
How Agile COTS Selection Methods are (and can be)?
1

Fredy Navarrete, Pere Botella, Xavier Franch

Universitat Politècnica de Catalunya

{fjnavarrete, botella, franch}@lsi.upc.edu

http://www.lsi.upc.edu/~gessi

1 This work has been partially supported by the Spanish project TIN2004-07461-C02-01.

Abstract

Agile methods are proposed nowadays as a way to

support software systems procurement. Most of the

existing proposals such as eXtreme Programming or

Scrum seem to conceive software procurement as an

exercise of software development. However, a great

deal of software systems are Commercial Off-The-

Shelf (COTS)-based systems, in which the focus

changes from bespoke software development to COTS

selection and integration. Many proposals for COTS

selection have been issued and therefore one may

wonder how do they behave from the agile point of

view. In this paper, we study the agile principles in the

context of COTS selection and we analyze some of the

most widespread existing methods. As a result, we

identify some practices that would help in making

COTS selection processes more agile.

1. Introduction

Agile methods [1, 2] are playing an increasingly

important role in today software engineering practices.

Methods such as eXtreme Programming (XP) [3],

Scrum [4] and others have been adopted by a great

deal of organizations and teams, and reported to be

successful in many experiences (and not so successful

in others, as happens with all methods).

However, in our opinion agile methods currently

suffer from a bias problem: they focus mainly on in-

house software systems, that is systems that are

developed by a team of programmers in which

reusability is limited to software component

repositories basically handled by the team itself (or

another part of the same organization). If we consider

for instance XP, practices such as pair programming

can be difficult to extrapolate to a world other than

software-development-intensive systems.

This perspective leaves out a big portion of the

software market: as reported by professional consultant

companies such as Gartner or IDG, today’s software

systems procurement is mostly an activity of:

searching one or more appropriate software packages

(which are called Commercial Off-The-Shelf –COTS–

components) in the marketplace; writing the contracts

for their acquisition; customizing and integrating them;

and handling the marketplace constant evolution by

integrating new releases of selected packages, updating

technologies, etc. In fields such as cooperative

information systems or communication infrastructure,

it is hard to think about developing systems in-house

instead of following this acquisition-based process.

Therefore, a question that immediately arises is

whether agile methods can be applied in the COTS

world and therefore the benefits presented in [1, 2]

achieved. Our paper is a contribution for solving this

open issue. We have identified two stages in our

research: first, we focus on the agility of local COTS-

related processes, and next on the agility of COTS-

based development as a whole. In this paper we

concentrate in the first part of COTS-based

development, namely COTS selection. In fact, it is

natural to tackle first this stage not only for the

temporal ordering but also because it is the COTS-

related activity in which we may found more

contributions in the form of comprehensive methods.

The rest of the paper is structured as follows. We

first identify which agile principles have to be with

COTS selection and study them one by one (section 2).

Next, we analyze some of the most widespread COTS

selection methods in the light of these principles and

identify their agile and non-agile practices (section 3).

Then we list some practices whose adoption could

improve the agile perspective of COTS selection

methods (section 4). We finally give some related

work and the conclusions of our work (section 5).

Proceedings of the 2005 31st EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA’05)
0-7695-2431-1/05 $20.00 © 2005 IEEE

2. Agile principles in the context of COTS

selection

In order to examine the most commonly accepted

agile principles, we take as a basis the so-called

“Manifesto for Agile Software Development” [5],

more precisely, the “Principles behind the Agile

Manifesto”. After a first revision of those 12

principles, we discard some that either do not apply to,

or not depend on, the COTS selection context:

“Our highest priority is to satisfy the customer

through early and continuous delivery of

valuable software”.

“The most efficient and effective method of

conveying information to and within a

development team is face-to face conversation”.

“Working software is the primary measure of

progress”.

“The best architectures, requirements, and designs

emerge from self-organizing teams”.

The first and third principles, are non-applicable in this

paper because we are focusing on COTS selection and

not the whole development cycle, whilst the second

and fourth principles, seem not to be influenced by the

COTS-based nature of the system.

