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ABSTRACT Acoustic emission (AE) analysis is a powerful potential characterisation method for fracture 

mechanism analysis during metallic specimen testing. Nevertheless, identifying and extracting each event 

when analysing the raw signal remains a major challenge. Typically, AE detection is carried out using a 

thresholding approach. However, though extensively applied, this approach presents some critical limitations 

due to overlapping transients, differences in strength and low signal-to-noise ratio. To address these 

limitations, advanced methodologies for detecting AE hits have been developed in the literature. The most 

prominently used are instantaneous amplitude, the short-term average to long-term average ratio, the Akaike 

information criterion and wavelet analysis, each of which exhibits satisfactory performance and ease of 

implementation for diverse applications. However, their proneness to errors in the presence of non-

cyclostationary AE wavefronts and the lack of thorough comparison for transient AE signals are constraints 

to the wider application of these methods in non-destructive testing procedures. In this study with the aim of 

make aware about the drawbacks of the traditional threshold approach, a comprehensive analysis of its 

limiting factors when taking in regard the AE waveform behaviour is presented. Additionally in a second 

section, a performance analysis of the main advanced representative-methods in the field is carried out 

through a common comparative framework, by analysing first, AE waves generated from a standardised Hsu-

Nielsen test and second, a data frame of a highly active signal derived from a tensile test. With the aim to 

quantify the performance with which these AE detection methodologies work, for the first time in literature, 

time features as the endpoint and duration accuracies, as well as statistical metrics as accuracy, precision and 

false detection rates, are studied. 

INDEX TERMS Acoustic emission, Materials testing, AE thresholding method, Short-term average to long-

term average ratio, Instantaneous amplitude, Akaike information criterion, Wavelet analysis, Otsu’s method.  

I.  Introduction 

High demands are placed on safety and reliability 

specifications in the design and manufacturing of metallic 

materials, particularly in the transportation sector, where the 

lifetime, performance and cost of structural parts are critical 

aspects. This has led to extensive scientific and technical 

study of the mechanical properties of metallic components 

[1], [2].  

Characterisation of the mechanical properties of metallic 

components commonly requires estimations of the post-yield 

strength, the tensile strength and the elongation of metallic 

specimens, which are evaluated through a standardised 

tensile test [3], [4]. This takes the form of a relatively simple 

destructive assay, which typically consists in fastening 

(either gripped or screwed) the specimen at the clamps of the 

apparatus and pulling until it breaks. Outcomes for the assay 

usually include records of the applied load force and the 

strain experienced by the specimen.  

Determination of the plastic strain evolution exhibited by 

the specimen is critical to estimating the actual properties of 

the metallic material. Video extensometer-based systems are 

used to record the test, enabling visual forensic analysis to be 

conducted. However, this approach has two main drawbacks: 

the frame digitisation period, which is usually in the order of 

milliseconds, and the restriction to surface monitoring, 

which implies a significant loss of information about internal 

dislocations [5]. 

In recent years, the analysis of the acoustic emission (AE) 

phenomenon has been included as an additional mechanical 

descriptor to enhance the characterisation capabilities of the 

assay [6]. Acoustic emission methods detect, locate or assess 

damage by means of the sudden materialisation of elastic 

waves on the inspected material. These waves are the final 
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effect of a previous process by which the mechanical 

capabilities of the material are surpassed with the application 

of a stress field. Therefore, the manifestation of each AE 

wave reflects an irreversible change in the crystalline 

structure of the material. This is an active field of research 

[7]; however, in order to conduct such an analysis, proper 

detection and capture of every AE event is highly desirable. 

In order to automatically detect the AE events, also known 

as hits the most frequently used technique is to compare the 

obtained electrical signal against a predefined voltage 

threshold level; whenever the signal rises above this 

threshold, a hit has been detected. This technique was used 

in the first applications of AE as an evaluation tool and 

emerged due to the lack of digital hardware capable of 

handling the payload from the large data stream required for 

proper digital processing of the near-baseband signal [8].  

With the advent of fully digital platforms, and given the 

relative efficiency and ease of implementation, nearly all the 

established standards for AE [9], [10], as well as 

commercially available instrumentation (and, as a result, 

most field work), use the threshold voltage technique as the 

default for AE activity detection. However, although it has 

not been exhaustively analysed in the literature, the threshold 

method has critical drawbacks and limitations that could 

impair performance in the case of an irregular AE waveform.  

Typically, once a set of AE hits has been detected, 

different features of each hit are extracted in order to locate 

or assess damage to the specimen. As might be expected, the 

more accurate and precise the detection, the better the quality 

of the subsequent evaluation [11]. Indeed, in recent years, 

significant efforts have been made to develop advanced 

signal processing approaches for better AE hit detection 

outcomes [12], [13].  

Due to similarities in the origination of AE emission and 

earthquakes, some of the most widely used alternatives are 

inspired by geophysics. Four main approaches are outlined 

in the literature: the instantaneous amplitude (IA) threshold 

method [14], the short-term average to long-term average 

(STA/LTA) ratio  [15], the Akaike information criterion 

(AIC) [16] and time-frequency distributions based on the 

continuous wavelet transform (CWT) [17].  

Nevertheless, although these methods perform well for 

determining the onset time of transient AE signals, their 

performance for determining the signal endpoint and their 

efficiency in the case of a burst of AE events, remain 

unconcerned. Due to the lack of a common frame 

benchmarking, there are significant constraints on the 

widespread application of the four methods in non-

destructive testing procedures, particularly fracture 

mechanism tests that could potentially be used to improve 

the methods. 

