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The slingshot effect and its application to converting ocean wave energy is discussed. It is shown
that, owing to the large inertia transported by ocean waves and their periodicity, the slingshot effect
can result in the transmission of significant kinetic energy to a puck colliding elastically with a pusher
plate driven by ocean wave motion. A simplified geometrical model is used to demonstrate that,
despite the stochastic nature of the collisions (whereby collisions occur at random times in the wave
cycle), head-on collisions occur more frequently, yielding a net average gain of energy. However, the
most promising configuration for applying the slingshot effect to ocean-wave energy conversion is
that which matches, through appropriate design, the travel time of the puck between collisions with
the wave period. Then, only head-on collisions occur, resulting in a significant magnification of the
puck kinetic energy. Further research will be required before this slingshot effect can be practically
implemented for ocean-wave energy conversion.
Keywords. Ocean wave energy conversion; Slingshot effect, Resonant cavities, Electromagnetic
wave converters

I. INTRODUCTION

Considerable research effort has been devoted to
extracting energy from ocean waves over the last two
centuries [1]. More than 1000 techniques have been
patented in North America, Japan, and Europe [2] over
the past century, which fall into three main categories:
attenuators, in which a floating device operates parallel
to the wave propagation direction (effectively “riding”
the waves); point absorbers, in which a floating structure
absorbs energy from all directions through its motion
at or near the water surface; and terminators, in which
a device extends perpendicular to the direction of
wave propagation and captures or reflects the power
of the wave [3],[4]. To maximise the extraction yield,
designers tune the conversion system to resonate with
incoming waves [5]-[7], as it is well established that,
under such conditions, the absorbing system attains
maximal amplitude and speed, thereby optimising the
conversion yield [8],[9]. A seminal example of a resonant
cavity used for converting ocean-wave energy was by
Masuda (1971) [10], who designed the first commercial
resonator as a navigation aid. A full-scale wave energy
resonator system was subsequently developed jointly
by Canada, Ireland, Japan, the United Kingdom, and
the United States with the support of the International
Energy Agency (IEA). Since then, several methods have
sought to match the ocean-wave frequency with the
natural frequency of the absorber system, either actively
or passively. Forcing a system to resonate through active
control generally requires powerful braking mechanisms
to latch the point absorber at fixed positions [11]-[13],
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together with predictive models [14]. Passive methods
involve shifting the frequency response of the system
by increasing the inertia of its moving parts [15],[16].
Despite being less efficient, passive methods are designed
to use control and braking systems that are more
economical and robust than those of active methods.

The objective of this work was to explore a novel con-
cept of ocean energy conversion based on the so-called
slingshot effect that can give rise to a new type of reso-
nance, hereafter referred to as the slingshot resonance.

II. BASIC PRINCIPLE

A. Slingshot effect

The slingshot effect (outlined in Fig. 1) results from
the elastic interaction between two colliding objects of
mass m1 and m2 and velocity u1 and u2 relative to some
reference inertial frame. It is assumed that m1 � m2

and m1u1 � m2u2. In an elastic collision, the total
momentum and kinetic energy are conserved. The mass
difference therefore implies minimal change in the veloc-
ity of body 1, while body 2 recoils with a new velocity
ù2 given by

ù2 = u2 + 2u1. (1)

The slingshot effect has important technological
applications, for example in space technology. In a ma-
noeuvre known as gravity assist (also called gravitational
slingshot), the motion of a planet is exploited to redirect
the trajectory of an approaching spacecraft. Manually
effecting this redirection through propulsion would be
prohibitively expensive, if not impossible.
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FIG. 1: Illustration of the slingshot effect.

B. Slingshot effect for converting ocean wave
energy

Ocean waves carry considerable amounts of inertia.
For instance, waves generated by a storm are capable of
lifting the bow of a 200,000-tonne ship out of water. Fur-
thermore, the periodic application of the slingshot effect
at every wave cycle can result in a significant transmis-
sion of kinetic energy from the pusher plate and the puck
in Fig. 2. This paper will outline a first assessment for
this oceanic slingshot effect.

III. METHOD

Real ocean waves are generated mostly by local winds.
The wave amplitude, frequency, and propagation direc-
tion therefore relate directly to the wind velocity and
direction. However, the waves might appear to have a
random amplitude, frequency, or direction [9].

Because of dispersion, long waves travel further
than short waves away from the local stormy region
that generated them. At large distances, the waves
therefore appear as nearly monochromatic swells with
long wavelengths. As a first approach, the present
study therefore focuses on this regime for simplicity and
also because energy conversion is most efficient when
conducted under such monochromatic conditions.

FIG. 2: Slingshot resonant tower.