In the rest of the section we examine the other agile

principles that apply to COTS selection. The words in

bold are considered to be the key words of the

principles.

P1 “Welcome changing requirements, even late in

development. Agile processes harness change for the

customer's competitive advantage”

COTS components are usually acquired in (or

licensed from) the marketplace, and the marketplace is

huge, with a great deal of information that is

discovered whilst selection progresses, and is in

constant evolution and change, even during the

selection process itself if it takes months. This will

force us to contemplate requirements for COTS-based

systems to be flexible in order to capture the current

state of the marketplace. In [6], it is mentioned that the

31% of the studied projects point out the need to make

flexible the requirements in the definition phase.

Flexibility can be supported in several ways. On

the one hand, besides considering the "what" of the

features required on the COTS-based system, it is

convenient to consider the "why" [7, 8], i.e. the goals

behind the requirements. In COTS-based projects, the

goals remain more stable throughout the project and

the requirements, which can change, are elaborated to

satisfy those goals [9].

On the other hand, the selection process should

recognize explicitly the intertwining among

requirements engineering and marketplace exploration:

new requirements force the exploration of a bigger part

of the marketplace, and in this process some interesting

features may be discovered and incorporated to the

system requirements.

P2 “Deliver working software frequently, from a

couple of weeks to a couple of months, with a

preference to the shorter time scale.”

Larman and Basili [10] showed that the idea of

Iterative and Incremental Development (IID) is not

something exclusive of the agile world, since IID has

been present in several well-known process paradigms

dating from several years (as the spiral model or the

prototyping approaches). The central idea in the

Unified Process (UP), the UML “official” process

model, is the iterative development [11], in which each

iteration includes several disciplines (Business

Modeling, Requirements, Analysis&Design,

Implementation, Test, and Deployment), at different

percentages, in a way that every artifact produced

evolves in maturity trough the iterations.

To apply this principle to the development of

COTS selection, we can see the selection process as

iteration-based, including, as in the UP, several

disciplines in each iteration at different percentages,

as: marketplace exploration, requirements analysis,

COTS evaluation, and so on. In each iteration, we can

progress either by selecting better or by selecting more.

Integration is an obstacle in this iterative view of

COTS selection processes. An important problem that

collides with the iteration is the possible existence of

strong dependencies between different COTS

components when selection is multiple. In that case,

the incremental iterations have to take into account

those dependencies whilst the architecture is being

defined, and integration requirements play an

important role [12].

P3 “Business people and developers must work

together daily throughout the project.”

In a conventional in-house software development

project we have two main actors that cooperate:

business people and developers, but in COTS-based

systems a third actor appears: the COTS vendor (or

supplier). A high percentage of the functionality of the

system will come from the COTS components. The

strong dependency that exists on the vendor, seems to

point out his/her inclusion within the development

team (see section 4 for more details). This possibility

may not be feasible for components distributed

massively but possible, and in fact a current practice,

Proceedings of the 2005 31st EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA’05)
0-7695-2431-1/05 $20.00 © 2005 IEEE

in other cases. Several methods such as those reported

in section 3 refer to the importance of this dependency

on the vendor. We think that this inclusion can be a

win-win situation: the vendor can obtain benefits on

learning about our project and about the integration

capability of his/her product [6] and, on the other hand,

the organization that delivers the system (hereafter,

system provider organization) has the option to

customize the COTS component and to obtain better

assistance [13] (specially if the client is important).

Some characteristics, such as the type of COTS

component and/or vendors, the importance of the

client, the budget of the project, etc., may or may not

allow this inclusion.

The nature of the process also makes other actor

important: the lawyer or, at least, some expert in

regulations and laws. COTS selection ends up with the

writing of licenses and contracts for the selected

components, which must protect as much as possible

the client (and also the system provider) when the

selected products show some ill-functioning feature as

well as making clear how product evolution will be

handled. Having this actor will make the selection

process a true team game.

