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Resum (CAT)
Els models phase-field per a fractura fràgil descriuen les fractures com a zones

danyades mitjançant un camp continu que varia abruptament entre els estats

intacte i trencat. Computacionalment, les malles han de ser fines a prop de la

fractura per capturar bé la solució. Presentem una formulació HDG per a un

model phase-field quasi-estàtic, basada en un esquema alternat a l’hora de resoldre

el sistema. La motivació per a utilitzar HDG és que permet la implementació

d’estratègies d’adaptabilitat espacial de manera senzilla.

Abstract (ENG)
Phase-field models for brittle fracture consider smeared representations of cracks,

which are described by a continuous field that varies abruptly in the transition zone

between unbroken and broken states. Computationally, meshes have to be fine

locally near the crack to capture the solution. We present an HDG formulation for

a quasi-static phase-field model, based on a staggered approach to solve the system.

The use of HDG for this model is motivated by the suitability of the method for

spatial adaptivity.
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An HDG phase-field model for brittle fracture

1. Introduction

Models of fracture in brittle materials can be based on discontinuous and continuous descriptions of cracks.

Discontinuous models describe cracks as sharp entities by means of discontinuous displacement fields.
The main disadvantage of these models is the lack of a rigorous strategy to determine initiation and
propagation of cracks. Numerically, they are usually tackled by the eXtended Finite Element Method (X-
FEM), which enables to solve the problem with meshes unfitted to the crack geometry [2, 16]. However,
dealing with discontinuities in a X-FEM setting may be cumbersome in cases with complex patterns [18].

Alternatively, phase-field models for fracture represent cracks as damaged regions that have lost their
load-carrying capacity, with continuous displacement fields in all the domain [3]. These models introduce
an auxiliar field d , called the phase-field variable or damage field, which differentiates between the broken
and unbroken states of the material and varies smoothly between them. The evolution of the phase-field
variable as a result of the loading conditions handles naturally the initiation, propagation, branching and
coalescence of cracks. Incorporating the crack evolution into the equations is the main advantage of
phase-field models over the discontinuous ones.

The phase-field approach introduces a regularization length parameter `, which comes from the smeared
representation of the crack and can be related to its width. Since the goal is to approximate a sharp crack,
the parameter ` is to be chosen small and the phase-field variable d will vary sharply in the damaged zone.
Therefore, high spatial resolution is a key requirement to approximate properly the solution. The usual
strategy is to refine the computational mesh locally where the crack is expected to propagate: a priori in
the cases in which the crack path is known and by remeshing as the phase-field value evolves when it is not.
Obviously, this implies a high computational cost. A reasonable approach to reduce the cost is defining
an adaptive refinement method. The different strategies proposed in the literature offer an alternative to
remeshing, though they are non-trivial (see [12] and the references therein). We refer to [1, 20] for an
exhaustive review of existing phase-field models and the numerical challenges they present.

In this work, we use the Hybridizable Discontinuous Galerkin method (HDG) as an alternative to
standard FEM to solve the phase-field equations. HDG was first proposed in [5] for second order elliptic
problems and, due to its promising properties, has already been formulated for multiple problems, see for
example [10, 13, 17].

As any other Discontinuous Galerkin (DG) method, HDG is based on the use of element-by-element
discontinuous basis functions in a finite element setting. Continuity of the solution is imposed in weak form
by means of numerical fluxes on element boundaries. DG methods are appealing to solve the equations
of the phase-field model because of the possiblity of using different approximation bases in neighbouring
elements, which will enable the straightforward definition of an adaptive refinement strategy. Among all
DG methods, we choose HDG because it involves less degrees of freedom, with a computational efficiency
close to standard continuous FE and better convergence properties [11, 21].

In Section 2 we provide a brief overview of the chosen phase-field model for brittle fracture and the
staggered scheme to solve it. In Section 3, we present the HDG formulation of the equations. Finally, in
Section 4, we compare the results obtained with the HDG formulation with the ones obtained with standard
FEM for a benchmark problem, for both low and high-order degrees of approximation.
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2. Phase-field modelling of brittle fracture

In this work, we consider the quasi-static phase-field model for fracture proposed by Bourdin et al. in [3].

