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Abstract Efficient acceleration of relativistic electrons at Landau resonance with obliquely
propagating whistler-mode chorus emissions is confirmed by theory, simulation, and observation. The
acceleration is due to the perpendicular component of the wave electric field. We first review theoretical
analysis of nonlinear motion of resonant electrons interacting with obliquely propagating whistler-mode
chorus. We have derived formulae of inhomogeneity factors for Landau and cyclotron resonances to
analyze nonlinear wave trapping of energetic electrons by an obliquely propagating chorus element. We
performed test particle simulations to confirm that nonlinear wave trapping by both Landau and cyclotron
resonances can take place for a wide range of energies. For an element of large amplitude chorus waves
observed by the Van Allen Probes, we have performed detailed analyses of the wave form data based on
theoretical framework of nonlinear trapping of resonant electrons. We compare the efficiencies of
accelerations by cyclotron and Landau resonances. We find significant acceleration can take place both in
Landau and cyclotron resonances. What controls the dynamics of relativistic electrons in the Landau
resonance is the perpendicular field components rather than the parallel electric field of the oblique
chorus wave. In evaluating the efficiency of nonlinear trapping, we have taken into account variation of the
wave trapping potential structure controlled by the inhomogeneity factors.

1. Introduction
Whistler-mode chorus emissions are frequently observed in the inner magnetosphere, being generated by
energetic electrons injected from the magnetotail at the time of the geomagnetic field disturbances such
as substorms and magnetic storms, as demonstrated by recent statistical studies based on observation by
Time History of Events and Macroscale Interactions during Substorms (THEMIS) probes and Van Allen
Probes (Li et al., 2009, 2011, 2016). A typical chorus emission is a coherent wave with rising-tone frequency.
The initial part of the emissions at the lower frequency is due to the linear instability driven by a temper-
ature anisotropy which develops through injection of energetic electrons into the inner magnetosphere. A
whistler-mode wave with the maximum linear growth rate grows at a wave normal angle parallel to the back-
ground magnetic field. Once the growing wave amplitude attains a threshold amplitude, the wave packet
grows through the nonlinear wave growth process associated with formation of an electromagnetic electron
hole in the velocity phase space (Omura et al., 2008, 2012). The wave packet grows due to the frequency
increase induced by the electron hole. Once the wave amplitude exceeds the optimum wave amplitude
(Omura & Nunn, 2011), the wave growth saturates, and the amplitude decreases gradually. New seed waves,
which can trigger the nonlinear wave growth process, are generated slightly upstream from the equator
because of the phase-modulated resonant electrons moving in the opposite direction from the downstream
to the upstream of the wave propagation. The phases of the resonant electrons are modulated with the fre-
quency of the foregoing saturated wave packet, which is higher than that of the original triggering wave.
The phase-modulated electrons generate a new triggering wave with faster oscillations matching the fore-
going wave packet. When this growth process is repeated many times, many new subpackets are formed at
progressively higher frequencies as time proceeds (Shoji & Omura, 2013).
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The process of the subpacket formation with increasing frequencies continues until the threshold ampli-
tude exceeds the optimum amplitude or until the cyclotron damping near the electron cyclotron frequency
becomes dominant suppressing the generation of seed waves as triggering waves. Starting from the low fre-
quency 0.2 fcEQ, where fcEQ is the electron cyclotron frequency at the equator, a chorus element can reach
a high frequency 0.8 fcEQ, as observed by THEMIS near the magnetic equator (Kurita et al., 2012). Elec-
tromagnetic particle simulations with assumption of purely parallel propagation of whistler-mode waves
also show formation of chorus elements from 0.1–0.2 fcEQ to 0.7–0.8 fcEQ (Hikishima et al., 2009; Katoh &
Omura, 2007).

Propagating away from the equator, a chorus element undergoes efficient wave growth due to the increas-
ing gradient of the ambient magnetic field (Omura et al., 2009). Because the wave normal angle deviates
from the parallel direction through propagation in the dipole magnetic field, nonlinear damping occurs near
half the electron cyclotron frequency, separating the chorus element into a lower band and a upper band at
0.5 fcEQ (Habagishi et al., 2014; Hsieh & Omura, 2018; Yagitani et al., 2014). Since propagation character-
istics of the upper-band chorus and the lower-band chorus are different (Bell et al., 2009), spacecraft may
also observe lower-band and upper-band chorus emissions from different sources and of different proper-
ties concurrently (Li et al., 2016). Obliquely propagating chorus waves with large amplitudes cause induced
nonlinear scattering that keeps the wave normal angles small (Ganguli et al., 2012). It is important to under-
stand resonant electron acceleration and associated wave damping at oblique wave normal angles (Artemyev
et al., 2013, 2016; Shklyar & Matsumoto, 2009).