Consequently, the contribution of this study is twofold: 

first, it identifies and analyses the main drawbacks and 

limitations of the classic threshold approach for AE 

detection; second, it offers a quantitative performance 

analysis of the main alternative methods currently available 

against a common benchmark of comparison. 

Novelty of this work includes a comprehensive 

performance comparison of current AE hit detection 

methods, based on the scrutiny not only on their onset 

accuracies, but also in the endpoint and duration 

determinations, as well as in their statistical metrics. It 

should be noted that the performance of each method is 

verified against two test benches: first, a set of AE signals 

generated through a standardised Hsu-Nielsen test, and 

second, an AE signal obtained from a standardised tensile 

strength test. This is the first time that the IA, STA/LTA, AIC 

and time-frequency methods have been compared in the 

context of metallic material testing procedures for AE hit 

detection. 

This paper is organised as follows: Section II presents a 

comprehensive analysis of the limitations of the classical AE 

threshold approach; Section III introduces the IA, STA/LTA, 

AIC and time-frequency methods; Section IV discusses the 

performance of the methods and experimental results, and 

Section V presents the conclusions. 

 
II.  Acoustic emission thresholding method: limitations 
and drawbacks 

Although widely applied in many industrial applications, the 

thresholding approach used to detect and extract hits from an 

AE waveform presents some important shortcomings that 

must be identified in order to assess its suitability for high-

performance applications. The main weaknesses of this 

method when dealing with AE signals, and their impact on the 

resulting AE hit detection, are presented and discussed below. 

The signals presented in this section were captured during 

unidirectional tensile tests (with a load rate of 1 mm/min). 

Each image corresponds to a different metallic component 

specimen, all of which have the same dimensions; height (h) 

= 240 mm, width (w) = 55 mm, and thickness (t) of 2 mm. 

2.1.  Inability to detect bipolar onset activity 

Only the positive part of the resulting electrical signal (or 

negative, according to the configuration) is considered for 

onset detection, as shown in Figure 1. The first motion 

direction (i.e., up or down) of an AE wave cannot be 

predicted deterministically, so depending on the chosen 

configuration for the threshold detector (i.e., rising or falling 

edge triggering), the onset times of a significant number of 

hits will be inaccurate. This is particularly relevant in 

damage location techniques where an accurate time of arrival 

or time of flight (i.e., relative measurement time between 

elements of a sensor array) is crucial [18]. Alternatively, in 

the case of damage assessment methods (like those based on 

moment tensor inversion), information about the direction of 

the primary wave (i.e., p-wave) is essential [19], [20].  

This problem can be lessened with the use of: a) secondary 

thresholds (i.e., positive and negative thresholds detecting in 

parallel); b) pre-trigger buffering, which considers a certain 
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number of data samples before a detection at the cost of an 

inaccurate measure of the actual onset time, as well as adding 

the risk that the detection will overlap with a previous hit, 

and c) signal transformation towards a characteristic function 

(CF), where it is common to use hardware to work with a 

rectified voltage or by means of software to work with a 

simple absolute value function.  

 

 

 

 

 

FIGURE 1. Actual onset (vertical dotted green line), and automatic onset 
determination (vertical dash-dot orange line) for two different AE events 
(solid blue lines) showing opposite p-wave arrival directions, using a 
positive threshold level (horizontal dashed yellow line) of 50mV. Signal 
obtained from a complex phase steel specimen. 
 

2.2.  Varying background noise inaccuracies 

Varying background noise may cause: (i) false detection, due 

to increasing noise, (ii) incomplete detection, due to 

increasing noise, and (iii) insufficient sensitivity to trigger a 

detection, due to decreasing noise. Acoustic emission waves 

are highly susceptible to noise and are therefore likely to 

exhibit dynamic behaviour during surveys, reducing 

detection quality due to the fixed threshold level.  

Despite extensive research into noise treatment strategies 

for AE signals [21], [22], which can be applied before or 

after hit detection, the problem of varying noise during 

discrimination of AE activity remains inherent to the method 

when a fixed threshold value is used. Traditionally [23], and 

in recent studies [24], [25], this issue has been addressed by 

using a floating threshold (also known as an automatic, 

adaptive or smart threshold) whose value is continuously 

adapted to noise. To obtain a floating threshold, a simple 

moving-average filtered version of the raw signal acquired 

from the AE-sensor is typically used, and as in the case of 

the fixed threshold approach, a hit is detected when the raw 

signal rises above the new floating threshold level.  

Ultimately, however, this technique does not solve the 

problem, since there is a trade-off between detection 

sensitivity and the capacity to avoid noise, according to the 

time segment value of the moving-average function. In the 

case of the use of extreme values, for a very short time frame, 

the new threshold will behave as an envelope of the raw 

signal, avoiding all transient noises however inhibiting 

detection; if, however, it is too long, the floating threshold 

behaves as a fixed threshold. Consequently, this approach is 

best suited to applications in which background noise varies 

gradually; nevertheless, in applications prone to sudden 

mechanical noises (e.g., friction or slip) or with high AE 

activity it is difficult to find an optimum time response value 

[26], [27].  

