
Putting Non-Functional Requirements into

Software Architecture1

Xavier Franch, Pere Botella
{franch, botella}@lsi.upc.es

Dept. Llenguatges i Sistemes Informàtics (LSI)
Universitat Politècnica de Catalunya (UPC)

c/Jordi Girona 1-3 (Campus Nord), 08034 Barcelona, Catalonia (Spain)
FAX: 34-3-4017014. Phone: 34-3-4016965 / 6960

1 This work is partially supported by the spanish project TIC97-1158
(from the CICYT program).

Abstract
This paper presents an approach for incorporating

non-functional information of software systems into
software architectures. To do so, components present two
distinguished slots: their non-functional specification,
where non-functional requirements on components are
placed, and their non-functional behaviour with respect to
these requirements. Also, connector protocols may
describe which non-functional aspects are relevant to
component connections. We propose a notation to
describe non-functionality in a systematic manner, and
we use it to analyse two particular aspects of the meeting
scheduler case study, user interaction and performance.

1. Introduction
Software systems are characterised both by their

functionality (what the system does) and by their non-
functionality or quality (how the system behaves with
respect to some observable attributes like performance,
reusability, reliability, etc.). Both aspects are relevant to
software development but, traditionally, much more work
has be done for the first one than for the second,
especially concerning specification languages and, lately,
also architectural languages. This happens in despite of
the fact that many researchers have pointed out the
convenience of non-functional features appearing in those
languages [5, 15, 18, 19, 22].

In this paper, we are going to propose a way of
putting non-functional information of software systems

into software architectures. So long as we are not
interested in a particular software architectural style or
notation, we will use an ad-hoc language for describing
components and connectors, and we will focus on the
non-functional part, by explaining how we incorporate it
into components and connectors and by presenting a
language called NoFun to describe it. We will illustrate
the feasibility of our approach by addressing two
particular aspects of the meeting scheduler case study.

Before introducing our proposal, we need to clarify
our point of view about non-functionality. We
distinguish three key concepts:

• Non-functional attribute (short, NF-attribute): any
attribute of software which serves as a mean to
describe it and possibly to evaluate it. Among the
most widely accepted [3, 4, 13, 14, 17] we can
mention: time and space efficiency, reusability,
maintainability, reliability and usability. In our
approach, we allow arbitrary identification and
definition of NF-attributes.

• Non-functional behaviour (short, NF-behaviour):
any assignment of values to the NF-attributes that
are in use in a particular software unit (component,
connector, port, etc.).

• Non-functional requirement (short, NF-requirement):
any constraint referred to a subset of the NF-
attributes that are in use in a particular software
unit.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/220111842?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. A Model for Software Architecture

Our model for software architecture distinguishes
two usual kinds of units, components and connectors.

2.1 Components

According to [1], "components are the active,
computational entities of a system... The relationship
between a component and its environment is defined
explicitly as a collection of interaction points, or ports".
In our current framework, we restrict ourselves to
software components, although we feel that most of the
ideas presented here could be applied also to physical
components without significant differences.

Basic software components are software modules
(classes), but others can be defined: libraries of reusable
components, whole systems, clusters of similar systems,
etc. However, we do not fix the set of valid software
components.

In our software architecture style, components have
a specification and an implementation, each one with a
functional part and a non-functional one.

• The functional specification describes the services
that the component provides. To be accurate,
functional specifications should be stated using any
of the existing specification languages, like Z [20]
and Larch [9] for sequential systems, or CSP [12]
and CHAM [2] for more general ones.

• The non-functional specification declares which
NF-attributes are of interest for the component and
establishes properties concerning them by means of
NF-requirements. In fact, NF-attributes will be often
defined in separate and independent modules, called
attribute modules, to be reused in many contexts.

• The functional implementation is the operational
artefact that makes the functional specification to
work out. It may be compound, to obtain the
implementation of a component in terms of a
software architecture that glues simpler ones. Usual
programming languages can be used for
implementation purposes.

• The non-functional implementation is a description
of the NF-behaviour of the functional implemen-
tation with respect to the NF-attributes declared in
the non-functional specification.

In fact, much of a component specification come from its
classification in a component type, which provide some
implicit properties; it is sometimes said that a
component is an instance of its component type. For
instance, a filter is a type of component that carries out a
manipulation of input data and renders the result to an

output port. Some useful taxonomies of components
exist in the literature (e.g., [10, 11]). Although we plan
to do it in the future, in the current state of our work we
have not bound yet non-functional information to any
of these component types, but directly to component
instances.