P4 “Build projects around motivated individuals. Give

them the environment and support they need, and trust

them to get the job done”

The information systems are designed and used by

humans, which causes the human factor to play a

preponderant role. The people and the culture of the

organization are crucial on the use of the system [14],

the good relations within a work team, the internal

ability of communication and the different interactions

with other team components. All of this influences the

business process, so, we must worry to understand

how human and organizational factors affect the

development of our project [15]. One of the basic

characteristics about the agile team is the emphasis in

human factors such as: amicability, talent, skill, and

communication [2]. To do so, in addition to those

factors that are not specific of the COTS world,

another key factor is to identify the appropriate roles

that play a part in the process. In the case of COTS

selection, the processes and the activities involved

generate new responsibilities and new roles, making

significant and very important the interaction of these

roles within a team. The team must be based on the

ability and verified knowledge of its members. Also,

the COTS selection process should be adaptable to the

specific characteristics of the system provider; for

instance, using advanced techniques with not-so-

skilled technicians may have serious consequences.

P5 “Agile processes promote sustainable

development. The sponsors, developers, and users

should be able to maintain a constant pace

indefinitely.”

The job stream during selection does not have to be

excessive, to maintain a constant charge that neither

debilitate nor deteriorates the internal pace of the team.

Therefore the flows of internal processes must be

constant, iterative, and allowing constant feedbacks,

that is, to make iterative selections of components,

iterative evaluations, iterative refresh and updates,

applying feedbacks in each phase.

Two artifacts that may play an important role here

are the system architecture and a repository of

information. System architecture may be used as the

cornerstone around which selection takes place.

Repositories may contain lots of different information:

about suppliers, components and requirements, but

also about the processes themselves, as remarked in

principle P8 below.

P6 “Continuous attention to technical excellence and

good design enhances agility.”

High quality is the key to high speed [1]. In each

phase of selection, the involved technical people must

be committed to give results of high quality, being

clear in the specifications of the user requirements, in

the characteristics of the component candidates, in the

results of the evaluations, among other possible results.

All of these fields have lots of background: techniques

like goal-oriented modeling [7, 9] and win-win

negotiation [16] in requirements engineering; multi-

criteria decision techniques, AHP [17] and others for

prioritizing requirements and also evaluation criteria;

etc. Needless to say, quality of the COTS products

themselves must be assessed appropriately for them

being accepted as final result of the selection.

P7 “Simplicity--the art of maximizing the amount of

work not done--is essential.”

This is traditionally a principle difficult to reconcile

with others. Consider for instance P6. Of course,

technical excellence means the use of rich models that

may be difficult to write down. The only way to put

simplicity and technical excellence together is to focus

on the appropriate candidates to invest most of the

effort on their thorough evaluation and not on non-

competitive ones, and to focus on the relevant

requirements that really discriminate among candidates

and therefore to discard irrelevant evaluation criteria.

Another conflict appears when considering

sustainability (P5) and reflection (P8). These two

principles require somehow to invest an effort beyond

the simple selection process. Documentation, data

Proceedings of the 2005 31st EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA’05)
0-7695-2431-1/05 $20.00 © 2005 IEEE

gathering, and so on, requires some extra work that

seems to hamper the simplicity principle. The key

point as usual is: think on the future just when this

future may happen. One-shot selections should not

require the heavy use of documentation, for instance,

since it is not needed for the immediate benefit of the

stakeholders. In the COTS world, another point against

doing much is the high evolvability of the marketplace,

that can make existing descriptions of COTS

components become obsolete very quickly.

P8 “At regular intervals, the team reflects on how to

become more effective, then tunes and adjusts its

behavior accordingly”

This principle is crucial in the COTS world, since

its roles are relatively new, requiring more

experimentation and accumulated knowledge. Until a

satisfactory point is reached, the system provider

organization should tune and adjust its behavior

frequently. The use of repositories similar to those

used in the context of the COCOTS model [18] may

help to reflect as required. Applying these feedbacks at

regular intervals would allow us becoming more

effective in the process of fixing the role behavior.

