provided by UPCommons. Portal del coneixement obert de la UPC

Putting Non-Functional Requirements into

Software Architecture?

Xavier Franch, Pere Botella
{franch, botella}@lIsi.upc.es
Dept. Llenguatges i Sistemes Informatics (LSI)
Universitat Politécnica de Catalunya (UPC)
c/Jordi Girona 1-3 (Campus Nord), 08034 Barcelona, Catalonia (Spain)
FAX: 34-3-4017014. Phone: 34-3-4016965 / 6960

Abstract

This paper presents an approach focdrporating
non-functional information of software systems into
software architectures. To do so, components present two
distinguished sls: their non-functional specification,
where non-functional equirements oncomponents are
placed, and their non-functional behaviour with respect to
these requirements. Also, connector pools may
describe which non-functional pects are relevant to
component connections. We opose a notation to
describe non-functionality in a systematitanner, and
we use it to analyse two particular aspects of the meeting
scheduler case study, user interaction and performance.

1. Introduction

Software systems are characterised both by their
functionality (what the systendoes) and by theinon-
functionality or quality (how the systerbehaves with
respect to ame obserable attributes like perforance,
reusability, reliability, etc.). Both aspects aresvaint to
software development but, traditionally, much more work
has be done for thdirst one than for the eszond,
especially concerning specification languages and, lately,
also architectural languages. This happens in despite of
the fact that many resehers have pointed out the
convenience of non-functional features appearing in those
languages [5, 15, 18, 19, 22].

In this paper, we are going to propose a way of
putting non-functional information of software systems

1 This work is partially supported by the spanish project TIC97-1158
(from the CICYT program).

into software architectures. So long as we are not
interested in a particular software architectural style or
notation, we will use an dwbc bnguage fordescribing
componentsand connectorsand we vill focus on the
non-functional part, by explaining how wecbrporate it
into componentsand connectorsand by presenting a
language calletNoFun to describe it. We willllustrate
the feasibility of our approach by addressing two
particular aspects of the meeting scheduler case study.
Before introducing our proposal, weed to clafy
our point of view about non-functionality. We
distinguish three key concepts:

* Non-functional attribute(short, NF-attributg: any
attribute of software which serves as a mean to
describe it and xsibly to evaluateit. Among the
most widely accepted [3, 4, 13, 14, 17] we can
mention: time and spaceffieiency, reusaliity,
maintainability, reliability and usalbity. In our
approach, we allow arbitrary identification and
definition of NF-attributes.

« Non-functional behaviour (short, NF-behaviou):
any assignment of values to the NF-attributes that
are in use in a particular software unit (component,
connector, port, etc.).

« Non-functional requiremergshort, NF-requiremenjt
any constraint refeed to asubset of the NF-
attributes that are in use in a particular software
unit.

https://core.ac.uk/display/220111842?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. A Model for Software Architecture

Our model for software architecture distinguishes
two usual kinds of units, components and connectors.

2.1 Components

According to [1], tomponents are the active,
computational entities of a systemThe relationship
between acomponentand its environment is defined
explicitly as a collection of interaction points, jports'.

In our current framework, we restrict ourselves to
software components, although we feel that most of the
ideas presented here could be applied alsghgsical
components without significant differences.

Basic software components are softwam®dules
(classes), but others can be dedi: libraries of reusable
components, whole systems, clusters of similar systems,
etc. However, we do not fix the set of valid software
components.

In our software architecture style, compondmse
a specification and an imgrhentation,eachone with a
functional part and a non-functional one.

» The functional specification describes the services
that the component provides. To baccurate,
functional specifications should be stated using any
of the existing specification languages, like Z [20]
and Larch [9] for squential systems, dZSP [12]
and CHAM [2] for more general ones.

» The non-functional specificatiordeclares which
NF-attributes are of interest for the component and
establishes properties concerning them by means of
NF-requirements. In fact, NF-attributes will be often
defined in gparateand independentnodules, called
attribute modulesto be reused in many contexts.

e The functional implementation is theperational
artefact that makes the functional specification to
work out. It may be compound, to obtain the
implementation of a component in terms of a
software architecture that glues simpler ones. Usual
programming languagescan be used for
implementation purposes.

» The non-functional implementation is a description
of the NF-behaviour of the functional implemen-
tation with respect to the NRtebutes declared in
the non-functional specification.