This, is depicted in Figure 2, for a 140 ms data frame 

containing four AE events, located at 18.8, 46.5, 55.2 and 

90.0 ms, respectively (shaded green areas). First, it can be 

seen that a fixed threshold (horizontal red line), which is 

calibrated at 3.5 mV (just above the background noise level 

at the beginning of the signal frame) is not suitable in this 

instance, since after 8 ms a highly variable noise floor affects 

the signal, leading to a saturation detection error (except at 

around 80 and 110 ms, where the background noise returns 

to similar levels to the beginning of the data frame).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
FIGURE 2. Five different floating threshold configurations on a highly noise-
tainted data frame. Signal obtained from a TRIP bainitic ferrite and 
quenching-and-partitioning steel specimen. 
 

Additionally, five floating thresholds are implemented 

using a simple boxcar filter (zero-lag correction) for frame 

time configurations of 1 ms (orange curve), 5 ms (yellow 

curve), 10 ms (magenta curve), 15 ms (green curve) and 20 

ms (cyan-blue curve) respectively. In this instance, although 

the floating thresholds clearly perform better than the fixed 

threshold, none of them completely solves the problem, since 

each one leads to its own detection errors. 

This trade-off is evident in the case of the 1 and 5 ms 

configurations, where there is a choice between responding 

rapidly to non-transient background noise (achieved at 8.5 

and 112 ms, respectively) and detecting more AE events than 

the slower configurations (third AE event located at 55 ms), 

but losing accuracy for determining the durations of all hits. 

By contrast, for longer time values, as in the case of the 10, 

15 and 20 ms configurations, the determined durations are 

closer to the actual values (hits 1, 2 and 4),. These 

configurations can also avoid some highly energetic transient 

noises by being far from the noise floor (as at 30 and 75 ms), 

but at the cost of requiring too much time to respond to the 

variation in background noise (as can be observed for the 

time ranges 8.5‒10 ms and 112‒130 ms). 

Finally, none of the configurations is capable of avoiding 

transient mechanical noises when the floating threshold 

value is close to the noise floor (as at 8.2, 76 and 111 ms). 

a) b) 



2169-3536 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2919224, IEEE Access

 

VOLUME XX, 2018 4 

2.3.  Randomness of event incidence and duration 

The appearance and duration of AE events seem to behave 

stochastically during surveys. To address this, the fixed 

threshold technique is extended to include two time-driven 

parameters, hit definition time (HDT) and hit lockout time 

(HLT), which aim to prevent error detection, establishing a 

mechanism that determines the end of the event. However, 

and as in the above case of the floating threshold technique, 

these additional parameters imply a trade-off between 

detection sensitivity and robustness against errors. 

Hit definition time, also known as duration discrimination 

time (DDT), uses a fixed timer to establish the end of a hit. 

Once a hit is detected, the system that implements the 

threshold technique will trigger the HDT timer with the 

condition that it restarts whenever the raw AE signal crosses 

the threshold level again before the time is complete.   

However, the use of this timer also entails a latent risk in 

the quality of detection of AE activity, since it is impossible 

for a pre-set value to take into account the variety of 

durations (i.e., lifetime or lifespan of an AE wave) that the 

different hits will exhibit during a survey. In other words, a 

short pre-set duration will cause most of the identified hits to 

be truncated after detection and possibly split into two (or 

more) different events, whereas a long pre-set duration risks 

poses the risk of splicing the identification of two or more 

hits into a single event (sometimes misinterpreted as a 

cascaded hit). 

Hit lockout time, also known as rearm time (RAT), aims 

to avoid the splicing of a detected hit with its own reflection, 

which is achieved by triggering the timer once the HDT 

reaches the end of its count. While HLT is active, the 

detector will not accept any further activity on the raw AE 

signal (whatever the nature is) until the HLT timer reaches 

the end of its count. The drawback of its implementation is 

that a short pre-set time will result in false-positive hit 

detection due to reflections or a split hit, while a long pre-set 

time will lead to the truncation or, in the worst case, the 

misdetection of a hit due to the risk that a hit will emerge 

during the HLT timing process [28]. 

Precise selection of the DHT and HLT timer values will 

obviously increase the detection accuracy of the threshold 

technique during a survey. However, even if instrumentation 

is carefully calibrated according to the characterisation of the 

material under inspection (e.g., attenuation, speed of sound, 

etc.), the implementation of pre-set times will eventually 

induce errors as consequence of applying a fixed parameter 

to a stochastic phenomenon. 

This trade-off is depicted in Figure 3, where two different 

AE event detection outputs are compared by slightly varying 

the HDT and HLT parameters for a 920 µs data frame. 

Shaded green areas indicate the actual durations of each of 

the hits found at 43.4, 471.5 and 527.3 µs, respectively. 

Vertical dotted lilac lines and vertical dash-dot pink lines, 

respectively, indicate the automatic onset and endpoint 

detections made by the conventional threshold technique. 

 

 

 

 

 

 

 

 
 
FIGURE 3. Two different outputs for the same AE frame signal, using two 
slightly different calibrations for the HDT and HLT parameters, and 
maintaining the same threshold level value (horizontal dashed yellow line) 
of 3.25mV. Automatic durations are indicated by the upper horizontal solid 
black guidelines. (a) Larger time values. (b) Smaller time values. Signal 
obtained from a ferrite-pearlite annealing steel specimen. 
 

The calibration shown in Fig. 3 (a) (HDT = 40 µs, HLT = 

100 µs) is intended to achieve the best approximation for the 

durations of each hit, using higher timer values in order to 

reject detection errors caused by reflections of the hit. As can 

be observed, the selected values meet the objective, but at the 

cost of truncating the first hit (located at 43.4 𝜇s and 

automatically detected after 1.2 µs), as well as splicing the 

second and third hits (471.5 and 527.3 𝜇s, respectively) into 

a single event. 