3. An agile-oriented analysis of current

COTS selection methods

In our research we have investigated 8 of the most

widespread COTS selection processes: SCARLET

[19], OTSO [20], CARE [21], PECA [22], CRE [23],

STACE [24], COTS Score [25] and that proposed by

the SEL [26]. Due to lack of space, in this section we

analyze in detail the first three selection methods under

the light of the 8 agile principles identified in section

2. We provide a rationale for this evaluation with a

subsection for each method. Each subsection includes

an item for each principle and a table relating the main

issues of the method to the principles, either positively

(‘+’), negatively (‘ ‘) or both (‘+ ‘).

3.1. SCARLET
SCARLET [19] (formerly named BANKSEC) is

the successor of the PORE method [27]. It adapts

PORE to the banking domain and enables multiple

selection. SCARLET:

P1. recognizes the changing nature of requirements

by defining an iterative requirements process tightly

intertwined with product evaluation;

Table 1. SCARLET issues affecting agile principles.

P2. processes discard components gradually, but no

partial result is given in the case of multiple selection;

P3. the barrier between the technical team and the

marketplace seems very rigid (suppliers are not part

of the team and relationships are taken in a defensive

manner), which in some cases could be unnecessary;

P4. does not handle human factors, apart from using

requirements and knowledge engineering techniques

that may refer to them, the method just mentions that

humans act as agents of the system;

P5. provides process guidance for procurement

teams during a concurrent system development

process, in which stakeholder requirements, the

system architecture and solution components are all

determined at the same time;

P6. integrates methods, artifacts and techniques such

as AHP, Volere templates, etc. that provide a high

degree of technical excellence; the banking context is

explicitly handled in SCARLET, with specific types

of requirements that make the process more reliable;

P7. distinguishes three different types of templates to

be filled depending on the amount of work to be

invested in evaluation;

P8. seems to be primary a one-shot method; however,

the existence of tool support and evaluation stories

can act as a medium for “intelligence” and

prospective reflection. But in fact, a real repository

is not mentioned except in [28] as future work.

3.2. OTSO
OTSO [20, 29] can be considered the first

widespread selection method. It formulated the basic

principles that the subsequent methods also

incorporated, such as requirements and evaluation

intertwining, use of formal techniques such as AHP for

founding the selection, etc. OTSO:

 P1 P2 P3 P4 P5 P6 P7 P8

Intertwining

processes
+ +

Several types

of templates
 + +

Vendor left

outside

AHP, Volere and

other techniques
 +

Process guidance +

No repository +

Roles not defined

Specialized

process
 +

Contracts and

supplier managed
+ +

Architecture

exists
 +

Proceedings of the 2005 31st EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA’05)
0-7695-2431-1/05 $20.00 © 2005 IEEE

P1. runs concurrently the evaluation criteria

definition process during the search, screening and

evaluation phases. It results on a baseline (a

meaningful set of evaluation criteria) derived from

the requirements to be used in the evaluation and

analysis phases;

P2. conducts the search and discovering activities in

small increments (e.g. a few days) and review the

frequency of discovering new alternatives at each

increment;

P3. recognizes the marketplace and the transfer of

benefits between parties (suppliers and selection

team) but does not constitutes an integrated team;

P4. considers organizations’ reuse infrastructure and

maturity for calibrating the final form of the process,

customizing then the effort to the particular context;

P5. promotes sustainability by encouraging reuse

through a well-defined process with the help of a

repository. The baseline mentioned in P1 provides

also a skeleton used during evolution;

P6. defines formally the evaluation criteria so that the

evaluation of alternatives can be conducted

efficiently and consistently.

P7. invests more effort in evaluating a limited number

of alternatives that appear as the best candidates,

documenting systematically the results;

P8. is a long-term oriented method, using a repository

for organizing knowledge and including an

assessment phase at the end of the process, devoted

to obtaining feedback for future selection processes.

Selection is heavily based on knowledge (and

evaluation) reuse.

Table 2. OTSO issues affecting agile principles.