Non-functional issues will be introduced in
architectures using the language presented in section 3.

2.2. Connectors

Once again, we adopt the definition appearing in [1]
that states that "connectors define the interaction between
components. Each connector provides a way for a
collection of ports to come into contact and logically
defines the protocol through which a set of components
will interact". Connectors can be then as diverse as:
method invocation, network connection, data sharing, etc.

In any case, and not surprisingly, connectors can be
also divided into the same parts as components.
Functional specification can define things as: network
connection protocol, parameter passing mechanism, etc.
Non-functional specification will introduce NF-attributes
as: reliability of connection, efficiency, etc., together
with NF-requirements. Implementations will work as in
components.

Fig. 1 shows an example of software architecture
(borrowed from [1]) which is an instance of the pipe-filter
architectural style: components are filters, while
connectors are pipes supporting dataflow between two
filters. Pipes connects filters using the appropriate ports;
other ports remain free, standing for external connections
of the resulting system.

Fig. 1: A pipe-filter software architecture.

3. The Language NoFun

In this section, we present the highlights of a
language called NoFun aimed at stating non-functional
information into software components and connectors. In
fact, NoFun constructs will be really introduced in the
next section when dealing with the case study, although
just to the extend they are needed. A more detailed
definition can be found at [8].

3.1. Non-functional attributes

In addition to their name, NF-attributes have the
following characteristics in NoFun:

• They belong to a domain, which fixes the set of
valid values and operations. Domains are then
similar to the usual notion of data type in a
programming language and so we include integer
and real numbers (for measurable NF-attributes, for
instance degree of reusability), boolean values (for
NF-attributes that just hold or fail, as error
recovery), disjoint union (for instance, efficiency as
the disjoint union of time and space efficiency), by
enumeration of values and so on. Also, we consider
the existence of ad-hoc domains for particular cases
of software systems; for instance, we have defined a
domain for asymptotic complexity for measuring
efficiency of data structures.

• Their are classified of one of two kinds, basic or
derived, depending on whether their value can be
computed from others or not. A derived NF-attribute
P includes the following parts:

◊ The list L of other NF-attributes that
determine P's value.

◊ A list of n guarded formulae of the form
Ci => P = Ei, 1 ≤ i ≤ n, Ci being a boolean
expression and Ei an expression yielding a
value in P's domain; if n = 1, then Ci is
optional. The meaning of a formula is: P
equals Ei if the condition Ci holds.

• They can be bound to different kind of components
(program modules, libraries, systems, etc.), or even
to particular services provided by components by
means of ports.

• They have a scope, which determines the
components in which they are in use. There is a
relationship between scope and binding: a NF-
attribute must be bound to a component finer than
its scope. So, it is not possible for a NF-attribute
bound to a library to have a scope restricted to just a
few modules of the library.

• They may have multiple definitions. So, different
projects may choose the more appropriate definition
of NF-attributes.

The first two characteristics appear when the NF-attribute
is defined inside a NF-attribute module; a single module
may define more than one NF-attribute. In case of
multiple definitions, each of them will appear at a
different module.

Non-functional attributes may involve one or more
measurement units, which model data sizes.

3.2. Non-functional behaviour

Once a component specification has been built,
implementations for it may be written. Each
implementation V for a given software component D
should state its NF-behaviour with respect to the basic
NF-attributes that are in use in D; values of derived
NF-attributes are automatically computed.

Obviously, a crucial question here is how can be
checked that the stated NF-behaviour really corresponds to
the functional implementation. Up to now, we have not
done any significant work here, although we are trying to
develop a framework to compute the value of some
NF-attributes in an automatic manner [6].

3.3. Non-functional requirements

NF-requirements are the mean to state conditions on
implementations of software components. Syntactically,
they are usual boolean expressions enriched with some
new constructs for non-functionality, which are mainly
some useful quantification over the value of NF-
attributes. Their purpose is to express relationships
between properties and to represent the environment
where implementations are to be inserted. They can
appear both in non-functional specifications, to state
properties that every implementation of the type must
fulfil, or in non-functional implementations, to state
constraints on the implementations of the imported
components.