By contrast, the aim of the calibration shown in Fig. 3 (b) 

(HDT = 15 µs, HLT = 5 µs) is the timely detection of each 

hit. Thus, the highest timer values are used in order to 

identify the minimum required time difference in the values 

of the HDT and HLT parameters between calibrations. As 

can be observed, the onset of every hit is properly detected, 

but reflections of the hits are mistakenly detected as 

independent AE events. Moreover, the reflections of hits one 

and three are miss-detected as AE events. 

2.4.  High dynamic signal range 

The amplitudes of the AE waves will exhibit highly diverse 

scales, ranging from the order of picometres, giving rise to a 

transduced electrical signal that covers a range from 

millivolts to volts. 

To address this issue it is a common practice to use a CF 

based on the logarithmic absolute value of the raw AE signal. 

This approach seeks to improve the calibration of the 

instrumentation by enhancing the visual deployment of the 

signal to process, so that the level of the fixed threshold can 

be adjusted. By using this approach, the threshold level is 

typically given in decibels.   

Figure 4 illustrates this approach, showing the same 200 

ms data frame for a linear scale (a) and a logarithmic scale 

(b).  

 

a) 

b) 
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FIGURE 4. Differences in amplitude ranges of AE waves, for sixty-six AE 
events (durations indicated by shaded green areas). (a) Linear scale. (b) 
Same frame presented in a logarithmic scale. Signal obtained from a press 
hardening steel specimen. 

 

As can be observed, there is a significant difference 

between peak amplitudes for the different AE events, 

ranging from a minimum of 2.8 mV at 176.3 ms to a 

maximum of 2.6V at 25.3 ms. Figure 4 (a) shows that in a 

linear representation of the raw signal, only the most 

energetic events are discernible. In Figure 4 (b), having 

depicted the data frame on a logarithmic scale, it is less 

difficult to distinguish the different AE events. 

Nevertheless, the use of this alternative approach still 

poses a risk to detection quality, as a fixed threshold is 

applied despite the large variance in the amplitudes of the AE 

events. This aspect leads to an additional trade-off when 

selecting the threshold value, forcing a choice between 

detection sensitivity and robustness to detection errors. 

While it is true that increasing the threshold value reduces 

detection errors due to transient background noises, it also 

reduces detection sensitivity due to the loss of detection of 

the less energetic events and leads to inaccurate onset 

determination due to the misdetection of p-waves. 

Conversely, reducing the threshold value increases 

detection sensitivity (since more AE events can be 

identified) as well as improving the accuracy of onset 

detection. Nevertheless, these improvements also raise 

susceptibility to false-positive detection errors (due to 

transient background noises, particularly those of a 

mechanical nature), as well as increasing the likelihood of 

splicing two or more hits into a single event.  

This trade-off is illustrated in Figure 5, which compares 

two different output determinations of AE events by using 

two different threshold levels for the same 33 ms data frame. 

Shaded green areas indicate the actual durations for each 

of the nine hits found at 0.38, 2.75, 3.66, 6.44, 7.68, 18.42, 

20.82, 23.59 and 28.06 ms, respectively, ranging from 2.795 

mV (at 2.75 ms) to 2.5 V (at 7.65 ms). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 5. Output determinations of two slightly different calibrations for 
the threshold level value over the same AE frame signal. (a) 4.2mV, (b) 
2.195mV. Voltage axis is zoomed in for a better depiction of the trade-off 
between calibrations. 

 

Vertical dotted lilac lines and vertical dash-dot pink lines, 

respectively, represent automatic onset and endpoint 

detections. Both calibrations are set with the same HDT and 

HLT values of 250 µs and 400 µs, respectively. 

Automatically determined durations are also indicated by the 

upper horizontal solid black guidelines.  

In Fig. 5 (a), the threshold level value is set at 4.2 mV, the 

aim of the calibration being to accurately determine the 

duration of the AE events while avoiding any false-positive 

detection. To achieve this, the threshold level is lowered to 

its minimum value before any error detection is generated. 

Although the approach achieves duration determinations 

close to the actual values, the number of AE events 

effectively detected is reduced considerably, with only five 

of the nine hits detected.  

In Fig. 5 (b), this trade-off is highlighted by lowering the 

threshold level to the largest value that is required for 

detecting the nine existing AE events. As can be observed, 

each hit is detected effectively, but several transient noise 

events are mistakenly detected as hits, resulting in three 

false-positive events at 16.91, 21.86 and 22.57 ms. 

Moreover, events number eight and nine are spliced and 

detected as if they were a single event. 
 

III.  Advanced acoustic emission hit detection methods 

In order to overcome the limitations described above for AE 

hit detection based on the classical thresholding approach, 

some alternative CFs are implemented with the aim of 

avoiding the application of the threshold level to the raw 

signal, as is the case of the envelope of the signal by means of 

the absolute value function, as well as by the instantaneous 

energy of the signal [15], [29]. Nevertheless, due to 

similarities in the origination of AE and earthquake 

phenomena, some of the most widely used methods are 

inspired by geophysics discipline (where these tools are 

known as phase pickers). 

a) 

b) 

a) 

b) 
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For this study, four advanced methodologies representative 

of the current literature were considered: IA, STA/LTA, AIC 

and time-frequency distribution methods. 