A recent analysis of wave and particle data obtained by the Van Allen Probes (Foster et al., 2017) demon-
strates highly efficient acceleration of radiation belt electrons by whistler-mode chorus emissions. The
analysis has confirmed that the acceleration is mostly due to the cyclotron resonance of relativistic electrons
with chorus emissions propagating quasi-parallel to the ambient magnetic field. As the energy of an electron
becomes relativistic (1–2 MeV), the parallel resonance velocity approaches to zero near the equator, where
nonlinear trapping of resonant electrons becomes possible, resulting in relativistic turning acceleration
(Omura et al., 2007) and ultra relativistic acceleration (Summers & Omura, 2007). The detailed subpacket
analysis shows that there arises a parallel wave electric field that can trap energetic electrons through Lan-
dau resonance, but the acceleration by the parallel wave electric field is effective for energies below 1 MeV
(Foster et al., 2017). A recent test particle simulation (Hsieh & Omura, 2017a), however, shows that the
perpendicular wave electric field can also play a significant role in trapping and accelerating relativistic
electrons through Landau resonance.

We present a theoretical analysis of Landau resonance acceleration and verify it by a test particle simulation
and by analysis of chorus emissions observed by Van Allen Probes. We compare the efficiencies of accelera-
tions by cyclotron and Landau resonances. The efficiency of acceleration depends on the nonlinear motion
of resonant electrons trapped in the wave potentials. The nonlinear dynamics of resonant electrons are con-
trolled by the inhomogeneity factors S0 and S1 for Landau and cyclotron resonances. We for the first time
have obtained formulae of the inhomogeneity factors for evaluation at fixed positions along the magnetic
field line in sections 3 and 5, while Nunn and Omura (2015) derived the formula for evaluation as observed
from a moving resonant electron, which could not be applied to spacecraft observations. Section 4 gives
a simple explanation of Landau resonant cyclotron acceleration. The formulae of the inhomogeneity fac-
tors are checked with the test particle simulation in section 6. Applying the formulae to a chorus emission
observed by Van Allen Probes, we evaluate acceleration efficiencies by Landau and cyclotron resonances
and discuss the overall acceleration efficiency by chorus emissions in section 7. Section 8 gives summary
and discussion.

2. Circularly Polarized Wave Fields
We assume a whistler-mode wave with a frequency𝜔 propagating in a (x, z) plane with a wave normal vector
k at propagation angle 𝜃 with respect to the background magnetic field B0 taken along the z axis as shown
in Figure 1a. We have

kz = k cos 𝜃, kx = k sin 𝜃, k𝑦 = 0, (1)

where k and𝜔 are given by the cold plasma dispersion relation, that is, the Appleton-Hartree equation (Stix,
1992). Defining the amplitudes of the wave electric and magnetic field oscillations in the (x, y, z) directions
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Figure 1. (a) Configuration of wave vectors, electron velocities, background magnetic field, and coordinates.
(b) Decomposition of the perpendicular wave electric and magnetic fields into R mode (red) and L mode (blue).

as Ew
x , Ew

𝑦
, Ew

z , Bw
x , Bw

𝑦
, Bw

z , we can express the wave fields by the following equations.

Ew = exEw
x sin𝜓 − eyEw

𝑦
cos𝜓 + ezEw

z sin𝜓, (2)

Bw = exBw
x cos𝜓 + eyBw

𝑦
sin𝜓 − ezBw

z cos𝜓, (3)

where ex , ey, and ez are unit vectors in the x, y, and z directions, and the quantities with superscript w are
positive wave amplitudes. The detailed expressions of the wave amplitudes are given in Hsieh and Omura
(2017a). The wave phase 𝜓 is defined by

𝜓 = 𝜔t − kxx − kzz + const. (4)

As illustrated in Figure 1b, the wave fields Bx, By, Ex, and Ey perpendicular to the static magnetic field B0
are decomposed into a right-hand circularly polarized wave (R mode)

ER = Ew
R[ex sin𝜓 − ey cos𝜓], (5)

BR = Bw
R[ex cos𝜓 + ey sin𝜓], (6)

and a left-handed circularly polarized wave (L mode)

EL = Ew
L [ex sin(−𝜓) − ey cos(−𝜓)], (7)