3.3. CARE
CARE [21, 30] is a method defined as both goal-

and agent-oriented. CARE:

P1. recognizes that objectives and requirements can

be changed and negotiated whilst the system is under

development;

P2. organizes the processes of eliciting, analyzing,

correcting, and validating goals as iterative, but it is

not clear that this allow to deliver value early and

frequently;

P3. although maintains and stores vendors’ data in its

repositories, it does not include any kind of

interaction with vendors;

P4. considers humans as agents in its models, as done

with software and hardware. Of course, as such

agents, they are intentional (i.e., they play roles and

have responsibilities), but in fact human factors are

not addressed in the method;

P5. is architecture-centric, which provides a means of

sustainable development, also supported by the

existence of technical roles (see below) that interact

in a logical predefined sequence and the continuous

requirements negotiation;

P6. recognizes three different technical roles, namely

requirements engineer, system architect and

component engineer. Having experts in this profile is

a way to support technical excellence. The use of

notations such as NFR and i* is also a step beyond

this goal;

P7. suggests several process that require heavy

documentation, in particular the NFR framework and

the i* language. This sacrifices simplicity for the

sake of future reuse;

P8. has no documented processes on reflection for

effectiveness, although one could argue that the

information repository could contribute to tuning and

adjustments to the operation of the organization.

Table 3. CARE issues affecting agile principles.

3.4. Final observations
Table 4 summarizes the result of this analysis. We

identify the 8 principles using the Pi identifiers

 P1 P2 P3 P4 P5 P6 P7 P8

 Baseline fixed early +

Small increments +

Screening phase + +

Marketing and

contractual issues

outside

Concurrent phases + +

Organization ma-

turity considered
 + + +

Alternatives

conducted

efficiently

+

Repository + +

Intensive reuse + +

AHP & detailed

 evaluation
 +

Assessment phase +

 P1 P2 P3 P4 P5 P6 P7 P8

Goal negotiation +

Arquitecture exists +

Iterative process +

Vendor data

gathered
+

No interaction

with vendors

3 technical roles + + +

Logical interact-

tion sequence

guided by roles

+

NFR, i* +

Repository + +

Human factors

not considered

Proceedings of the 2005 31st EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA’05)
0-7695-2431-1/05 $20.00 © 2005 IEEE

introduced in section 2. For each method M and

principle Pi, we rank the degree of coverage of M for

Pi using the following rationale:

 A mark ‘a’ means that the principle is explicitly

recognized as a design principle of the method.

 A mark ‘b’ means that although not intended

explicitly, the method manages well the principle.

Also we mark with a ‘b’ when the principle is

explicitly mentioned but it is not clear that it is

handled appropriately.

 A mark ‘c’ means that the method does not work

well with the principle, although some spare

practices have to be with it.

 A mark ‘d’ means that the method does not cover

the principle at all.

Table 4. Comparative of COTS selection methods

From table 4, some observations can be drawn:

 Principle P1 is very well covered by virtually all

methods, probably because the seminal OTSO

method and more remarkably PORE already

recognized the importance of overlapping

requirements acquisition and product evaluation.

The same happens with principle P6, probably

because most of the methods proposed come from

the academia. In fact, it has been also reported

recently [31] that formal techniques recommended

by the methods presented here are often neglected

in the industry due to time pressures.

 Principles P5 and P8 are reasonably well covered

by the methods. Sustainability come from the

existence of well defined processes, whilst

reflection is supported by repositories.

 The rest of the principles are not very well covered

by current methods. It is difficult to reconcile

simplicity with other principles, also it is not

obvious that COTS selection may deliver value

frequently. Last, motivating individuals has not

been usually a goal since methods have focused in

technical issues. The last sentence is especially

relevant for understanding that principle P3 is bad

covered by most of the methods. Often the crucial

importance of legal advice remains hidden by the

relevance given to technical issues; in fact, the

result of COTS selection is defined mainly as an

ensemble of products instead of a set of contracts

as in fact is. On the other hand, suppliers are

usually seen more as adversaries than as potential

collaborators.