One current trend is to build the CF by means of the 

Hilbert transform [14], [15], [30]. The aim of this approach 

is to obtain by means of the analytic signal of the captured 

data (preserving only the positive side of its frequency 

spectrum) a decomposition of the AE signal into two 

different time-variant components: instantaneous amplitude 

(IA) and instantaneous phase (IP). Instantaneous amplitude 

is of particular interest as it enables the construction of a CF 

that geometrically depicts the envelope of the AE wave with 

greater accuracy (in comparison to the conventional absolute 

value function). Once the CF has been obtained, the classic 

threshold scheme is applied. However, although under this 

scheme, uncertainties associated with the inability to detect 

bipolar onset activity are overcome; those related to 

background noise, randomness of the phenomenon and high 

dynamic range remain unaddressed. 

The STA/LTA ratio picking method was proposed by Allen 

[31] for determining the onset time of earthquake events, with 

the aim of reducing false-positive alarms in seismic 

monitoring. First, a CF is obtained from the raw AE signal 

(typically an absolute value or its instantaneous energy), then 

each of the STA and LTA contributions derived from the CF 

is calculated by means of a moving average filter, with two 

different response times for each one. The short-term against 

long-term contributions of the CF are compared through the 

STA/LTA ratio, and then a fixed threshold level is applied 

directly to the ratio to detect AE hits. This reduces the 

influence of rapid events such as mechanical background 

noises, while maintaining a reasonably good response of the 

ratio in relation to the original signal. The drawback of this 

technique is the delay induced by the LTA contribution, which 

affects the precision of onset detection measurement, in 

particular losing detail for primary wave detection. 

The AIC is a tool for statistically modelling time series, 

developed for automatic control applications by Akaike [32], 

first proposed by Maeda for seismic data [33], later 

implemented by Kurz [34] in the field of AE, and broadly 

revised by several authors of the AE discipline [18], [35]–[38]. 

It works by modelling the time series data of the raw AE signal 

under an autoregressive scheme (of low order). By estimating 

two locally stationary parametric components of the framed 

original signal (noise and AE activity); to later compare the 

entropy of each point of the modelled data, with the aim to find 

a critical point (the minimum). Thus, this critical point will 

indicate the arrival time instant of the AE wave.  

Based on non-parametric signal processing methods, the 

time-frequency distribution analysis is a more accurate tool for 

detecting the onset time of AE waves. Using the short-time 

Fourier transform, Unnthorson proposed a fully automatic hit 

detector method [26], [39]. However, most current research 

focuses on the use of the wavelet transform (WT) [17], [40]–

[43], which improves the resolution of the energy localisation 

of the AE event in the time-frequency plane, increasing the 

accuracy of onset determination. 

The AIC and CWT techniques clearly provide a more 

accurate onset determination of AE events than the classical 

threshold method, however, in a fully automatic AE hit 

detector application, typically they only serve to refine a 

coarsely detected hit (i.e., their use implies prior detection of 

the AE wave of interest). Clearly, this adds a degree of 

uncertainty to the outcome of these methods, since they will 

necessarily require an early thresholding detection framework. 

Finally, it should be considered that although these 

advanced methods improve the detection accuracy for AE 

waves, the high data rates required to process the phenomenon 

make them computationally expensive, so they are usually 

implemented in an offline framework (first capturing the data 

of a survey, later extracting the AE events). Nevertheless, 

efforts have also been made to implement hardware 

architectures that can work in an online approach [44]–[46]. 

 
IV.  Performance of advanced acoustic emission hit 
detection methods 

As stated above, the most significant methods should be 

compared within a common analytical framework in order to 

establish a quantitative assessment of their performance. 

Consequently, based on the current literature, this study 

considers four AE detection methods: a) a classical threshold 

technique enhanced by the instantaneous amplitude 

component [14]; b) a typical STA/LTA detector [47]; c) a 

two-step AIC picker [16], and d) a CWT-Otsu detector over 

binary image mapping [17], which like c), uses the same 

function derived from Allen’s formula as CF for the 

threshold-based preliminary detection. 

Performance of methods is evaluated using two different 

datasets. First, to measure the precision of onset and endpoint 

detection, a collection of one-hundred different AE waves 

derived from a standardised Hsu-Nielsen test are processed 

by each method; then for each resulting outcome, the 

absolute detection errors are measured.  

The second test bench measures the quality of event 

detection (i.e., accuracy, precision, false-positive rate, etc.) 

of each method using a data frame derived from a tensile test 

of a metallic component, which contains a wide variety (in 

terms of duration, amplitude and incidence) of AE waves. 

For both experimental test benches, one sensor (Physical 

Acoustics WSα, 100-1000 kHz) was attached to the surface 

of each metallic component (using a silicon-based couplant). 

The resulting electrical signals were amplified (by a Mistras 

preamplifier 2/4/6) with a gain of 20 dB (BW 10–2500 kHz). 

The amplified electrical signals were recorded under a free-

running sampling scheme (using a CSE4444 digitizer from 

GaGe), with a sampling frequency of 5 MHz for the Hsu-

Nielsen data and 10 MHz for the tensile test data (both 

samplings with 16-bit depth resolution). Before processing 

the test bench, raw signals are band-pass filtered by using a 

FIR equiripple implementation (10–2200 kHz). 
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For each method, the most suitable calibration parameters 

for the test bench are set following the recommendations in 

the literature [16], [48]–[52] and in line with current 

standards [9], [10], [53]–[57]. Prior to performing the 

corresponding test benches, the onset and endpoint times of 

each of the AE waves were manually picked supported by 

time-voltage plots and a high-resolution time-frequency 

distribution [58].  

4.1   Hsu-Nielsen data test bench 

For the pencil-lead break test bench, for each of the one-

hundred iterations, a graphite lead of ⌀ 0.5 mm and 2.5 mm 

tip-length with a contact angle to the surface of 30° is used. 