NF-requirements allow to refine the classical
definition of implementation correctness, which focus on
functional aspects. Given a specification SP and an
implementation IMP, both with functional and non-
functional parts, SP = (FSP, NFSP) and IMP = (FI,
NFI), we say that IMP is correct w.r.t. SP if:

• FI is (functionally) correct w.r.t. FSP, for a given
correctness definition.

• All the NF-requirements stated in NFSP are satisfied
by NFI.

This second condition may be not computable if the
NF-behaviour depends on the implementations of the
imported components, as it happens often. In other
words, a NF-requirement may not only hold or fail for a
given implementation, but it also can be undefined. In
this last case, we consider the implementation
conditionally correct. A conditionally correct may later
become a correct one, with appropriate implementation
selection for the imported components.

4. Examples

We give here an example of treatment of two
particular NF-requirements that appear in the meeting
scheduler case study [7]: little interaction and good
performance. We are going to develop in detail the first
case, while we will just address partially to the second
one, focusing on non-functional aspects. We use the
constructs of NoFun to systematise non-functional
descriptions.

To simplify some aspects of the development, we
assume that the meeting initiator is always the same
person.

4.1. Interaction

Meeting scheduler requirements include the sentence:
"The amount of interaction among participants (...)
should be kept as small as possible". We can view this as
a NF-requirement concerning the usability of the system,
and so we decide to deal with him in the non-functional
side of system architecture, by defining a NF-attribute
called interaction and then stating the valid NoFun
constraint:

min(interaction)

as NF-requirement of the system.

4.1.1 Defining the NF-requirement. As suggested
in [7], we consider interaction as the disjoint union of the
number of delivered messages and their length (amount of
negotiation could be expressed in terms of these two
factors), trying then to measure the effort for obtaining
the information for the meeting2:

 union interaction = (delivered_messages,
 information_volume)

2 We are not considering explicitly the cost of reading messages.
Partly, this cost depends on message length. However, it could be
explicitly considered by introducing a third factor, or by redefining
delivered_messages by delivered_and_received_messages.

So, minimising interaction means minimising both of
them. This is to say, the following implicit equality
follows from the interaction declaration:

 min(interaction) = min(delivered_messages) ∧
 min(information_volume)

While the first factor is clearly measurable with an
integer, the way of dealing with the second is not so
obvious. We decide to introduce an enumeration type
trying to classify the most common information volume
flow types:

 integer delivered_messages

 enumeration ordered information_volume =

 (yes_no, form, ascii, multimedia, ...)

The key word "ordered" means that values of the domain
can be compared with a total order operator, considering
values as ordered as they appear in the definition. This
gives sense to the expression min(information_volume).

However, min(interaction) is not really a useful
criterion for measuring. How do we know that a system
meets this goal? In fact, the NoFun "min" operator
makes sense when selecting between existing
implementations, as we will see in 4.2. When just one
implementation is expected, it is necessary to translate
this concept into concrete values, and this is what we are
doing next.

Let's start with delivered_messages. Concerning the
functionality of the system, we can distinguish three
kinds of interaction: initial information collection,
resolution of conflicts and schedule broadcasting. As the
exact number of messages depend on both the number of
potential attendees and the number of conflicts, we
introduce two measurement units for representing them:

 measurement unit nb_attendees, nb_conflicts

Then, we obtain3:

• Initial information collection: a broadcasting
message from the initiator to the other attendees and
their response gives nb_attendees + 1 messages.

• Resolution of conflicts: the initiator sends a
message to every attendee provoking a conflict,
which must be answered. This yields to an amount
of nb_conflicts*2 messages.

• Schedule broadcasting: just a final message once all
the conflicts have been solved.

3 A particular point has not been considered here: data range
extension, which causes iteration of the three steps presented above.
A way of dealing with data range extension would be introducing a
third measurement unit and then multiplying with the amount obtained
below.

So, the optimal amount of messages equals to
nb_attendees + nb_conflics*2 + 2. However, requiring
exactly this number of messages would certainly be too
restrictive, so we allow an interaction policy with a few
more messages:

requirements delivered_messages <
 nb_attendees*2 + nb_conflicts*3

The important fact is that coefficients of
measurement units remain the same, because they are the
ones that rule the magnitude. With this requirement, we
allow for instance the initiator delivering periodical
messages to attendees informing of current status while
negotiation is going on (just a few more messages during
scheduling). On the other hand, some schemes do not
pass this requirement and so they are forbidden; we may
cite direct conflict resolution between conflicting
attendees, which would increase the coefficient of
nb_conflicts.