4. Some practices and a research agenda to

improve agility

As a final step, from the analysis carried out in the

previous section, we enumerate here a set of good

practices that may improve agility in current COTS

methods. Furthermore, we outline a research agenda

for some relevant issues that require a thorough study

before being converted into practices.

4.1. Practices proposed
 Identify technical and non-technical roles specific

of COTS selection.

o The technical roles should include:

requirements engineer, able to elicit, analyze

and define the different goals and requirements

of stakeholders; market watcher, to classify the

types of products available in the marketplace

and the different substantial changes that

emerge that can have an impact or influences

within the information system (e.g. new

versions, withdrawing of suppliers from the

market, etc.); component screener, able to look

for components candidates that match the

requirements, which need a more detailed

analysis; component evaluator, with a high

technical profile to be able to apply techniques

and processes that allow to rank the candidate

products. Also, some more classical roles as a

quality engineer and a project manager [32] are

needed. Last, a component customizer from the

supplier side able to customize the COTS

component when required.

o The non-technical roles should include: system

client, for stating and validating requirements;

COTS supplier, for providing detailed

information and demos of components during

detailed analysis; manager, for sharing

responsibilities with the technical team in the

system provider organization; lawyer, for

providing assistance in the writing of the

contracts and the study of the licenses.

This distinction of roles helps to clarify the

activities and responsibilities that take part during

COTS selection. Considering agile philosophy,

every team member should be equally

knowledgeable and qualified to play all of them,

although the variety and specifies of some of them

(e.g., requirements engineer or lawyer) may not

allow that.

 Maintain a project repository. The idea of

repository, although somehow opposite to agility

(requires work not strictly needed) is central to be

 P1 P2 P3 P4 P5 P6 P7 P8

SCARLET a c c c b a c b

OTSO b a c d b b d b

CARE a c c b a a d a

Proceedings of the 2005 31st EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA’05)
0-7695-2431-1/05 $20.00 © 2005 IEEE

able to improve processes, to reuse knowledge and

therefore learning from the past. The repository

would require another role for its maintenance.

With this repository, we may reuse from the initial

goals and requirements, to COTS evaluation

carried before. Also the repository should store

rationale behind decisions taken (why a component

was rejected, why a particular technique was

selected for driving evaluation, …).

 Pair evaluation. This is an easy practice that makes

a parallelism among selection-based and

development-based software engineering. Since

selection plays the part of programming, the same

arguments apply for supporting this technique.

 Component metaphor. Again taken from the agile

world [1], metaphors of components allow gaining

in understanding and perception of what the

component that must be integrated in the system

does. This metaphor shall be constructed taking

into account the key goals and requirements for

that component.

 Call for tenders. Tendering [32, 33] is a procedure

that is mandatory in some contexts (e.g., for public

administrations when the system has a high

budget). Although somewhat non-agile, since it

breaks the development into two clearly

distinguished parts (before and after tendering

resolution), from the selection point of view

tendering reveals to be an unexpected source of

agility. Making the initial bid public implies

receiving lots of feedback from suppliers that

compete for that bid, pointing out new needs or

even better, highlighting problems that are in the

initial call for proposals. Furthermore, the way

suppliers apply for the bid is an additional point of

useful information to be considered when selecting.

A variation of tendering is the use of questionnaires

as a complement to gather information on products

and suppliers [34].

A final comment is that some of these practices

improve agility in general but may collide a bit with

particular principles. One could wonder whether the

general agile stream of COTS selection may coordinate

with secondary, more stable streams such as repository

maintenance.

4.2. Research agenda
 Define a maturity model for COTS selection

processes. This model would allow organizations

for which selection processes are a deal progressing

towards a degree of excellence. This idea has been

explored in [35]. Of course, this model should be

agile-oriented, itself, and therefore its key areas

adapted to this context.

 Propose new business models. Currently there are

profit and non-profit organizations and companies

that act as intermediaries, offer huge catalogues of

products, gather COTS descriptions, etc. [36, 37].

The business models around can determine new

practices that are currently undermined.