A distance of 12 cm between source and sensor is maintained 

(see Figure 6).  

 

 

 

 

 

 

 

 

 

 
FIGURE 6. Standardised Hsu-Nielsen setup over a 1500 press hardening 
steel plate (guide-ring tube from Vallen Systeme). 

For repeatability purposes, each synthetic AE wave is 

edited so that its peak value is centred on 5 ms and its length 

extends an additional 40 ms; a typical waveform obtained 

from this procedure is shown in Figure 7.  

 

 

 

 

 

 

 

 

 

FIGURE 7. (a) Typical AE waveform analysed in the synthetic data test 
bench. (b) Synchrosqueezed wavelet transform used to assist in the manual 
determination of the onset and endpoint pick locations of the AE wave 
(green and red vertical lines, respectively). 
  

The objective of this test bench is to quantify the accuracy 

of each method in the measurement of onset, endpoint and 

duration times, by means of the absolute error of each 

measure. To assure accuracy, a strategy is used to calibrate 

the parameter values for each method, lowering the fixed 

threshold value to just above the background noise level for 

each characteristic function (see Table 1). 

TABLE 1. Calibration parameter values for the Hsu-Nielsen test bench. 

Parameter 

Method 

IA 
STA 
LTA 

AIC 
CWT 
Otsu 

Fixed threshold level 3e-3 5e-4 2e-1 2e-1 

Hit definition time [µs] 1e3 NA 100 100 

Hit lockout time [µs] 10e3 NA 10e3 10e3 

De-trigger threshold NA 9e-3 NA NA 

STA window time [µs] NA 75 NA NA 

LTA window time [µs] NA 1e6 NA NA 

Pre-event time [µs] NA 15 NA NA 

Post-event time [µs] NA 10e3 NA NA 

Weighting-R constant NA NA 4 4 

End delay time window 1 [µs] NA NA 25 25 

End delay time window 2 [µs] NA NA 10 NA 

Start delay time window 1 [µs] NA NA NA 1.5e3 

Start delay time window 2 [µs] NA NA 100 NA 

CWT scales NA NA NA 101 

Greyscale image bit-depth NA NA NA 16 

Median filter pixel neighbours NA NA NA 50 

 

Since each method involves different signal-processing 

strategies, different CFs are obtained (except in the case of 

AIC and CWT-Otsu, and only for early detection). Thus, 

specific calibrations (i.e., threshold levels and timing values) 

are required for the selected technique (as reflected in Table 

1). Once each of the methods has been applied to each 

synthetic AE wave, the accuracy of the onset, endpoint and 

duration times are quantified using the absolute error from 

the outcomes of the methods with respect to the manually 

selected time locations (see Table 2). 

 
TABLE 2. Absolute error and standard deviation for onset, endpoint and 
duration detections in the Hsu-Nielsen test bench. 

Method 
Onset time 

error (µs) 

Endpoint time 

error (µs) 

Duration time 

error (µs) 

IA -21.83 ± 8.26 2454 ± 1120 2476 ± 1120 

STA/LTA -19.82 ± 7.92 3828 ± 1159 3848 ± 1161 

AIC -13.34 ± 7.00 16338 ± 1045 16352 ± 1045 

CWT-Otsu -1.19 ± 97.88 17795 ± 1047 17796 ± 1039 

 

Table 2 shows that despite dealing with a challenging 

signal, by having to detect the AE onset when the p-wave 

arrives (which clearly has less amplitude than secondary 

waves), all methods perform relatively well for this detection 

stage, where in general terms the error is less than 20 𝜇s for 

all cases. However, by executing a refinement of this onset 

examination, the AIC and CWT-Otsu methods present the 

lowest errors and can be considered to perform better.  

 Nevertheless, while the CWT-Otsu technique gives the 

lowest absolute error, it also shows the greatest dispersion 

AE transducer Hsu-Nielsen source 
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values. The high accuracy and low precision can be attributed 

to the fact that the grayscale image derived from the CWT 

analysis of the signal (with which Otsu’s method operates), 

when it contains a strong presence of either s-waves or noise 

regarding p-waves, tends to reduce the quality of the bimodal 

distribution of the image histogram, leading to segmentation 

errors. In the case of AIC, the inherent separation between 

noise and signal components, by means of finding the 

minimum in the calculated entropy of the raw signal, gives 

greater precision for the onset detection but at the cost of less 

accurate detections (i.e., lower dispersion error values but 

higher error detection values). 

For the endpoint detection stage, all methods show poorer 

performance than for onset determination, which also has a 

direct effect on the estimation of the duration time. AIC and 

CWT-Otsu give nearly the same error values because they 

use the Allen’s formula derivative as CF. However, IA and 

STA/LTA are the best options, reducing the average error of 

the AIC and CWT-Otsu methods by 80%. 

As can be observed, the endpoint determination has not 

yet been satisfactorily resolved, since the absolute error is 

approximately 2–18 ms. This problem derives from the fact 

that instead of using a measure based on a tangible indicator 

extracted from the signal, in all of the methods endpoint 

determination is based on the combination of a fixed threshold 

and a fixed timer. Despite this drawback, the results also 

illustrate the advantage of obtaining a better representation of 

the signal through a more accurate CF, since although IA and 

STA/LTA also give significant endpoint determination errors, 

they can be considered to perform better thanks to lower 

absolute error values. In the case of IA this is achieved by a 

more responsive waveform, while in the case of STA/LTA, it 

is due to the consideration of future values of the signal with 

respect to current values.  