In fact, much of a component specification come from its
classification in a component type, which provide some
implicit properties; it is sometimes said that a
component is an instance @§ component type. For
instance, a filter is a type of component thatiea out a
manipulation of input datand renders the result to an

output port. Some useful taxonomies of components
exist in theliterature (e.g., [10, 11]). Although we plan
to do it in the future, in the current state of our work we
have not bound yet non-functional information to any
of these component types, but directly component
instances.

Non-functional issues # be introduced in
architectures using the language presented in section 3.

2.2. Connectors

Once again, we adopt the definition appearing in [1]
that states that "connectors define the interaction between
components. Eaclconnector provides a way for a
collection of ports to come into contaahd logically
defines the protocol through which a set of components
will interact". Connectors can be then as diverse as:
method invocation, network connection, data sharing, etc.

In any case, and not suigingly, connectors can be
also divided into the same parts a®omponents.
Functional specification can define things as: network
connection protocol, pameter pasing mechanism, etc.
Non-functional specification W introduce NF-#ributes
as: reliability of connection, fiiciency, etc., together
with NF-requirements. Implementationslivwork as in
components.

Fig. 1 shows an example of software architecture
(borrowed from [1]) which is an instance of the pipe-filter
architectural stle: components are filters, while
connectors are pipesugporting dataflow beteen two
filters. Pipes connects filters using thppropriate ports;
other ports remain free, standing for external connections
of the resulting system.

:

1 I T

Fig. 1: A pipe-filter software architecture.

3. The Language NoFun

In this section, we present the highlights of a
language calledNoFun aimed at statingnon-functional
information into software componerasd connectors. In
fact, NoFun constructs will be really iotluced in the
next section wheidealing with the case study, although
just to the extendhey areneeded. A more detailed
definition can be found at [8].

3.1. Non-functional attributes

In addition to their name, NF-attributdsve the
following characteristics in NoFun:

* They belong to adlomain which fixes the set of
valid values andoperations. Domains are then
similar to the usual notion of data type in a
programming languagand so we inclde integer
and realnumbers (formeasurable NFtaibutes, for
instancedegree of reusdliily), boolean values (for
NF-attributes that just hold or fail, as error
recovery), disjoint union (for instancefieiency as
the disjoint union of timeand pace efficiency), by
enumeration of values and so on. Also, seesider
the existence of adec domains for particular cases
of software systems; for instance, we havenddfia
domain for agmptotic complexity formeasuring
efficiency of data structures.

» Their are classified obne of twokinds basic or
derived, depending owhether their value can be
computed from others or not. A derived NF-attribute
P includes the following parts:

O The list L of other
determineP's value.

¢ A list of n guarded formulae of the form
Cj => P =Ej, 1<i <n, Cj being a boolean
expressionand Ej an expression yielding a
value in P's domain; ifn = 1, thenC;j is
optional. The meaning of a formula i®
equalsk;j if the conditionCj holds.

NF-attributes that

* They can béboundto different kind ofcomponents
(program modules, libraries, systems, etc.)even
to particular services provided bgomponents by
means of ports.

« They have a scope which determines the
components in which they are in uskhere is a
relationship between scopand binding: a NF-
attribute must bédound to acomponent finer than
its scope. So, it is not possible for a NEibute
bound to a library to have a scope restricted to just a
few modules of the library.

e They mayhave multiple definitions So, different
projects may choose the more appropriate ieim
of NF-attributes.

The first two characteristics appear when the NF-attribute
is defined inside &F-attribute module a single module
may define more than one NF-attribute. In case of
multiple definitions, each of hem will appear at a
different module.

Non-functional attributes may involve one or more
measurement unitsvhich model data sizes.

3.2. Non-functional behaviour

Once acomponent specification has beenilu
implementations for it may be written.Each
implementationV for a given software componeim
should statets NF-behaviour with respect to the basic
NF-attributes that are in use iD; values of derived
NF-attributes are automatically computed.

Obviously, a cruciaquestion here is howan be
checked that the stated NF-behaviour really corresponds to
the functional implementation. Up to now, \wave not
done any significant work here, although we are trying to
develop a framework taompute the value of some
NF-attributes in an automatic manner [6].

3.3. Non-functional requirements

NF-requirements are the mean to state conditions on
implementations of software components. Syntactically,
they are usual boolean expressionsched with some
new constructs for non-functionality, which are mainly
some useful quantification over the value of NF-
attributes. Their purpose is texpress relationships
between properties and to represent the environment
where impémentations are to be inserted. They can
appear both innon-functional specifications, to state
properties that every im@entation of the type must
fulfil, or in non-functional implementations, to state
constraints on the implementations of theported
components.