Let Ω ⊂ Rn, n = 2, 3, be an open bounded domain occupied by an elastic body with a traction-free
crack denoted by ΓC and under the hypothesis of small deformations, see Figure 1 (a). Let u(x, t) be
the displacement field at a point x ∈ Ω at time t and define ε as the standard infinitesimal strain tensor
ε(u) =

(
∇u + (∇u)T

)
/2. The displacement field satisfies Dirichlet and Neumann boundary conditions

on ΓD and ΓN , respectively, with ΓD ∪ ΓN = ∂Ω and ΓD ∩ ΓN = ∅.
In [6] Francfort and Marigo state that the fracture process acts to minimize the total energy of the

body, which can be expressed as the sum of its bulk elastic energy and the crack surface energy, that is

E (u, ΓC ) =

∫
Ω

Ψ0(ε) dV + Gc

∫
ΓC

ds, (1)

with Ψ0 the elastic energy density and GC the critical energy release rate. We restrict ourselves to the case
of linear elastic isotropic materials, for which the elastic energy density is given by Ψ0(ε) = (ε : C : ε) /2,
with C the fourth-order elasticity tensor depending on the Lamé parameters.

To enable a numerical treatment of (1), Bourdin et al. [3] introduced a regularized formulation by
considering a smeared representation of the sharp crack ΓC , see Figure 1 (b). The crack is defined by a
new field d(x, t) which varies smoothly between two values representing the unbroken and broken states of
the material, 0 and 1 respectively, and is therefore called the phase-field or damage parameter. The energy
functional (1) is then approximated by

E`(u, d) =

∫
Ω

(
(1− d)2 + η

)
Ψ0(ε) dV + Gc

∫
Ω

(
d2

2`
+
`

2
|∇d |2

)
dV , (2)

where ` regulates the width of the diffuse crack and η is a small dimensionless parameter to avoid a complete
loss of stiffness in broken regions. It has been proved [4] that with ` → 0, the regularized functional (2)
Γ-converges to (1). This implies that the set {d = 1} tends to the sharp crack ΓC as the width of the
smeared representation tends to 0.

a) b

Figure 1: a) Body with a sharp crack ΓC . b) Smeared crack representation.

Minimizing the energy functional (2) we obtain the system
∇ · σ = 0,

− `2∆d + d =
2`

Gc
(1− d)Ψ0,

(3)
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with the stress tensor σ defined as

σ(u, d) =
(
(1− d)2 + η

) ∂Ψ0(ε)

∂ε
= ((1− d)2 + η) C : ε(u). (4)

Notice that in the second equation in (3), the energy density Ψ0(x, t) acts as a source term for the damage
field d . Following Miehe et al. in [14, 15], we replace Ψ0 in this equation by a history field variable H
defined as

H(x, t) = max
τ∈[0,t]

Ψ0(ε(x, τ)),

to enforce irreversibility of the crack evolution.

The resulting system of governing equations is to be solved using an incremental procedure for the
loading process. The time interval of interest is discretized and, assuming the solution at time t(n) is
known, the system is solved at time t(n+1) using the corresponding boundary conditions

σ · n = t(n+1) on ΓN ,

u = u
(n+1)
D on ΓD ,

∇d · n = 0 on ∂Ω,

(5)

where t(n+1) and u
(n+1)
D are the prescribed tractions and displacements, respectively, and n stands for the

outward unit normal vector.

2.1 Staggered approach

The total energy (2) is convex with respect to u and d separately, but not with respect to both of them.
This motivates the solution of the system by means of a staggered scheme: at each load step, we compute
the displacement field u and the damage field d alternately until convergence. Given the solution (un, dn)
at time tn, the solution at time tn+1 is computed by iterating over i in the following scheme:

1. Compute
[
un+1

]i+1
by solving the equation

∇ · σ
([

un+1
]i+1

,
[
dn+1

]i)
= 0 in Ω, (6)

with σ given by (4) and boundary conditions σ · n = tn+1 on ΓN ,
[
un+1

]i+1
= un+1

D on ΓD .

2. Update the history field
[
Hn+1

]i+1
= max

(
Hn,

[
Ψn+1

0

]i+1
)

.

3. Compute
[
dn+1

]i+1
by solving

−`2∆
[
dn+1

]i+1
+
[
dn+1

]i+1
=

2`

Gc

(
1−

[
dn+1

]i+1
) [
Hn+1

]i+1
in Ω, (7)

with boundary condition
(
∇
[
dn+1

]i+1
)
· n = 0 on ∂Ω.

We take (u0, d0)(x) = (0, 0) for all x in Ω and
[
dn+1

]0
= dn for n > 0. We keep iterating over i until

some stopping criterion indicating convergence is satisfied. An alternative is to take sufficiently small load
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increments and use the staggered approach without iterating, see for example [1, 8], but the speed of
propagation of the crack might be underestimated. Here, we iterate until the relative Euclidean norm of
the difference of two consecutive iterates is smaller than a fixed tolerance, for both the displacement and
damage fields.