4.2   Field data test bench 

The objective of the second test bench is to quantify the 

quality of event detection for each method using field data.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE 8. Standardised tensile test setup for a ferrite-pearlite annealing 
steel specimen (load rate of test 1mm/min). 

This is carried out by means of a tensile test of a metallic 

component (see Fig. 8). The AE signal produced by the 

tensile test is recorded. For the field data test bench derived 

from this assay, a frame of 500 ms in length, containing 380 

AE events (corresponding to an early damage stage of the 

specimen), is used as the input for each detection method 

(see Figure 9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 9. (a) Signal used for the field data test bench. (b) Zoom of 40ms, 
showing the variety in the incidence, duration and amplitudes of the AE 
waves present in the test bench (manual onsets indicated by vertical lines). 
 

For this test bench, each of the AE events (as well as their 

onset and endpoint locations) is picked using the waveform 

of the frame and supported by its time-frequency 

distribution. 

 
TABLE 3. Calibration parameter values for the field data test bench. 

Parameter 

Method 

IA 
STA 

LTA 
AIC 

CWT 

Otsu 

Fixed threshold level 2.25e-3 4e-3 6e-3 6e-3 

Hit definition time [µs] 100 NA 100 100 

Hit lockout time [µs] 15 NA 15 15 

De-trigger threshold NA 3e-3 NA NA 

STA window time [µs] NA 25 NA NA 

LTA window time [µs] NA 10e3 NA NA 

Pre-event time [µs] NA 1 NA NA 

Post-event time [µs] NA 0.5 NA NA 

Weighting-R constant NA NA 4 4 

End delay window 1 [µs] NA NA 10 10 

End delay window 2 [µs] NA NA 5 NA 

Start delay window 1 [µs] NA NA NA 75 

Start delay window 2 [µs] NA NA 20 NA 

CWT scales NA NA NA 101 

Greyscale image bit-depth NA NA NA 16 

Median filter pixel 

neighbours 
NA NA NA 50 

 

In comparison with the artificial AE events produced by 

the standardised Hsu-Nielsen procedure, real AE waves 

a) 

b) 

Floor tensile test machine 

Pre-amplifiers 

Data acquisition system 

Specimen 
AE 

transducer 
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typically exhibit smaller amplitudes and shorter durations 

(depending, of course, on the damage stage of the specimen). 

Therefore, for the calibration used for this test bench (see 

Table 3), the time-driven parameters and the threshold level 

have been shortened to increase the sensitivity of the 

methods (with regard to temporal and amplitude detection 

capabilities).  

Once all of the methods have processed the field data 

frame, the quality of event detection is quantified in two 

steps. The first consists in quantifying the total number of 

detected events that each method concludes against the true 

locations of the 380 AE events. This step also inspects the 

sum of correctly detected events (true positive), the sum of 

undetected events (false negative) and the sum of the 

incorrectly detected events (false positive); see Table 4. 

TABLE 4. Detected events with respect to 380 AE waves.  

Number of 

events 

Method 

IA STA/LTA AIC CWT Otsu 

Detected 373 380 372 372 

True-positive 322 324 299 299 

False-negative 58 56 81 81 

False-positive 51 56 73 73 

 

For this field data test bench, and only considering the total 

number of true positive events, the absolute errors for the 

onset, endpoint and duration are calculated (see Table 5). 

 
TABLE 5. Absolute error and standard deviation for the onset, endpoint and 
duration detections with the field data test bench. 

Method 
Onset time 

error (µs) 

Endpoint time 

error (µs) 

Duration time 

error (µs) 

IA -9.69 ± 7.56 38.39 ± 101.27 48.09 ± 102.13 

STA/LTA -2.49 ± 8.63 12.07 ± 83.65 14.56 ± 84.85 

AIC -6.15 ± 10.44 19.57 ± 543.74 50.4 ± 692.6 

CWT-Otsu 2.53 ± 29.45 -92.36 ± 97.4 89.82 ± 97.74 

 

Similar results are observed in the experimental scenario 

to those exhibited in the Hsu-Nielsen test bench. For the 

onset detection measure, all methods perform relatively well, 

showing in all cases error values of less than 10 𝜇s, and with 

a difference among them of less than 7 𝜇s. 

For the endpoint detection measure, the results are also 

consistent with the Hsu-Nielsen test bench, with all methods 

showing poorer performance than for onset detection. 

Nevertheless, STA/LTA seems to be the most balanced 

technique, particularly when dispersion error values are also 

taken into account, yielding values that are approximately 25–

85% lower than the dispersion generated by IA and AIC, 

respectively. As can be seen, this endpoint error value also 

directly affects the absolute duration time error. 

The second step in this field data test bench consists in 

quantifying the quality of event detection achieved by each 

method. Using the number of detected events shown in Table 

4, the following statistical metrics are calculated: (a) 

accuracy (the ratio of true positive events to all detected and 

undetected events), (b) precision (the ratio of true positive 

events to the number of true and false positive events), (c) 

sensitivity (the ratio of true positive events to the sum of true 

positive and false negative detections, (d) f1-score (the 

harmonic average of precision and sensitivity), (e) false 

discovery rate (the ratio of false positive detections to all 

detected events), (f)  false negative rate (the ratio of false 

negative detections to the sum of false negative and true 

positive events). 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 10. Statistical metrics corresponding to the quality of event 
detection in the data field test-bench. 