NF-requirements allow to refine the classical
definition of implementation correctness, which focus on
functional aspects. Given a specification 3Rd an
implementation IMP, both with functionahnd non-
functional parts, SP =FSP, NFSP)and IMP = (FI,
NFI), we say that IMP is correct w.r.t. SP if:

* Fl is (functionally) correct w.r.t. FSP, for a given
correctness definition.

« All the NF-requirements stated in NFSP are satisfied
by NFI.

This secondcondition may be not computable if the
NF-behaviourdepends on the im@ientations of the
imported components, as it happens often. In other
words, a NF-requiremembhay not only hold or fail for a
given implementation, but it alscan be undefined. In
this last case, we consider the implementation
conditionally correct. A conditionally correct may later
become a correabne, with appropriate immgmentation
selection for the imported components.

4. Examples

We give here an example of treatment of two
particular NF-requirements that appear in theeting
scheduler case wdy [7]: little interaction and good
performance. We are going to develop in detail fihst
case, while we will justaddress pdially to the gcond
one, focusing on non-functional aspects. We use the
constructs of NoFun to systematiseon-functional
descriptions.

To simplify some gsects of the development, we
assume that the meeting initiator is always the same
person.

4.1. Interaction

Meeting scheduler requirements include the sentence:
"The amount of interaction among participangs.)
should be kept as small as possible". We can view this as
a NF-requirement concerning the usability of the system,
and so welecide todeal with him in thenon-functional
side of system architecture, by defining a NF-attribute
called interaction and hen stating the valid NoFun
constraint:

| min(interaction) |

as NF-requirement of the system.

4.1.1 Defining the NF-requirement.As suggested

in [7], we consider interaction as the disjoint union of the
number of delivered messages and their length (amount of
negotiationcould be expressed in terms of these two
factors), trying then toneasure the effort for obtaining
the information for the meetifg

union interaction = (delivered_messagep,
information_volume

2 We are not considering explicitly the cost @&ading messages.
Partly, this cost depends on message lendtlowever, it could be
explicitly considered by introducing a third factor, or bedefining
delivered_messagdyy delivered_and_received_messages

So, minimising interaction means minimising both of
them. This is to say, the following implicit esity
follows from theinteractiondeclaration:

min(interaction) = min(delivered_messagés
min(information_volume)

While the first factor is clearly measurable with an
integer, the way of dealing with thec®nd is not so
obvious. Wedecide to intbduce an enumeration type
trying to classify the most common information volume
flow types:

integer delivered_messages
enumerationordered information_volume =
(yes_no, form, ascii, multimedia,| ...)

The key word "ordered" means that values of dbmain
can becompared with a total ordeperator,considering
values as ordered as theppear in the defition. This
gives sense to the expressiom(information_volume)

However, min(interaction) is not really a useful
criterion for measuring. How do we know that a system
meets this goal? In fact, the NoFun "mimperator
makes sense when selecting betweenistieg
implementations, as we will see in 4&hen just one
implementation isexpected, it is necessary to translate
this concept into concrete values, and this is what we are
doing next.

Let's start withdelivered_message€oncerning the
functionality of the system, we can distinguish three
kinds of interaction: initial information collection,
resolution of conflictsand shedule boadcasting. As the
exact number of messages depend on both the number of
potential attendeesnd the number of conflicts, we
introduce two measurement units for representing them:

measurement unitnb_attendees, nb_conflicts{;

Then, we obtaih

« Initial information collection: a broadcasting
message from the initiator to the otheemattees and
their response give®_attendees 1 messages.

* Resolution of conflicts: the initiator sends a
message to every ettdee povoking a conflict,
which must be answered. This yields to an amount
of nb_conflict42 messages.

» Schedule broadcasting: just a final message once all
the conflicts have been solved.

A particular point has not been considered here: datege

extension, which causes iteration of the three steps presehted.

A way of dealing withdata range extension would be introducing a
third measurement unit and then multiplying with the amalotained
below.