BL = Bw
L [ex cos(−𝜓) + ey sin(−𝜓)], (8)

where

Ew
R =

Ew
x + Ew

𝑦

2
; Ew

L =
Ew
𝑦
− Ew

x

2
, (9)

and

Bw
R =

Bw
x + Bw

𝑦

2
; Bw

L =
Bw

x − Bw
𝑦

2
. (10)

Both wave amplitudes Ew
L and Bw

L of the L mode can be negative or positive, while the wave amplitude Ew
R

and Bw
R of the R mode are defined as positive values. In either case, Poynting vectors of R and L modes are in

the positive z direction along the magnetic field line. We define the ratios of the electric and magnetic wave
fields

UR = Ew
R∕Bw

R; UL = Ew
L∕Bw

L . (11)
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We also have the wave fields Ew
z and Bw

z parallel to the static magnetic field. From the Maxwell's equations,
we have

k × E = 𝜔B. (12)

Solving for Ew
z and Bw

z , we obtain

Ew
z =

kz

kx
[(UR − Vp||)Bw

R − (UL − Vp||)Bw
L ], (13)

Bw
z =

kx

𝜔
(URBw

R + ULBw
L ), (14)

where Vp|| is the parallel phase velocity given by 𝜔∕kz.

3. Dynamics of Landau Resonant Electrons
From the relativistic equations of motion for circularly polarized waves (Omura, Zhao, et al., 2012) and
adding effects of the parallel wave fields Ew

z and Bw
z , we obtain the following equations.

d(𝛾v||)
dt

= e
m0

[
v⟂Bw

R sin(𝜙 − 𝜓) + v⟂Bw
L sin(𝜙 + 𝜓) − Ew

z sin𝜓
]
−
𝛾v2

⟂

2B0

dB0

dz
, (15)

d(𝛾v⟂)
dt

= e
m0

[
(UR − v||)Bw

R sin(𝜙 − 𝜓) + (UL − v||)Bw
L sin(𝜙 + 𝜓)

]
+
𝛾v⟂v||
2B0

dB0

dz
, (16)

d𝜙
dt

= e
𝛾m0

[UR − v||
v⟂

Bw
R cos(𝜙 − 𝜓) +

UL − v||
v⟂

Bw
L cos(𝜙 + 𝜓) − Bw

z cos𝜓 + B0

]
, (17)

where 𝜙 is a gyrophase of an electron, and 𝜓 is a phase of a wave magnetic field. We assume an electron
moving along the ambient magnetic field along the z axis, and the center of cyclotron motion is at x = 0.
The wave phase observed by the gyrating electron is given by

𝜓 = 𝜔t − kzz − kx𝜌 sin𝜙 + const = 𝜓B − 𝛽 sin𝜙, (18)

where 𝜓B ( = 𝜔t − kzz + const) is a wave phase at the gyro-center, 𝜌 is the cyclotron radius given by
𝜌 = 𝛾v⟂∕Ωe, and

𝛽 =
𝛾v⟂kx

Ωe
. (19)

The wave phase at the gyro-center is modulated by the cyclotron motion because of the perpendicular wave
number kx . The wave field with the modulated phase can be expanded into a series of Bessel functions as
given by

sin(𝜙 − 𝜓) =
∞∑

n=−∞
Jn−1(𝛽) sin 𝜁n, (20)

sin(𝜙 + 𝜓) = −
∞∑

n=−∞
Jn+1(𝛽) sin 𝜁n, (21)

sin(𝜓) = −
∞∑

n=−∞
Jn(𝛽) sin 𝜁n, (22)

where 𝜁n = n𝜙 − 𝜓B. We now assume a particle undergoing Landau resonance (n = 0), and its motion is
mostly described by

d(𝛾v||)
dt

= e
m0

[
v⟂Bw

RJ−1(𝛽) − v⟂Bw
L J1(𝛽) + Ew

z J0(𝛽)
]

sin 𝜁0 −
𝛾v2

⟂

2B0

dB0

dz
, (23)

d(𝛾v⟂)
dt

= e
m0

[
(UR − v||)Bw

RJ−1(𝛽) − (UL − v||)Bw
L J1(𝛽)

]
sin 𝜁0 +

𝛾v⟂v||
2B0

dB0

dz
, (24)
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Figure 2. The oblique whistler-mode wave model with wave normal angle 10◦ assumed in the test particle simulations.
(a) Spatial and temporal evolution of the wave amplitude (left).Wave amplitude at the equator (right). (b) Spatial and
temporal evolution of the wave frequency (left). Wave frequency at the equator (right).

d𝜁0

dt
= kzv|| − 𝜔, (25)

where we have neglected the wave effect on the gyrophase variation, assuming Bw
R ,B

w
L ,B

w
z ≪ B0.