 

With regard to the statistical metrics, Table 4 and Figure 

10 show that although, on average, all of the methods 

quantitatively detect nearly 99% of the total detection target 

(i.e., 380 AE events), the quality with which these detections 

are performed still differs from the target. 

Looking at the accuracy of the methods (i.e., the ratio of 

correctly detected events), although all of them perform 

reasonably well, with a lowest value of 66%, none achieves 

a value greater than 75%. STA/LTA and IA achieve 

accuracies nearly 10% greater than those of AIC and CWT-

Otsu. This superior performance is consistent with the results 

obtained for the absolute endpoint error, since better 

determination of the event conclusion eventually raises the 

overall detection accuracy. 

For the precision indicator (i.e., the ratio of correct positive 

detections) all methods perform better than for accuracy, 

achieving an average value of 83%. This improvement 

performance is due to the nature of the assay, in which there 

is a low proportion of false AE events (most of them derived 

from high-energy reflections and mechanical noises) relative 

to the number of true AE events in the analysed data frame. 

Again, STA/STL and IA perform approximately 5% better 

than the AIC and CWT-Otsu methods, since they do not 

detect the false positive events for more cases in the test 

bench. 

With regard to the sensitivity metric (i.e., the ratio of 

correctly detected positive events), all methods show similar 

behaviour to that observed for the precision metric, 

achieving nearly the same values. However, with the 

exception of STA/STL, performance decreases by about 2%, 

with a propensity for false negative detections, caused by low 

energy AE events and, predominantly, by misdetection of 

spliced AE waves. 
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For the F1 score, all methods achieved satisfactory results, 

due to the fact that only minor deviations were obtained 

between the sensitivity and precision metrics. 

For the false discovery rate metric (i.e., the ratio of false 

alarm detections), all methods show reasonably low values, 

completing the ratios observed for the precision metric, with 

the lowest value of 20% obtained by the AIC and CWT-Otsu 

techniques.  

For the false negative rate (i.e., the proportion of actual 

events which do not produce detections), all methods show 

tolerable values consistent with the results for the sensitivity 

metrics, with the lowest value of 22% scored by the AIC and 

CWT-Otsu techniques. 

 
V.  Conclusions 

Four critical characteristics influence the detection of AE 

events under the classical thresholding approach: bipolar onset 

activity, varying background noise, high dynamic signal 

range, and randomness in the incidence and duration of the 

events. The drawbacks and impacts of these characteristics 

have been discussed and analysed.  

Four advanced AE detection methods representing the 

current state of the art have been presented, and their 

performance quantified with AE data generated from 

standardised Hsu-Nielsen tests and for a standardised tensile 

test.  

In general, all methods showed suitable capabilities for 

accurate onset detection, achieving absolute errors of less 

than 20 𝜇s for the Hsu-Nielsen test and less than 10 𝜇s for 

the tensile test. 

By contrast, all methods exhibited low and 

nondeterministic performance for endpoint determination, 

yielding absolute errors of 2‒18 ms for the Hsu-Nielsen test 

and 10‒100 µs for the field data test bench. This lack of 

accuracy is due to the fact that all methods define the end of 

an event by means of the combination of a fixed threshold and 

a fixed timer instead of using an indicator extracted from the 

signal, which also critically increases the event duration 

error. 

With regard to detection quality, none of the methods 

achieved an accuracy of more than 75%, with IA and 

STA/STL achieving scores approximately 10% higher than 

obtained with AIC and CWT-Otsu. For the precision and 

sensitivity metrics, due to the low proportion of false events 

in the test bench, all methods scored higher than for 

accuracy, achieving average scores of 83%. All methods 

were also found to be slightly more susceptible to false 

negative detection errors, most of them derived from spliced 

detections.  

In general, statistical metrics are directly affected by the 

lack of accuracy of endpoint determination, and by four 

particular characteristics of the AE signal (i.e., duration, 

amplitude, appearance and floor noise). 

In this study, AIC and CWT-Otsu are the best methods for 

accurate onset measurement. In particular, despite exhibiting 

significant error dispersions, CWT-Otsu improves onset 

measurement by approximately 90–95% with respect to all 

methods for the Hsu-Nielsen test and by 60 and 73% relative 

to AIC and IA, respectively, for the tensile test. Nevertheless, 

since these methods were conceived for AE event location 

applications, in which highly accurate event arrival times are 

critical, their scopes must be carefully considered to only 

refine this onset detection. 

For this study, IA and STA/LTA can be considered the 

most suitable techniques for fully automatic AE event 

detection application, having achieved the highest scores for 

quality of detection analysis. This high performance is 

strongly related to the use of characteristic functions that are 

more suitable for detection purposes, which are more 

responsive in the case of IA and more accurate in the case of 

STA/LTA.  

STA/LTA stands out in this study as the most balanced 

option between low-error accuracy for onset and endpoint 

determinations and the quality of detection metrics. 

Finally, it should be noted that, due to the stochastic nature 

of the AE phenomenon, there is no overall method capable 

of guaranteeing reliable detection across all different 

applications, materials and instrumentation. Thus, careful 

consideration must be given to selecting the most suitable 

detection method for the performing environment in 

question. 

For the further development of this topic, two branches 

can be defined. First, additional analysis of the performance 

of existing methods (such as the specificity of the threshold 

levels) and further experimental scenarios (such as in-service 

applications). Second, toward achieving meaningful and 

reliable AE assessing applications through the proper 

separation of each wave, the necessity of development of 

novel strategies that can determine more accurately not only 

the onset of an AE event but the conclusion as well. 
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