A. Stochastic mode

The vertical velocity at the surface of an ocean wave
is given as a function of time t as [9]

v = vo cosωt (2)

where vo is the velocity amplitude and ω the wave fre-
quency. Thus, if the puck in Fig. 2 travels with velocity
u and collides with the pusher plate (which follows the
wave surface), it will recoil with a final velocity ù given
by Eq.(1) as

ù = u+ 2v. (3)

Substituting Eq.(2) into Eq.(3), one obtains

ù = u+ 2vo cosωt. (4)

Because the stochastic process in which head-on and
wave-away collisions take place, the mean square velocity
is evaluated as the second-order moment of the velocity

< ù2 >=
1

T

∫ T

0

(u+ 2vo cosωt)
2
dt, (5)

u1

u2

u2+2u1

u1
m1

m2
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where T is the period of the ocean wave.

• Discussion I

By assuming a constant puck velocity u at collision,
the integral in Eq.(5) yields

< ù2 >= u2 + 2v2o . (6)

There is therefore a net gain of E
m = v2o in the kinetic

energy per unit mass of the puck . This implies that,
under conditions where collisions occur stochastically,
head-on collisions occur more frequently on average.

Consider next the more realistic situation of a slingshot
driven by ocean waves where the downward velocity of
the puck is time-dependent. Let the puck be initially at
rest at some height above the wave surface at time t = 0,
and fall freely under gravity to collide with the pusher
plate (i.e., the wave) at time t with a velocity gt, where
g is the acceleration due to gravity. The pusher plate at
this moment has a velocity given by Eq.(2) as

v = vo cos(ωt+ δ), (7)

where δ ∈ [0, 2π] represents a phase shift. At the mo-
ment of collision, the puck recoils with a velocity that is
given by

ù = gt+ 2vo cos(ωt+ δ). (8)

The second-order moment of the velocity

< ù2 >=
1

2π

1

T

∫ 2π

o

∫ T

o

(gt+ 2vo cos(ωt+ δ))
2
dtdδ

(9)
is integrated to give

< ù2 >=
T 2g2

3
+ 2v2o . (10)

The first term on the right side represents the energy
needed to maintain the periodic operation of the system
(i.e., continuously transforming kinetic into potential
gravitational energy) and is not available as surplus
of energy. The net energy per unit mass that can be
extracted from the system at every collision is therefore
given by ΔE = v2o . This result is identical to that
derived above.

B. Slingshot resonance

Consider now the more interesting case where the
time between successive collisions is made to match the

period of the wave exactly. The collisions occur at the
same location and with the same velocities of the puck
and pusher plate. Ideally, the pusher plate collides at its
maximum velocity v = vo.

This synchronisation between the puck and the wave
can be realised by tuning several parameters, as discussed
below. For the time being, let us assume that resonance
conditions are satisfied with puck and pusher-plate ve-
locities u and vo at each head-on collision. From the
previous discussions, the recoil puck velocity is given by

ù = u+ 2vo (11)

and the second-order moment of the velocity becomes

< ù2 >=
1

T

∫ T

o

(u+ 2vo)
2
dt ∴

< ù2 >= u2 + 4uvo + 4v2o (12)

The average extractable energy per collision and per
unit mass of the puck is therefore given by

ΔE = 2uvo + 2v2o (13)

• Discussion II

A clear difference between this result and the stochas-
tic mode previously analysed (where the extractable
energy per unit mass was ΔE = v2o) is the additional
term 2uvo that depends on the puck velocity u at the
moment of collision. Although at first sight it might
seem that this velocity u could be made to increase
arbitrarily through successive collisions, this does not
happen in reality. As discussed below, every increment
in the kinetic energy of the puck must translate into a
proportional increase in the maximum height within the
cavity or tower (at least if the wave period is to equal the
puck travel time). Eventually, the tower height would
no longer be suitable. Moreover, as the kinetic energy of
the puck becomes increasingly large, the assumption of
the slingshot effect that the puck momentum should be
small would become invalid. We will proceed to analyse
the condition for the oceanic slingshot resonance in this
perspective.
For illustration, consider first the minimal slingshot
resonant system (tower or cavity) depicted in Fig. 3.
After rising to its maximum height h, the puck starts to
fall, colliding head-on after a time tt and at a velocity ui

with the pusher plate traveling at its maximum velocity
vo. The puck then recoils upwards with velocity ui+2vo.