So, the optimal amount of messageguals to
nb_attendees- nb_conflics2 + 2. However, equiring
exactly this number of messages would certainly be too
restrictive, so we allow an interaction policy with a few
more messages:

requirements delivered_messages <
nb_attendees*2 + nb_conflictst3

The important fact is that coefficients of

measurement units remain the same, because they are the|

ones that rule the magnitude. With thesjuirement, we
allow for instance the initiator delivering periodical
messages to attidees informing of current status while
negotiation is going on (just a few more messages during
scheduling). On the other handnse schemes do not
pass this requiremeand so hey are foriden; we may
cite direct conflict resolution beten conflicting
attendees, which would increase the coefficient of
nb_conflicts

Concerning information_volumg we just require

messages being ascii, forms or yes/no messages. Making

use of the ordering relationship, this can be expressed as:

requirements information_volume <= ascii

4.1.2 NF-behaviour in a particular software
architecture. Our software architecture for the meeting
scheduler systerffig. 2) assigns a component fevery
attendee and for the itiator. In the components, we
identify some ports that are bound with a connector.

component INITIATOR
ports
out init_meeting, notify_conflict
out broadcast_meeting
in receive_preferences, get_new_prefererices
end INITIATOR

component ATTENDEE
ports
in receive_proposal, receive_meeting
in conflict_natification
out give_preferences, solve_conflict
end ATTENDEE

connector INITIATOR_ATTENDEE
connectsINITIATOR with ATTENDEE
binds init_meetingwith receive_proposal
notify_conflictwith conflict_notification
broadcast_meetingith receive_meeting
receive_preferencesgith give_preference

get_new_preferencegth solve conflict
end INITIATOR_ATTENDEE

o

Fig. 2: Components and connectors of the first layer
of the meeting scheduler system architecture.

Given these ports with their obvious meaning, and
given also the analysis of message fldone in the last
section, the NF-behaviour of the system with respect to
the number of delivered messages can benatkfin the
following way:

MEETING_SCHEDULER.delivered_messages =
INITIATOR.init_meeting.delivered_messages
+

ATTENDEE.give_preferences.delivered_mesgages
*nb_attendees

+
INITIATOR.notify_conflict.delivered_message
*nb_conflicts
+

7]

ATTENDEE.solve_conflict.delivered_messages
*nb_conflicts
+

INITIATOR.broadcast_meeting.deliverd_messages

(Note qualification of NF-attributes to distinguish which
software unit are they referring to.)

Concerning message wohe, and taking préit of
the fact of the NF-attribute being ordered, we define it as
the maximum of the values in those operations involving
more than one message:

MEETING_SCHEDULER.information_volume =
max(information_volume,
{ATTENDEE.give_preferencep
INITIATOR.notify _conflict,
ATTENDEE.solve_conflict})

The last step has to be with giving values to the
NF-attributes at the port level. This shoagdpear in the
NF-behaviour modules bound to thRTTENDEE and
INITIATORcomponents. The values should be explicitly
written by humans, until avay of computing them
automatically is provided.

Fig. 3 presents the whole firstyler of the meeting
scheduler system architecture.

4.2. Performance

One of the non-functional goals of the system is
performance. Ahough this goal must be carefully
handled, especially with colliding with other goals, some
particular requirements can besiya identified. Consider,
for instance, a partial view of the inner architecture for
the INITIATORcomponent, formed by a contnoslodule
and a data repository for storing usermes. The control
module imports the repository and so there exists a

ATTRIBUTES
UNION interaction = (delivered_messages, information_volure)
INTEGER delivered_messages

Functionality of the ENUMERATION information_volume = (yes_na,)

system as described in [7] MEASUREMENT UNITS nb_attendees, nb_conflicts

REQUIREMENTS
delivered_messages < nb_attendees*2 + nb_conflicts*3
information_volume <= ascii

MEETING_SCHEDULER.delivered messages =
INITIATOR.init_meeting.delivered_messages +
INTIATOR ATTENDEE.give_preferences.delivered messages*nb_attendges +
INITIATOR.notify_conflict.delivered_messages*nb_conflicts +
ATTENDEE.solve_conflict.delivered_messages*nb_conflicts +

o INITIATOR.broadcast_meeting.delivered_messages
INITIATOR_ATTENDEE MEETING_SCHEDULER.informatin_volume =
max(information_volume, {RTENDEE.give_preferences,

described as indi 2 INITIATOR.notify_conflict,
ATTENDEE.solenflict})

ATTENDEE

Fig. 3: First layer of the meeting scheduler system architecture (left column: functional; right
column: non-functional; upper row: specification: lower row: implementation).

data repository for storing user names. The comadule ELEM_TO_USER
imports the repositoryand so there ésts a connector
between both ofhem. If we define the repository as an

instance of a generl8ET component, thiconnector can SET(USER) SET(ELEM)
be defined in terms of a @ameter pasing operation that
bounds user characteristics to set elements.