The kinetic energy is given by

K = m0c2(𝛾 − 1). (26)

Since an obliquely propagating wave is decomposed into three components, that is, parallel component,
perpendicular component with right-handed circular polarization, and perpendicular component with
left-handed circular polarization, we have three terms of particle accelerations as in

dK
dt

= e
∞∑

n=−∞

[
v||Ew

z Jn(𝛽) + v⟂Ew
RJn−1(𝛽) − v⟂Ew

L Jn+1(𝛽)
]

sin 𝜁n. (27)

The variation of the kinetic energy K of an electron trapped by a wave potential due to Landau resonance
(n = 0) is given by

dK0

dt
= e

[
Vp||Ew

z J0(𝛽) − v⟂Ew
𝑦

J1(𝛽)
]

sin 𝜁0, (28)

where the resonance velocity VR is given by the parallel phase velocity Vp|| = 𝜔∕kz, and the perpendicular
velocity is calculated by

v⟂ =
√

c2(1 − 𝛾−2) − V 2
p||. (29)

We integrate the energy variation over half a wave period 𝛿t and sum them over a duration of a subpacket as

ΔK0 =
∑
𝛿t

dK0

dt
·

Vg||𝛿t
Vg|| − Vp||

(
1 −

Vg||Vp||
c2

)
. (30)
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Journal of Geophysical Research: Space Physics 10.1029/2018JA026374

Figure 3. Examples of electrons undergoing nonlinear trapping by the oblique whistler-mode wave. Trajectories in
shades of red (lines 1–3) are for electrons undergoing Landau resonance, and ones in shades of blue (lines 4–6) are for
electron undergoing cyclotron resonance. The solid, dash-dotted, and dotted lines denote electrons with energy 2, 0.2,
and 0.02 MeV, respectively. (a) Trajectories in z − v|| phase space. (b) Trajectories in position and Inhomogeneity factor
S0 or S1. (c) Trajectories in position and time. The thicker part of each curve points out the duration when the electron
undergoes nonlinear trapping.

From (42) and (44) of Nunn and Omura (2015), we have
dK0

dt
=

m0

kz
(v||𝜔2

t,0 + v⟂𝜔2
s,0) sin 𝜁0, (31)

where

𝜔2
t,0 =

ekz

m0

[
Ew

z J0(𝛽) + v⟂Bw
RJ−1(𝛽) − v⟂Bw

L J1(𝛽)
]
, (32)

𝜔2
s,0 =

ekz

m0

[
(UR − v||)Bw

RJ−1(𝛽) − (UL − v||)Bw
L J1(𝛽)

]
. (33)
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Figure 4. Ratios of wave field components seen by electrons undergoing Landau resonance as functions of z.
(a) Bw

L∕Bw
R, (b) UL∕UR, and (c) UR∕Vp||.The electrons are the same as the ones shown in Figure 2 in shade of red. The

solid, dash-dotted, and dotted lines denote electrons with energy 2, 0.2, and 0.02 MeV, respectively.

Since the whistler-mode waves are mostly right-handed, we have Bw
L ≪ Bw

R. We checked the values of UR and
UL in a test particle simulation of an obliquely propagating chorus emission as shown in Figure 2. Typical
trajectories of resonant electrons with kinetic energies 0.02, 0.2, and 2 MeV are plotted in Figure 3. The
Landau resonant electrons are plotted in red. The ratios of Bw

L∕Bw
R , UL∕UR, and UR∕Vp|| as observed by these

trapped resonant electrons are plotted as functions of z in Figure 4. We find that UR ∼ Vp|| and Bw
L∕Bw

R ≪ 1,
and we can assume 𝜔2

s,0 ∼ 0 for Landau resonance.

dK0

dt
∼

m0

kz
v||𝜔2

t,0 sin 𝜁0. (34)

The averaged phase angle 𝜁0 is given by the second-order resonance condition

d2𝜁0

dt2 = 𝜔2
t1,0

(
sin 𝜁0 + S0

)
= 0, (35)

where

𝜔2
t1,0 =

𝜔2
t,0

𝛾

(
1 −

v2||
c2

)
, (36)

and

S0 = −
kz

𝜔2
t1,0

(
dVp||

dt
+

v2
⟂

2Ωe

dΩe

dz

)
. (37)