 Design a new COTS-based development method

based in agile principles, highly customizable to

particular types of organizations.

5. Conclusions

In this paper, we have analyzed current COTS

selection methods under the perspective of the agile

principles. We have identified what characteristics of

these methods influence either positively or negatively

which principles, and we have identified some

practices that could eventually improve the methods

from the agile point of view, as well as set a research

agenda for 3 particular important issues. Most of our

observation and practices align with some of the

lessons identified in several reports [6, 13, 26, 27]

which can be considered as a preliminary validation of

our work, of course pending of a real validation

planning which is part of our future work.

As far as we know, there is not much work done

concerning COTS-based selection and agility. In fact,

we just are aware of [38] in the context of the whole

implantation process of ERP systems, more focused on

project management and implementation than in

selection, which is natural due to the coarse granularity

of ERP systems. The paper is conducted from a

practical point of view, more than from literature

research as done in our proposal, identifying agile

practices and heuristics that apply in the ERP context,

although some of them are applicable in general to

COTS components.

Another stream of related research is the adaptation

of existing development process to embrace COTS-

based systems. In [39], RUP is analysed from the

COTS perspective, and we may found some

similarities to COTS selection methods, such as the

definition of specific roles and the iteration planning.

About future work, besides validation (see above),

as mentioned in the introduction, we aim at replicating

the analysis for the integration and evolution phases

and next to put together the results for driving

conclusions on the agility of the whole cycle of COTS-

based software development.

Proceedings of the 2005 31st EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA’05)
0-7695-2431-1/05 $20.00 © 2005 IEEE

6. References

[1] Martin, Robert C. Agile Development: Principles,

Patterns and Process, Prentice Hall, 2002.

[2] Cockburn, A., Highsmith, J. “Agile Software

Development: The People Factor”. IEEE Computer,

December 2002.

[3] Beck, K. Extreme Programming Explained: Embrace

Change. Addison Wesley, 1999.

[4] M. Beedle, K. Schwaber. Agile Software Development

with SCRUM. Prentice Hall, 2001.

[5] Beck, K., et al. Manifesto for Agile Software

Development http://www.agilemanifesto.org, 2001.

[6] FAA SERC. “Lessons Learned in Developing

Commercial Off-The-Shelf (COTS) Intensive Software

System”. October 2, 2000.

[7] Yu, E. “Towards Modelling and Reasoning Support for

Early-Phase Requirements Engineering”. Proceedings of

the 3rd IEEE ISRE, 1997.

[8] Yu, E., Mylopoulos, J., Lesperance, Y. “AI Models for

Business Process Reengineering”. IEEE Expert, August

1996, pp. 16-23.

[9] Lamsweerde, A. “Goal-Oriented Requirements

Engineering: A Guided Tour”. Proceedings of the 5th IEEE

ISRE, 2001.

[10] Larman, C., Basili, V. “Iterative and Incremental

Development: A Brief History”. IEEE Computer,

November 2004.

[11] Larman, C. Applying UML and Patterns (3rd edition).

Prentice Hall, 2005.

[12] Lauesen, S. “COTS Tenders and Integration

Requirements”. Proceedings of the 12th IEEE RE, 2004.

[13] Brownsword, L., Place, P. “Lessons Learned Applying

Commercial Off-the-Shelf Products”. Report CMU/SEI-

99-TN-015, June 2000.

[14] Kunda, D., Brooks, L. “Applying Social-Technical

Approach for COTS Selection”. Proceedings of the fourth

UKAIS Conference, University of York, April 1999.

[15] Curtis, B., Krasner, H., Iscole, N. “A field study of the

software design process for large system” Communication

of the ACM, 31(11):1268-1286, November 1988.

[16] Egyed, A., Kwan, J., Madachy, R. "Developing

Multimedia Applications with the WinWin Spiral Model".

In Proceedings ESEC/FSE 97, November 1997

[17] Saaty, T.L. “How to make a decision: The analytic

hierarchy process”. European Journal of Operations

Research, no. 48, pp. 9 - 26, 1990.