Remark 2.1 (Efficiency). The staggered algorithm is simple and has been proved to be robust [15], but
many iterations are needed to reach convergence even for simple benchmark problems. A monolithic
scheme computing simultaneously both fields would be more efficient, but then one has to deal with the
non-convexity of the functional (2) and the Jacobian matrix of the system being indefinite [9, 19].

3. HDG formulation

We aim to use HDG to solve the governing equations of the phase-field model. The adopted staggered
approach enables an independent numerical treatment for each of the equations, so we can focus on the
HDG formulations for the linear elasticity equilibrium equation (6) and the damage field equation (7). For
the former equation, there are various options in the literature. Here, we consider the HDG formulation for
linear elasticity by Soon et al. in [17, 7]. For the latter, we add the reaction term to the standard HDG
formulation for diffusion by Cockburn et al. in [5]. Both formulations are recalled in this section.

Throughout the section, we assume the domain Ω covered by a finite element mesh with nel disjoint
elements Ki satisfying

Ω̄ ⊂
nel⋃
i=1

K̄i , Ki ∩ Kj = ∅ for i 6= j ,

and denote the union of the nfc faces Γf of the mesh as

Γ =

nel⋃
i=1

∂Ki =

nfc⋃
f =1

Γf .

3.1 HDG for the equilibrium equation

Let us consider the linear elasticity problem defined in (6), to be solved for a frozen damaged field d . The
problem can be written in the broken space of elements as a set of local element-by-element equations
and some global equations. Local problems impose the linear elasticity equation at each element Ki with
Dirichlet boundary conditions, namely 

∇ · σ(J, d) = 0 in Ki ,

J−∇u = 0 in Ki ,

u = û on ∂Ki ,

(8)

for i = 1...nel. The variable J is introduced to split the problem into a system of first order PDE and û
is a new trace variable defined on the skeleton of the mesh, Γ, which is single-valued, see Figure 2. Note
that, given û, the local problems (8) can be solved to determine u and J at each element.

5Reports@SCM x (xxxx), 1–12; DOI:xx.xxxx/xx.xxxx.xx.xx.
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Figure 2: Left: HDG discretization of the domain with the mesh skeleton Γ. Right: detail of the HDG discretization
for the local problem in one element.

The global problem is stated to determine the trace variable û. It imposes equilibrium of tractions on
faces and also the boundary conditions, that is,

Jσ · nK = 0 in Γ \ ∂Ω,

σ · n = tN on ΓN ,

û = uD on ΓD ,

(9)

where J·K denotes the jump operator defined at a face Γf as J�K = �Lf + �Rf
, where Lf and Rf denote

the left and right elements sharing the face and �i denotes the value of � from element Ki . Note that
the continuity of u across Γ is satisfied due to the boundary condition u = û in the local problems and the
fact that û is single-valued.

The HDG formulation of the problem is obtained by the discretization of the local and global equations.
To approximate the elemental variables, u and J, and the trace variable, û, the discrete spaces considered
are

Vh(Ω) = {v ∈ L2(Ω) : v |Ki
∈ Pp(Ki ) for i = 1...nel},

Λh(Γ) = {v̂ ∈ L2(Γ) : v̂ |Γf
∈ Pp(Γf ) for f = 1...nfc},

where Pp denotes the space of polynomials of degree less or equal to p. To simplify the notation, we use
u, J, û to denote both the solutions and their approximations.

For an element Ki , the weak form for the local problem (8) is: given û ∈ [Λh(Γ)]n, find u ∈ [Vh(Ki )]n,
J ∈ [Vh(Ki )]n×n such that∫

Ki

v · (∇ · σ) dV +

∫
∂Ki

v · ((C : τ (û− u)⊗ n) · n) ds +

∫
Ki

v · f dV = 0,∫
Ki

Q : J dV +

∫
Ki

(∇ ·Q) · u dV −
∫
∂Ki

(Q · n) · û ds = 0,

(10)

for all v ∈ [Vh(Ki )]n, for all Q ∈ [Vh(Ki )]n×n. The first equation in (10) is obtained from the first equation
in (8) by applying integration by parts, replacing the numerical flux Ĵ := J + τ(û−u)⊗n on the boundary
and undoing the integration by parts. τ is a nonnegative stabilization parameter, which here is taken as a
positive constant on all faces.

