛𝑖𝑡 (𝑠𝑒𝑚𝑖𝑚𝑎𝑗𝑜𝑟 𝑎𝑥𝑖𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑙𝑙𝑖𝑝𝑠𝑒) 



 
 

103 
 

The Earth angular position for this case is given by: 

𝛼 =
2𝜋(𝑛𝑑 − 1)

365
 

where:                                          𝑛𝑑 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑦𝑒𝑎𝑟 

When 𝛼 = 0° the Earth is closer to the Sun (perihelion), as it is observed in figure C1, thus from 

equation C2 is obtained: 

𝑅 = 𝑎(1 − 𝑒) = 0,983 𝑈. 𝐴. 

When 𝛼 = 180°, the Earth is in the most distant position of the Sun (aphelion); in this point: 

𝑅 = 𝑎(1 + 𝑒) = 1,017 𝑈. 𝐴. 

The distance 𝑅 for radiometric effects can be expressed by means of a simple computation equation, 

defined by Spencer in [118] as a Fourier series, with a maximum error of 0,01 percent: 

(
𝑅0

𝑅
)

2

= 1,00011 + 0,034221 cos 𝛼 + 0,00128 sin 𝛼 + 0,000719 cos 2𝛼 + 0,000077 sin 2𝛼 

where:                               𝑅0 = 𝐸𝑎𝑟𝑡ℎ − 𝑆𝑢𝑛 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (1 𝑈. 𝐴. ) 

Therefore, considering above the daily solar radiation that hits a horizontal surface outside the Earth's 

atmosphere denoted by 𝐻𝑒𝑥𝑡(𝑛𝑑), where 𝑛𝑑 is the number of day of the year, represents the amount 

of energy incident on that surface from sunrise to sunset; if an atmosphere totally transparent to that 

radiation existed, it would arrive unaltered on the terrestrial surface and would have the same value 

and behavior. The following expression allows to determine it: 

𝐻𝑒𝑥𝑡(𝑛) = ∫ 𝐼𝑛 cos 𝜃 𝑑𝑡 

where:            𝐼𝑛𝑑 = 𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑒𝑥𝑡𝑟𝑎𝑡𝑒𝑟𝑟𝑒𝑠𝑡𝑟𝑖𝑎𝑙 𝑠𝑜𝑙𝑎𝑟 𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑑𝑎𝑦 𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑦𝑒𝑎𝑟 

𝜃 = 𝐴𝑛𝑔𝑙𝑒 𝑜𝑓 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 

Whose solution according to the mathematical handling presented in [117], is given by: 

𝐻𝑒𝑥𝑡(𝑛𝑑) =
24

𝜋
× 𝐼0̅ (

𝑅0

𝑅
)

2

(cos 𝜙 cos 𝛿 sin 𝜔 +
2𝜋𝜔

360°
sin 𝜙 sin 𝛿)    𝐸𝑞. 𝐶3 

being:                             𝜙 = 𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒, 𝛿 =  𝐷𝑒𝑐𝑙𝑖𝑛𝑒 𝑎𝑛𝑔𝑙𝑒, 𝜔 = 𝐻𝑜𝑢𝑟 𝑎𝑛𝑔𝑙𝑒 

The variables 𝛿 and 𝜔 corresponding to Sun position angles according to the equatorial coordinate 

system. The hour angle (𝜔) is the angle formed at the pole by the intersection between the meridian 

of the observer and the meridian of the Sun; it is expressed in units of arc (degrees) or in units of 

time (hours); its conversion is: 1 hour = 15 ° and it is defined by equation C4. 

𝜔 =
360

24
(𝑡 − 12)     𝑜𝑟      𝜔 =

2𝜋

24
(𝑡 − 12)   𝐸𝑞. 𝐶4 

where 𝑡 is the local hour. Equation C4 is used for the calculation of 𝜔 to a specif hour, but in the case 

of the equation C3, 𝜔 must be defined from sunrise to sunset, whereby is determined equation C5. 

ω = cos−1(− tan 𝜙 tan 𝛿)    𝐸𝑞. 𝐶5 
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From which the astronomical duration of the day, i.e., the duration in hours from sunrise to sunset, 

can be calculated in this way: 

𝑁𝑠−𝑠 =
2

15
𝜔    𝐸𝑞. 𝐶6 

Equation C6 is valid if the absolute value of (− tan 𝜙 tan 𝛿) ≤ 1. For high latitudes (greater than 66,7°), 

where depending on the time of year that condition is not satisfied, implies that the days can have a 

duration equal to 24 hours, the Sun is not hidden, or equal to 0 hours, the Sun stays below the 

horizon, depending on the day of the year. 

Now, the angle formed between the equatorial plane of the Earth and the Earth-Sun line is called the 

solar declination (𝛿), and it is shown in figure C2. Due to the movement of the Earth around the Sun 

the value of this angle varies during the year. The sign of the declination is positive (+) when the Sun 

strikes perpendicularly somewhere in the northern hemisphere, between March 21 (spring equinox) 

and September 23 (autumn equinox), and negative (-) when it incites perpendicularly over some 

place in the southern hemisphere, between September 23 (autumn equinox) and March 21 (spring 

equinox), and varies between -23,45 °, when the Sun is in the lowest part from the southern 

hemisphere (winter solstice December 21/22), and + 23,45 °, when it is in the highest part of the 

northern hemisphere (summer solstice June 21/22). Two times during the year it takes zero value, 

when the Sun passes over the terrestrial Equator, during the equinoxes (Fig. C3). The daily values 

of the solar declination can be calculated with a maximum error of 0,0006 rad., by means of another 

formula obtained by Spencer in [118]: 

𝛿 = (0,006918 − 0,399912 cos 𝛼 + 0,070257 sin 𝛼 − 0,006758 cos 2𝛼 + 0,000907 sin 2𝛼

− 0,002697 cos 3𝛼 + 0,00148 sin 3𝛼) (
180

𝜋
) 

 

Figure C2. Diagram of the change of declination with movement of the Sun with respect to the Ecuador plane. 

Other expressions of equation C3 can be found in [119] and [120] which follow the same principle 

but handling other approximations for the calculation of the decline angle or other interpretation in 

the form to present the values of the different angles in the equation.  

In this way, based on equation C3, the extraterrestrial solar radiation was calculated for each day of 

the year, and this value was compared with each experimental value provided by the IDEAM, 

determining as an atypical measurement, those whose value was higher than the result from equation 

C3. 

+𝛿 

−𝛿 
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