We define the vertical length coordinate z as being
positive in the upward direction. The general equation
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FIG. 3: Slingshot resonant tower

of motion for the puck, in the reference frame centred at
the point of collision, is

u̇ = −g − bu

mp
(14)

where mp is the puck mass, u̇ and u are its acceleration
and velocity, respectively, and b is a damping coefficient.
Eq.(14) can then be rewritten as

u̇ = −g − 2βu (15)

with β defined by

β =
b

2mp
(16)

For the purpose of the analysis, we amalgamate as
“losses” all the contributions to the energy leaving the
system during each cycle. These include the energy lost
through friction and other irreversible processes, and the
energy extracted for the conversion. This definition al-
lows the definition of an effective damping parameter β
that covers both energy contributions:

β = βf + βc (17)

where βf represents the damping due to irreversible
losses (e.g., friction), and βc the effective damping asso-
ciated with the converter (e.g., the turbine and electro-
magnetic inductor). This approximation is valid insofar

as the resisting force experienced by the converter is pro-
portional to the puck velocity, and provided that Eq.(16)
can be used. As shown below, the latter condition is
fulfilled for electromagnetic converters.

The solution of Eq.(15) is

u = − g

2β
− C1e

−2βt (18)

where C1 is a constant to be determined from initial
conditions. Integrating Eq.(18), we have

z = − g

2β
t+

C1

2β
e−2βt + C2 (19)

where C2 is also a constant to be determined from
initial conditions.

1. Boundary and initial conditions

The velocity u can be found by considering the fol-
lowing boundary and initial conditions of the resonant
system. If, at a certain position z and time t, the puck is
moving downwards with a velocity −ui and collides with
the pusher plate moving upwards with a velocity vo, the
puck recoils upwards with a velocity ≈ ui+2vo, as previ-
ously discussed. If for convenience we define this position
as z = 0 and this time t = 0, the initial and boundary
conditions are specified as

1. z(t = 0) = 0

2. u(t = 0) = ui + 2vo
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3. z(t = T ) = 0

4. u(t = T ) = −ui

The two last conditions signify that, after a period
t = T , the puck has returned to the same position as
at the previous collision, i.e., z = 0, and has a velocity
−ui, so that a further collision instantaneously changes
its velocity to ui + 2vo at z = 0. The cycle can then be
repeated indefinitely.

The first two conditions allow the determination of C1

and C2 in Eqs.(19) and (18), yielding

u = − g

2β

[
1− e−2βt

]
+ (ui + 2vo)e

−2βt (20)

z = − g

2β
t−

[
g

4β2
+

ui + 2vo
2β

]
e−2βt +

g

4β2
+

ui + 2vo
2β
(21)

while the third and fourth conditions provide two re-
lationships between β and ui:

ui =

[
g

2β
(1− e−2βT )− 2voe

−2βT

]
1

1 + e−2βT
(22)

and

ui =
gT

1− e−2βT
− g

2β
− 2vo (23)

Eqs.(22) and (23) can be solved graphically for β and
ui as functions of the wave period and amplitude. The
velocity ui and the damping parameter of the converter
can then be used to estimate the extractable power. The
damping parameter can be derived as follows.

C. Deriving β

The parameter β, as defined in Eq.(17), encompasses
the total energy leaving the system during each cycle
and has two contributions: one term due to friction and
irreversible losses (βf ), and another term associated with
the converter (βc). Eq.(17) can thus be rewritten

β = βc

[
1 +

βf

βc

]
, (24)

If βc � βf , then β ≈ βc (see Appendix). In terms of
the slingshot effect, the most convenient converter pos-
sible is clearly one that is driven by a linear inductance,
as proposed by [17]. This scenario involves a permanent
magnet moving inside a coil. It could be implemented in
the present case by placing a coil in the tower and at-
taching a permanent magnet to the puck. The electrical

power P produced by such a converter is then given by
[17]

P =

[
N2B2l2

R

]
u2, (25)

where N is the number of turns of the wire loop, B is
the magnetic induction, l is the length of the wire within
the magnetic field, R is the load resistance in the wire
loop, and u is the puck velocity.
Current flow results in a force acting on the loop and on
the magnet, in a direction opposite to the puck velocity:

F =
P

u
. (26)

We then have

F = bu (27)

with

b =
N2B2l2

R
. (28)

Using Eq.(16), one obtains

βc =
N2B2l2

2mpR
(29)

or, with our approximation β ≈ βc (see Appendix),

β =
N2B2l2

2mpR
(30)

Likewise, the power generated by the electromagnetic
inductor is given by Eq.(25), which can be rewritten as

P = 2mpβu
2. (31)

The time-averaged power derived from the linear in-
ductance device over one cycle is

P̄ =
1

T

∫ T

0

Pdt

=
2mpβ

T

∫ T

0

u2dt.