If many implementations for sets exist usinfiecent
data structures (hashing, AVL tredists, etc.), the main association requirements
criteria for choosing one of them seems to Hiciency, set element —-> used Min(time(retrieval))
perhaps together with relidity. To be more precise, it and reliability < low;
seemsadvisable to minimise the execution time for the error_recovery
retrieval operation, which surely will be the most
frequently used. This requirementllwbe more important a a
if the component is going to bedapted to other
environments, péaps largemones, as suggested by the ELEM TO USER
system requirements in [7]. As a secondaijedon, we -
ask for error recovering in implementations. Fig. 4: Defining a set of users from generic sets.

It is important to note that this NF-requirement must

appear in thenon-functional part of the connector that 5 Conclusions

represents the import relationship, as shown in fig. 4.

Note also that the implementation part of twenector is We have presented a proposal forttimg non-

empty, because the parameter passing really takes pi functional information of software systems into software

the SET(USERomponent using the constructs provided architectures. Non-functionality is described by means of a

for whatever the progmming languages, and also notation called NoFun, which allows to imduce non-

because we have not included NF-attributes specific for the functional attributes of software, to give values to these

connector to assign values to. attributes in componerandconnectorsand to formulate
non-functional equirements in terms of thes#riutes.
We have tried tdllustrate the feasibility of ouapproach

by addressing two pécular aspects of the meeting
scheduler case study.

We consider that the salient features of our approach

are:

* NoFun is a step forward todeal with non-
functionality in a precise way,ifterent from the
usual case (natural languagé&here is a lot of work
done in studying NF-attributes, defining metrics, and
so on, but we think there is a lack of notations to
express the concepts arising in the field. A notation
such as NoFun provides a commomniework in
which people can state, analyaad compare their
proposals about non-functionality.

» Concerning the power of the language, we would like
to remark that it presentmany features which are
necessary to model non-functionality in a proper way:
1) NF-attributes may be deéd in more han one
way; 2) they can be bound to different softwaré&sjn
3) they can have different scopes; 4) NEtirements
may be ordered with rpect to their relative
importance.

» We have stated our approachhaitit compromising
with particular software architecture styles or
notation. So, we think that our approach can be
adapted to a variety of particular existing proposals.

to break the tieThe proposal in [16] keeps similadeas
but in the real-time framework.

Concerning [19], it is perhaps the proposal closest to
ours due tats defirition in the component programming
framework and also to the existence spfecial modules
collecting some kind of non-functional information
(constraints on efficiency in this case), although the work
focuses on software reusabiligynd veification, which are
two fields we have not yetddressed. fiiciency in [19] is
difficult to handle because it i&ight" efficiency (anexact
measure of efficiency) and this ofteequires the definition
of auxiliary models to express the tinwonsumed by
component operations.

Also, it is worth mentioning the existence of the
so-called process-oriented approaches for dealing with non-
functionality. These approachesuse non-functional
information to guide the development of software systems.
The most widespread one was proposed byobiyliloset
al. [15] and it was developed in the information systems
area. Also, some work hdmendone on knowledge-based
systems, notably in the MIKE system [24], whose main
ideas are close to those of Mylopouésal In both cases,
they also propose a language more orientekketp track
of the development pcess, defining some constructs to
refine non-functional goals, to state conflicting NF-
requirementsand by the like. In@me sense, we can say

non-functionality, but as far as we know they are limited
in scope. An interestingpproach appears in [23], which

in [15], we could see both notatis as complementary,
both contributing to a comprehensive framework for

provides a framework to evaluate the design of software dealing with non-functional specificationsnd non-

systems, the measurement criterion beingatiexjuacy of
implementations with rggct to sme non-functional
requirements stated over a set oftributes. The

requirements are stated as an array of weights over theA

propertiesandevery dtribute has a weight too; then, the

evaluation of implementations results in a number and

functional requirements.

cknowledgments

We would like to hank the anonymous fezees for

comparison is possible. However, the notation proposed intheir valuable comments, as well as A. Finkelstein for his
this work is not as general as that presented here; also, thguggestions.

proposal is not integrated into the software itself losing
some of theadvantages we havenentioned in the
introduction.