Concerning information_volume, we just require
messages being ascii, forms or yes/no messages. Making
use of the ordering relationship, this can be expressed as:

 requirements information_volume <= ascii

4.1.2 NF-behaviour in a particular software
architecture. Our software architecture for the meeting
scheduler system (fig. 2) assigns a component for every
attendee and for the initiator. In the components, we
identify some ports that are bound with a connector.

component INITIATOR
ports

out init_meeting, notify_conflict
out broadcast_meeting
in receive_preferences, get_new_preferences

end INITIATOR

component ATTENDEE
ports

 in receive_proposal, receive_meeting
 in conflict_notification
 out give_preferences, solve_conflict
end ATTENDEE

connector INITIATOR_ATTENDEE
connects INITIATOR with ATTENDEE
binds init_meeting with receive_proposal

 notify_conflict with conflict_notification
 broadcast_meeting with receive_meeting
 receive_preferences with give_preferences

 get_new_preferences with solve_conflict
end INITIATOR_ATTENDEE

Fig. 2: Components and connectors of the first layer
of the meeting scheduler system architecture.

Given these ports with their obvious meaning, and
given also the analysis of message flow done in the last
section, the NF-behaviour of the system with respect to
the number of delivered messages can be defined in the
following way:

 MEETING_SCHEDULER.delivered_messages =

 INITIATOR.init_meeting.delivered_messages

+

 ATTENDEE.give_preferences.delivered_messages
*nb_attendees

+

 INITIATOR.notify_conflict.delivered_messages

*nb_conflicts

+

 ATTENDEE.solve_conflict.delivered_messages

*nb_conflicts

+

 INITIATOR.broadcast_meeting.deliverd_messages

 (Note qualification of NF-attributes to distinguish which
software unit are they referring to.)

Concerning message volume, and taking profit of
the fact of the NF-attribute being ordered, we define it as
the maximum of the values in those operations involving
more than one message:

 MEETING_SCHEDULER.information_volume =
 max(information_volume,

 {ATTENDEE.give_preferences,
 INITIATOR.notify_conflict,
 ATTENDEE.solve_conflict})

The last step has to be with giving values to the
NF-attributes at the port level. This should appear in the
NF-behaviour modules bound to the ATTENDEE and
INITIATOR components. The values should be explicitly
written by humans, until a way of computing them
automatically is provided.

Fig. 3 presents the whole first layer of the meeting
scheduler system architecture.

4.2. Performance

One of the non-functional goals of the system is
performance. Although this goal must be carefully
handled, especially with colliding with other goals, some
particular requirements can be easily identified. Consider,
for instance, a partial view of the inner architecture for
the INITIATOR component, formed by a control module
and a data repository for storing user names. The control
module imports the repository and so there exists a

Functionality of the
system as described in [7]

ATTRIBUTES
 UNION interaction = (delivered_messages, information_volume)
 INTEGER delivered_messages
 ENUMERATION information_volume = (yes_no, ...)
MEASUREMENT UNITS nb_attendees, nb_conflicts
REQUIREMENTS
 delivered_messages < nb_attendees*2 + nb_conflicts*3
 information_volume <= ascii

...

ATTENDEE

INTIATOR

INITIATOR_ATTENDEE

described as in fig. 2

MEETING_SCHEDULER.delivered_messages =
 INITIATOR.init_meeting.delivered_messages +
 ATTENDEE.give_preferences.delivered_messages*nb_attendees +
 INITIATOR.notify_conflict.delivered_messages*nb_conflicts +
 ATTENDEE.solve_conflict.delivered_messages*nb_conflicts +
 INITIATOR.broadcast_meeting.delivered_messages

MEETING_SCHEDULER.information_volume =
 max(information_volume, {ATTENDEE.give_preferences,

 INITIATOR.notify_conflict,
 ATTENDEE.solve_conflict})

Fig. 3: First layer of the meeting scheduler system architecture (left column: functional; right
column: non-functional; upper row: specification: lower row: implementation).

data repository for storing user names. The control module
imports the repository and so there exists a connector
between both of them. If we define the repository as an
instance of a generic SET component, this connector can
be defined in terms of a parameter passing operation that
bounds user characteristics to set elements.