The discretization of the local problem (10) leads to the so-called local solver for each element Ki ,
which expresses u and J in terms of û, namely

ue = UKi Λi + fKi
U , Je = QKi Λi + fKi

Q , (11)

http://reportsascm.iec.cat6
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with matrices UKi , QKi and vectors fKi
U , fKi

Q . Λi is a vector containing the unknown nodal values of û for

all the faces of Ki , this is, Λi :=
[
ûFi ,1,T , ..., ûFi ,m,T

]T
.

For the global problem (9), the weak form is stated replacing the numerical flux Ĵ in σ(J). Defining
σ̂ := σ(Ĵ) = σ(J) + C : (τ(û− u)⊗ n) , the weak form is: find û ∈ [Λh(Γ)]n such that û = uD on ΓD and∫

Γ
v̂ · Jσ̂ · nK ds +

∫
ΓN

v̂ · (σ̂ · n) ds =

∫
ΓN

v̂ · tN ds, (12)

for all v̂ ∈ [Λh(Γ)]n such that v̂ = 0 on ΓD . Discretizing the global weak form and replacing u and J in
terms of û by the local solver (11), we get a system for û. Once û is determined, using the local solvers
(11), we compute u and J in every element.

For this formulation, u converges with order p + 1 in L2 norm and J with order p + 1/2 [7].

3.2 HDG for the damage field equation

The HDG formulation for the damage field equation (7) is obtained analogously to the formulation for linear
elasticity. Introducing a new variable q to be the gradient of d , the local problems impose the equation
in every element Ki with Dirichlet boundary conditions, and their weak form reads: given d̂ ∈ Λh(Γ), find
d ∈ Vh(Ki ), q ∈ [Vh(Ki )]n such that

−
∫
Ki

GC ` v ·∇ · q dV −
∫
∂Ki

GC `τ (d̂ − d)v ds +

∫
Ki

(
GC

`
+ 2H

)
vd dV =

∫
Ki

v2H,∫
Ki

w · q dV +

∫
Ki

(∇ ·w)d dV −
∫
∂Ki

w · n d̂ ds = 0,

for all v ∈ Vh(Ki ), for all w ∈ [Vh(Ki )]n. The numerical flux prescribed on the boundary of every element
is q̂ := q + τ(d̂ − d)n, with τ the stabilization parameter.

The weak form of the global problem is: find d̂ ∈ Λh(Γ) such that∫
Γ\∂Ω

v̂ · Jq̂ · nK ds = 0,

for all v̂ ∈ Λh(Γ).

In this case, both d and q are proved to converge with order p + 1 in L2 norm.

Remark 3.1 (H is evaluated at integration points). To solve the damage field equation we need the value
of H at integration points. From the staggered scheme, H can be computed using the nodal values of J
obtained by solving the equilibrium equation. Evaluating H at nodes may result in negative values when
it is interpolated to integration points if we use approximation functions of degree greater than 1, even
though it is a nonnegative function by definition. This leads to unphysical solutions. Also, it may cause
the non-convergence of the staggered scheme if consecutive iterates alternate negative and positive values
at some points. We will illustrate this behavior with a numerical example in next section. To avoid non-
physical negative values J is interpolated to integration points and then these values are directly used to
evaluate H.

7Reports@SCM x (xxxx), 1–12; DOI:xx.xxxx/xx.xxxx.xx.xx.
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4. Numerical example: L-shaped panel test

One of the typical benchmark problems in computational fracture is the L-shaped panel test. Consider
the specimen in Figure 3 (left), which is fixed on the bottom and has imposed vertical displacement at
a 30 mm distance to the right edge. Following [1], the material parameters are λ = 6.16 kN/mm2,
µ = 10.95 kN/mm2 and Gc = 8.9 · 10−5 kN/mm2. The regularization length in the phase-field model is
taken to be ` = 3 mm and the residual stiffness is η = 10−5. The stabilization parameter appearing in the
HDG formulation of the equations is taken τ = 1 for both the equilibrium and the damage field equations.

Figure 3: Left: geometry and boundary conditions of the test. Right: computational mesh.

We consider a triangular mesh with 1842 elements, pre-refined along the expected crack path with a
mesh size of href = 3.5 mm, see Figure 3 (right), and four nested meshes to this one obtained by dividing
the mesh size by two for each level of refinement. The problem is solved with increments in the prescribed
vertical displacement of ∆uD = 10−3 mm and we iterate in the staggered scheme for each load step until
convergence is reached with a tolerance of 10−6.

Remark 4.1 (Boundary conditions). Imposing the vertical displacement at just one point causes unphysical
damage near the point. To cancel this out and impose properly the boundary conditions, we set the damage
to zero in the region after every iteration of the staggered scheme. Another strategy would be to assign a
higher value of GC where needed [20].