On the other hand, [5, 16, 19, 21] provide some

coding generation from osne high-level dnguage
constructs manipulatingrealation data type; in theeneral
case, there are many ways denerate thiscode and so
information about fficiency is used to select the optimal
translation. [21] focuses on program transformation:
algorithms are refined using a library of components with

pre-post functional specifications; when there are many
its Reusable SoftwareComponents”. BEE Computer, 24(2),

components whose pre-post specification allows
inclusion in the algorithm being refinedfigiency is used

References

[1] G.D. Abowd, R. Alen, D. Garlan. "Formalizing

ACM Transactions on Software Engineering and
Methodology 4(4), pp- 319-364, October 1995.
[2] G. Berry, G. Boudol. "The ChemicalAbstract

Machine". Theoretical ComputeiScience 96, pp. 216-248,
1992.

[3] B. Boehm, H. In."Identifying Quality-Requirements
Conflicts". IEEE Software March 1996, pp. 25-35.

[4] G. Caldiera, V.R. Basili. "ldentifying an@ualifying

[5] D. Cohen, N. Goldman, K. Narayanaswamy.
"Adding Performancelnformation to ADT Interfaces". In
Proceedings of the Interface Definition Languages Workshop
ACM SIGPLAN Notices 29(8), 1994.

[6] X. Franch, P. Btella, X. Burgués, J.M.Rib6é.
"ComProLab: A Component Programming Laboratory”. In
Proceedings of 9th Software Engineerirand Knowledge
Engineering Conference (SEKBYladrid (Spain), 1997.

[7] M.S. Feather, SFickas, A. Finkelstein, A. van
Lansweerde. "Requirement@nd Speification Exemplars".
Automated Software Engineering997.

[8] X. Franch. "§stematic Formulation of Non-
Functional Characteristics of Software". Pnoceedings of 3rd
International Conference on Requirement&ngineering
(ICRE), Colorado Springs (USA), 1998.

[9] J.V. Guttag, J.J. bFning. Larch: Languages and
Tools for Formal Specification Texts and Monographs in
Computer Science, Springer-Verlag, 1993.

[10] E. Gamma, R. Helm, RJohnson,
Design PatternsAddison-Wesley, 1994.

[11] D. Garlan, M. Shaw. "An Introduction to Software
Architecture”. In Advances in Software Engineering and
Knowledge HBgineering pp. 1-39, Eds. WorldScientific,
1993.

[12] C.A.R. Hoare. Communicating
ProcessesPrentice-Hall, 1985.

[13] IEEE Conputer Society. IEEE Standard for a
Software Quality Metrics kthodology IEEE Std. 1061-
1992, Institute of Electricadnd Hectronical Engineers, New
York, 1992.

[14] International Standards Organization. Software
Product Evaluation - Quality Characteristicand Quidelines
for their Use ISO/IEC Standard 1SO-9126, 1991.

J. Vlissides.

Sequential

[15] 3. Mylopoulos, L. @ung, B.A. Nixon.
"Representingand Using Nonfunctional Requirements: A
Process-Oriented Approach'EHBE Transactions on Software
Engineering, 18(6), 1992.

[16] R.H. Pierce et al "Capturing and veifying
performance requirements fdrard real-time systems". In
Proceedings International Conference on Software Reliable
Technologies London (England),LNCS 1251, Springer-
Verlag, 1997.

[17] G.-C. Roman. "A Taxonomy of Current Issues in
Requirements Engineering". IEEE Computer, 18(4), 1985.

[18] M. Shaw. "Mstraction Techniques in Modern
Programming Languages". IEEE Software, 1(10), 1984.

[19] M. Sitaraman"On Tight Performance Specification
of Object-Oriented Components”. In Proceedings 3rd
International Conference on Software Reus€SR) IEEE
Computer Society Press, 1994.

[20] J.M. Spivey.The Z Notation Prentice-Hall, 1993.

[21] P.C-Y. Sheu, S. Yoo. "A Knowledge-Based Program
Transformation System". IRroceedings 6tHCAISE Utrecht
(Holland), LNCS 811, 1994.

[22] J.M. Wing. "A Specifier's Introduction t&ormal
Methods". IEEE Computer 23(9), 1990.

[23] S. Céardenas, M.V. Zelkowitz. "Evaluatid@riteria
for Functional Specifications". IRroceedings of 12th ICSE
Nice (France), 1990.

[24] D. Landes, R. Studer. "The Treatment WNbn-
Functional Requirements iMIKE". In Proceedings of 5th
ESEC Barcelona (Catalunya, Spain)NCS 989, Sprhger-
Verlag, 1995.