If many implementations for sets exist using different
data structures (hashing, AVL trees, lists, etc.), the main
criteria for choosing one of them seems to be efficiency,
perhaps together with reliability. To be more precise, it
seems advisable to minimise the execution time for the
retrieval operation, which surely will be the most
frequently used. This requirement will be more important
if the component is going to be adapted to other
environments, perhaps larger ones, as suggested by the
system requirements in [7]. As a secondary criterion, we
ask for error recovering in implementations.

It is important to note that this NF-requirement must
appear in the non-functional part of the connector that
represents the import relationship, as shown in fig. 4.
Note also that the implementation part of the connector is
empty, because the parameter passing really takes place in
the SET(USER) component using the constructs provided
for whatever the programming language is, and also
because we have not included NF-attributes specific for the
connector to assign values to.

Fig. 4: Defining a set of users from generic sets.

5. Conclusions

We have presented a proposal for putting non-
functional information of software systems into software
architectures. Non-functionality is described by means of a
notation called NoFun, which allows to introduce non-
functional attributes of software, to give values to these
attributes in component and connectors, and to formulate
non-functional requirements in terms of these attributes.
We have tried to illustrate the feasibility of our approach

SET(USER)

association
 set element --> user

SET(ELEM)

ELEM_TO_USER

requirements
 min(time(retrieval))
 and reliability < low;
 error_recovery

ELEM_TO_USER

Ø Ø

by addressing two particular aspects of the meeting
scheduler case study.

We consider that the salient features of our approach
are:

• NoFun is a step forward to deal with non-
functionality in a precise way, different from the
usual case (natural language). There is a lot of work
done in studying NF-attributes, defining metrics, and
so on, but we think there is a lack of notations to
express the concepts arising in the field. A notation
such as NoFun provides a common framework in
which people can state, analyse and compare their
proposals about non-functionality.

• Concerning the power of the language, we would like
to remark that it presents many features which are
necessary to model non-functionality in a proper way:
1) NF-attributes may be defined in more than one
way; 2) they can be bound to different software units;
3) they can have different scopes; 4) NF-requirements
may be ordered with respect to their relative
importance.

• We have stated our approach without compromising
with particular software architecture styles or
notation. So, we think that our approach can be
adapted to a variety of particular existing proposals.

There are many approaches for defining a language to state
non-functionality, but as far as we know they are limited
in scope. An interesting approach appears in [23], which
provides a framework to evaluate the design of software
systems, the measurement criterion being the adequacy of
implementations with respect to some non-functional
requirements stated over a set of attributes. The
requirements are stated as an array of weights over the
properties and every attribute has a weight too; then, the
evaluation of implementations results in a number and
comparison is possible. However, the notation proposed in
this work is not as general as that presented here; also, the
proposal is not integrated into the software itself losing
some of the advantages we have mentioned in the
introduction.

On the other hand, [5, 16, 19, 21] provide some
language constructs to state program efficiency. [5] aims at
coding generation from some high-level language
constructs manipulating a relation data type; in the general
case, there are many ways to generate this code and so
information about efficiency is used to select the optimal
translation. [21] focuses on program transformation:
algorithms are refined using a library of components with
pre-post functional specifications; when there are many
components whose pre-post specification allows its
inclusion in the algorithm being refined, efficiency is used

to break the tie. The proposal in [16] keeps similar ideas
but in the real-time framework.

Concerning [19], it is perhaps the proposal closest to
ours due to its definition in the component programming
framework and also to the existence of special modules
collecting some kind of non-functional information
(constraints on efficiency in this case), although the work
focuses on software reusability and verification, which are
two fields we have not yet addressed. Efficiency in [19] is
difficult to handle because it is "tight" efficiency (an exact
measure of efficiency) and this often requires the definition
of auxiliary models to express the time consumed by
component operations.

Also, it is worth mentioning the existence of the
so-called process-oriented approaches for dealing with non-
functionality. These approaches use non-functional
information to guide the development of software systems.
The most widespread one was proposed by Mylopoulos et
al. [15] and it was developed in the information systems
area. Also, some work has been done on knowledge-based
systems, notably in the MIKE system [24], whose main
ideas are close to those of Mylopoulos et al. In both cases,
they also propose a language more oriented to keep track
of the development process, defining some constructs to
refine non-functional goals, to state conflicting NF-
requirements, and by the like. In some sense, we can say
that their language is more abstract than ours, and as stated
in [15], we could see both notations as complementary,
both contributing to a comprehensive framework for
dealing with non-functional specifications and non-
functional requirements.