[18] COCOTS at http://sunset.usc.edu/research/COCOTS/,

last accessed March 2005.

[19] Maiden, N., Kim, H., Ncube, C. “Rethinking Process

Guidance for Selecting Software Components”.

Proceedings of 1st ICCBSS, LNCS 2255, 2002.

[20] Kontio, J. “A Case Study in Applying a Systematic

Method for COTS Selection”. In Proceedings 18th Intl’

ICSE, 1996.

[21] Chung, L., Cooper, K., Courtney, S. “COTS-Aware

Requirements Engineering and Software Architecting”.

Proceedings of the SERP 2004.

[22] Dorda, C., Dean, C., Morris, E., Oberndorf, P. “A

Process for COTS Software Product Evaluation.”.

Proceedings of 1st ICCBSS, LNCS 2255, 2002.

[23] Alves, C., Castro, J. "CRE: A Systematic Method for

COTS Selection". XV Brazilian Symposium on Software

Engineering, Rio de Janeiro, Brazil, October 2001 CRE

[24] Kunda, D. “STACE: Social Technical Approach to

COTS Software Evaluation”. In Component-Based Softwa-

re Quality - Methods and Techniques, LNCS 2693, 2003.

[25] Morris, A. “COTS Score: An Acceptance Methodology

for COTS Software”. Proceedings of the 19th DASC,

Philadelphia, PA., October 2000.

[26] M. Morisio, C.B. Reaman, V.R. Basili, A.T. Parra, S.E.

Kraft, S.E. Condon. “COTS-based software development:

processes and open issues”. Journal of Systems and

Software 61 (2002): 189-199.

[27] Maiden, N., Ncube, C. “Acquiring COTS Software

Selection Requirements.” IEEE Software 15(2), 1998.

[28] Ncube, C., Maiden, N. "PORE: Procurement Oriented

Requirements Engineering Method for a Component-Based

System Engineering Development Paradigm.” In

Proceedings of the 2nd CBSE, 1999.

[29] Kontio, J. “OTSO: A Systematic Process for Reusable

Software Component Selection”. University of Maryland

Technical Report CS-TR-3478, College Park, MD, 1995.

[30] Chung, L., Cooper, K. “Matching, Ranking, and

Selecting Components: A COTS-Aware Requirements

Engineering and Software Architecting Approach”.

Proceedings 1st MPEC Workshop, 2004.

[31] Torchiano, M., Morisio, M. ”Overlooked Aspects of

COTS-Based Development”. IEEE Software 21(2), 2004.

[32] Lauesen, L. “Experiences from a tender process”.

Proceedings of REFSQ’04, Riga.

[33] Krystkowiak, M., Bucciarelli, B., Dubois, E. “COTS

Selection for SMEs: a report on a case study and on a

supporting tool”. Proceedings of the 1st RECOTS

Workshop, September 2003.

[34] Ncube, C., Maiden, N. ”Selecting COTS Anti-Virus

Software for an International Bank: Some Lessons

Learned”. Proceedings 1st MPEC Workshop, 2004.

[35] Olson, T. “Using CMMI/SS to Manage COTS&MOTS

Software”. Proceedings 2nd Annual CMMI Technology

Conference and User Group, 2002.

[36] Mielnik, J.-C., Lang, B., Laurière, S., Schlosser, J.-G.,

Bouthors, V. “eCots Platform: An Inter-Industrial Initiative

for COTS-Related Information Sharing”. Proceedings of

2nd ICCBSS, LNCS 2580, 2003.

[37] ComponentSource, http://www.componentsource.com,

last accessed Feb. 2005.

[38] Alleman, G.B. “Agile Project Management Methods

for ERP: How to Apply Agile Processes to Complex COTS

Projects and Live to Tell About It”. In XP/Agile Universe

LNCS 2418, 2002.

[39] Chan, R. “Adopting RUP in a COTS-Implementation

Project”. The Rational Edge, May 2003.

Proceedings of the 2005 31st EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA’05)
0-7695-2431-1/05 $20.00 © 2005 IEEE