Inserting Eq.(20), we have

P̄ =
2mpβ

T

∫ T

0

[
− g

2β

[
1− e−2βt

]
+ (ui + 2vo)e

−2βt

]2
dt,

(32)
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which after integration yields

P̄ = mp [X − Y ] (33)

with

X =
g2

2β
+

1

2T

[
g

2β
+ ui + 2vo

]2
(34)

and

Y =
1

2T

[
g

β
−
(

g

2β
+ ui + 2vo

)
e−2βT

]2
, (35)

where, for a given ocean wave, the period T and the
velocity amplitude vo are related via vo = 2πH

T , with
H being the wave amplitude. Parameters β and ui are
determined by solving Eqs.(22) and (23) simultaneously.

• Discussion III

To estimate the power extractable from a slingshot
resonant tower predicted by the above analysis, we as-
sume typical parameter values, i.e., a wave with ampli-
tude H = 0.6 m and a puck mass of mp = 2 kg. The
predicted power and puck velocity ui at the moment of
collision are plotted in Fig. 4 as functions of the wave
period.
These results suggest that the slingshot resonance can
yield a power in excess of 20 kW for ocean waves with a
period of 10 s (the swells). However, this is not the case.
The slingshot effect requires that the puck momentum
be much less than the wave momentum. It is therefore
only approximately valid for a puck of finite mass and
velocity. The slingshot analysis cannot therefore apply
with equal accuracy to all tower configurations.
The maximum height attained by the puck (and hence

the required tower height) is plotted in Fig. 5 as a func-
tion of the wave period, from Eq.(21). A slingshot tower
is thus practically feasible for ocean waves of period less
than ≈ 4 s. According to Fig. 4, such a tower, with a
height of order 20 m, would generate a power of order 20
kW.

IV. SUMMARY OF RESULTS AND
CONCLUSIONS

We have outlined a novel concept for converting wave
energy based on the so-called slingshot effect. Energy
extraction proceeds from repeated elastic collisions of a
puck with a pusher plate that is driven by the wave mo-
tion, in a way that significantly amplifies the vertical ki-
netic energy of the puck. By considering a simplified
geometrical model, we demonstrated that, despite the
stochastic nature of the collisions (whereby collisions oc-
cur at different points of the wave cycle), head-on col-
lision occur more frequently on average, resulting in a

net gain of energy. The most promising application of
this oceanic slingshot effect is the possibility of matching,
through appropriate design, the travel time of the puck
between collisions with the period of the ocean wave, such
that only head-on collisions occur, leading to an optimal
magnification of the puck kinetic energy. This kind of
resonance is specially well suited to high-frequency ocean
waves. In contrast, existing wave converters are opti-
mised for long-period waves (swells).

V. APPENDIX

Previous analyses made the simplifying assumption
that frictional damping is negligible compared with the
effective damping associated with the linear inductance
converter, i.e., βc � βf . However, this approximation
should be assessed explicitly.

The frictional damping factor is mostly due to atmo-
spheric drag. The atmospheric drag force Fd acting on a
cylindrical cavity of diameter Dc with a cylindrical puck
of approximately the same diameter (see Fig. 3) is given
by

Fd ≈ cdρπD
2
cu

2

8
(36)

where cd is the drag coefficient, ρ is the atmospheric
density, Dc the cavity diameter (approximately equal
than the puck diameter), and u is the relative velocity of
the puck and the atmosphere. Compared with Eq.(15),
the damping factor yields

βf =
cdρπD

2
cu

16mp
(37)

with a drag coefficient cd ∼ 0.4. For ρ = 1 kg/m3

and a cavity Dc = 0.2 m with a somewhat heavy puck
mp = 100 kg, we have βf ≈ 3 × 10−5u. The veloc-
ity cannot exceed u ∼ 10 m/s, as the puck momentum
would otherwise become significant in comparison with
the wave momentum, which would invalidate the sling-
shot approximation for the elastic collision. Therefore,
with βc ≈ 0.2, frictional damping can be neglected in
comparison with the damping resulting from the linear
inductance.

NOMENCLATURE

aa
b = damping coefficient
B = magnetic field
cd = drag coefficient
C1 = constant
C2 = constant
Dc = slingshot cavity diameter
E = energy
F = forces
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FIG. 4: Energy extractable from a slingshot resonant cavity, as a function of the wave period.

FIG. 5: Height of a slingshot resonant tower as a function of
the wave period.

g = gravity
h = cavity length
H = wave amplitude
l = wire length
mp = puck mass
N = number of turns in the wire loop
P = power
R = load resistance
t = time
T = wave period
u = puck velocity

v = ocean wave velocity
X = parameter, Eq.(34)
Y = parameter, Eq.(35)
z = vertical length co-ordinate

Greek symbols
β = total damping parameter
βf = damping parameter due to friction
βc = damping parameter due to the converter
δ = phase difference between the puck and the wave
ρ = atmospheric density
ω = wave frequency
Γ = net gain in the resonant mode

subscripts
c = converter
d = downwards
f = friction
r = resonant
s = stochastic
u = upwards
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