Acknowledgments

We would like to thank the anonymous referees for
their valuable comments, as well as A. Finkelstein for his
suggestions.

References

 [1] G.D. Abowd, R. Allen, D. Garlan. "Formalizing
Style to Understand Descriptions of Software Architecture".
ACM Transactions on Software Engineering and
Methodology, 4(4), pp. 319-364, October 1995.

[2] G. Berry, G. Boudol. "The Chemical Abstract
Machine". Theoretical Computer Science, 96, pp. 216-248,
1992.

[3] B. Boehm, H. In. "Identifying Quality-Requirements
Conflicts". IEEE Software March 1996, pp. 25-35.

[4] G. Caldiera, V.R. Basili. "Identifying and Qualifying
Reusable Software Components". IEEE Computer, 24(2),
1991.

[5] D. Cohen, N. Goldman, K. Narayanaswamy.
"Adding Performance Information to ADT Interfaces". In
Proceedings of the Interface Definition Languages Workshop,
ACM SIGPLAN Notices 29(8), 1994.

[6] X. Franch, P. Botella, X. Burgués, J.M. Ribó.
"ComProLab: A Component Programming Laboratory". In
Proceedings of 9th Software Engineering and Knowledge
Engineering Conference (SEKE), Madrid (Spain), 1997.

[7] M.S. Feather, S. Fickas, A. Finkelstein, A. van
Lansweerde. "Requirements and Specification Exemplars".
Automated Software Engineering, 1997.

[8] X. Franch. "Systematic Formulation of Non-
Functional Characteristics of Software". In Proceedings of 3rd
International Conference on Requirements Engineering
(ICRE), Colorado Springs (USA), 1998.

[9] J.V. Guttag, J.J. Horning. Larch: Languages and
Tools for Formal Specification. Texts and Monographs in
Computer Science, Springer-Verlag, 1993.

[10] E. Gamma, R. Helm, R. Johnson, J. Vlissides.
Design Patterns. Addison-Wesley, 1994.

[11] D. Garlan, M. Shaw. "An Introduction to Software
Architecture". In Advances in Software Engineering and
Knowledge Engineering, pp. 1-39, Eds. World Scientific,
1993.

[12] C.A.R. Hoare. Communicating Sequential
Processes. Prentice-Hall, 1985.

[13] IEEE Computer Society. IEEE Standard for a
Software Quality Metrics Methodology. IEEE Std. 1061-
1992, Institute of Electrical and Electronical Engineers, New
York, 1992.

[14] International Standards Organization. Software
Product Evaluation - Quality Characteristics and Guidelines
for their Use. ISO/IEC Standard ISO-9126, 1991.

[15] J. Mylopoulos, L. Chung, B.A. Nixon.
"Representing and Using Nonfunctional Requirements: A
Process-Oriented Approach". IEEE Transactions on Software
Engineering, 18(6), 1992.

[16] R.H. Pierce et al. "Capturing and verifying
performance requirements for hard real-time systems". In
Proceedings International Conference on Software Reliable
Technologies, London (England), LNCS 1251, Springer-
Verlag, 1997.

[17] G.-C. Roman. "A Taxonomy of Current Issues in
Requirements Engineering". IEEE Computer, 18(4), 1985.

[18] M. Shaw. "Abstraction Techniques in Modern
Programming Languages". IEEE Software, 1(10), 1984.

[19] M. Sitaraman. "On Tight Performance Specification
of Object-Oriented Components". In Proceedings 3rd
International Conference on Software Reuse (ICSR), IEEE
Computer Society Press, 1994.

[20] J.M. Spivey. The Z Notation. Prentice-Hall, 1993.
[21] P.C-Y. Sheu, S. Yoo. "A Knowledge-Based Program

Transformation System". In Proceedings 6th CAiSE, Utrecht
(Holland), LNCS 811, 1994.

[22] J.M. Wing. "A Specifier's Introduction to Formal
Methods". IEEE Computer 23(9), 1990.

[23] S. Cárdenas, M.V. Zelkowitz. "Evaluation Criteria
for Functional Specifications". In Proceedings of 12th ICSE,
Nice (France), 1990.

[24] D. Landes, R. Studer. "The Treatment of Non-
Functional Requirements in MIKE". In Proceedings of 5th
ESEC, Barcelona (Catalunya, Spain), LNCS 989, Springer-
Verlag, 1995.