Comparison of FEM and HDG. We start by considering linear approximation functions. As expected,
the solution tends to converge when refining the mesh, as it can be observed in the load-displacement curves
in Figure 4. We obtain similar results for both FEM and HDG, with slightly better accuracy in HDG. Recall
that HDG has a better order of convergence for the gradient of the displacement field J.

Spatial resolution. Using degree of approximation p = 1, the primary mesh with href = 3.5 mm is
not fine enough to approximate properly the smeared crack with ` = 3 mm. The smeared crack becomes
mesh-dependent and has a width of one element, see Figure 5. In Figure 6, we plot the damage field
for different imposed displacements of the loading process with the 2-nested level mesh. The crack path
obtained in this case is comparable with the results in the literature [1, 8].
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Figure 4: Load-displacement curves for the L-shaped panel test when using p = 1 for both FEM and HDG.

Figure 5: Damage field obtained with HDG at an imposed displacement of uD = 0.45 mm. Degree of approximation
p = 1, primary mesh and ` = 3 mm.

Figure 6: Damage field at displacements (a) uD = 0.25 mm, (b) uD = 0.3 mm, (c) uD = 0.4 mm, (d) uD = 0.5 mm.
Degree of approximation p = 1, 2-nested level mesh and ` = 3 mm.

Computation with high-order approximations. To increase the accuracy in space needed to capture
the profile of the solution, one can take higher degree p of the approximation basis functions. With p = 5,
we expect to obtain more accurate results than with p = 1 for the same mesh. Indeed, in Figure 7 (left),
we compare the load-displacement curve obtained with degree p = 1 and the 4-nested level mesh with the
curves obtained for p = 5 and coarser meshes. In this case, using a higher-order degree of approximation
gives us the same order of accuracy in the solution and with less degrees of freedom. In Figure 7 (right),
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we note that solving for p = 5 with the primary mesh we no longer observe the mesh dependence we have
for p = 1 due to low spatial resolution.
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p = 5, primary mesh
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Figure 7: Left: load-displacement curves obtained with p = 5. Right: damage field at uD = 0.45 mm for p = 5 and
the primary mesh.

Importance of evaluating H at integration points. As commented in remark 3.1, if H is evaluated
at nodes and then interpolated to Gauss points, it can reach negative values when using shape functions
of degree p > 1. To illustrate this phenomenon, consider the L-shaped panel test with the primary mesh
and degree of approximation p = 5. If we evaluate H at nodes, the damage field d is no longer in the
interval [0, 1]. In Figure 8, we can see the damage field obtained with this formulation for imposed vertical
displacement uD = 0.247 mm. Both the values of d and the pattern obtained are not a proper solution of
the problem: the damage field presents oscillations and gets a value of 1.2 at the corner.

Figure 8: Evaluating H at nodes. Damage field for uD = 0.247 mm. Whole body on the left, zoom on the right.
Degree of approximation p = 5, primary mesh. The solution obtained is unphysical.

For the next load step, corresponding to imposed displacement uD = 0.248 mm, the staggered scheme
does not converge. In Figure 9, we plot the relative Euclidean norm of the difference of consecutive iterates
for d and the maximum and minimum values of damage obtained. Notice that the absolute value of the
damage field gets arbitrarely large.
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Figure 9: Evaluating H at nodes. For imposed displacement uD = 0.248 mm, relative error of d (left) and
maximum/minimum values of d (right) for number of iteration. The staggered scheme does not converge in this
case.

5. Conclusions

We have proposed an HDG approach for phase-field models of brittle fracture using a staggered scheme that
enables to uncouple the system. We have compared this formulation with the classical FEM formulation
in a numerical example and both of them present the same behavior. As expected, the solution is more
accurate when refining the mesh or increasing the degree of approximation. With HDG we obtain better
accuracy than with FEM for the same mesh and degree of approximation, but at the price of a higher
computational cost.

The main drawback of phase-field models is their inefficiency coming from the remeshing needed if the
crack path is not known. The HDG formulation is interesting for this problem because of the suitability
of the method for adaptivity. The implementation of p-adaptivity and h-adaptivity for this formulation is
subject of ongoing work.
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[16] N. Moës, J. Dolbow, T. Belytschko. A finite el-
ement method for crack grow without remeshing,
Int J Numer Methods Eng (1999) 46:131–150.

[17] S.C. Soon, B. Cockburn, H.K. Stolarski. A hy-
bridizable discontinuous Galerkin method for lin-
ear elasticity, Int J Numer Methods Eng (2009)
80:1058–1092.

[18] N. Sukumar, J. Dolbow, N. Moës. Extended
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