When |S0| < 1, (35) is satisfied, and nonlinear trapping of resonant electrons becomes possible. The time
derivative of Vp|| as observed by an electron can be rewritten as

dVp||
dt

= 1
kz

d𝜔
dt

− 𝜔

k2
z

dkz

dt
. (38)

Assuming that 𝜔 is uniform in the perpendicular direction x, we have

d𝜔
dt

=
(

1 −
v||

Vg||
)
𝜕𝜔

𝜕t
. (39)

It is difficult to evaluate the spatial variation of the wave number kz determined by the exact oblique dis-
persion relation. For the wave normal angles satisfying the quasi-parallel condition sin2𝜃 << 1, we can
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approximate the dispersion relation by that of the parallel propagation. From (12) of Omura et al. (2008), we
have

𝜕kz

𝜕z
= − 1

Vg||
𝜕k
𝜕t

−
𝜒𝜔

2c𝜉(Ωe − 𝜔)
𝜕Ωe

𝜕z
, (40)

where 𝜒 and 𝜉 are defined by

𝜒2 = 1 −
(
𝜔

ck

)2
≃ 1 − 1

c2 V 2
p||, (41)

and

𝜉2 =
𝜔(Ωe − 𝜔)

𝜔2
pe

. (42)

The time derivative of kz as observed by a resonant electron with v|| is given by

dkz

dt
=
𝜕kz

𝜕t
+ v|| 𝜕kz

𝜕z
=
(

1 −
v||

Vg||
)
𝜕kz

𝜕t
−

𝜒𝜔v||
2c𝜉(Ωe − 𝜔)

𝜕Ωe

𝜕z
, (43)

where we use the wave phase relation 𝜕kz∕𝜕t = −𝜕𝜔∕𝜕z. Substituting (39) and (43) into (38) and using the
Landau resonance condition v|| = Vp||, we obtain

dVp||
dt

= 1
kz

(
1 −

Vp||
Vg||

)2
𝜕𝜔

𝜕t
+

𝜒V 3
p||

2c𝜉(Ωe − 𝜔)
𝜕Ωe

𝜕z
. (44)

Using (44), we rewrite (37) as

S0 = − 1
𝜔2

t1,0

{(
1 −

Vp||
Vg||

)2
𝜕𝜔

𝜕t
+ c

2

[
𝜔𝜒V 2

p||
𝜉(Ωe − 𝜔)c2 +

𝜔v2
⟂

ΩecVp||
]
𝜕Ωe

𝜕z

}
. (45)

Substituting sin 𝜁0 = −S0 into (34), we obtain

dK0

dt
∼
𝛾m0Vp||

kz

(
1 −

V 2
p||

c2

)−1 {(
1 −

Vp||
Vg||

)2
𝜕𝜔

𝜕t
+ + c

2

[
𝜔𝜒V 2

p||
𝜉(Ωe − 𝜔)c2 +

𝜔v2
⟂

ΩecVp||
]
𝜕Ωe

𝜕z

}
. (46)

Equation (46) is valid as far as the electrons are trapped by the nonlinear wave potential moving with Vp||,
namely, |S0| < 1. When a particle is moving away from the equator (v|| > 0) in the same direction of a
chorus wave, the first term in the brackets is positive because of the rising-tone frequency, and the second
term is also positive because of the positive gradient of the magnetic field. Therefore, the kinetic energy of
an electron trapped in the nonlinear wave potential always increases.

4. Simple Explanation of Landau Resonant Cyclotron Acceleration
We assume a frame of reference moving with the phase velocity of the wave. We also assume a plane trans-
verse to the phase velocity. The gyro-center of a Landau resonant electron (v|| = Vp||) remains in this plane.
All electromagnetic fields in this plane are stationary. Since the electron undergoes cyclotron motion around
the magnetic field aligned oblique to the phase velocity with a wave normal angle 𝜃, the cyclotron motion
induces a phase shift by kx𝜌 sin(Ωet∕𝛾) in the electromagnetic fields seen by the electron. When the wave
phase is modulated with sin(Ωet∕𝛾), each of the electromagnetic field is expanded into a series of Bessel
functions with phase variations of nΩet∕𝛾 . The velocity vector v|| of the resonant electron sees a stationary
parallel electric field Ew

z J0(𝛽), while the perpendicular velocity vector v⟂ undergoes cyclotron motion in the
right-hand direction with the angular frequency Ωe∕𝛾 . The wave fields observed by the electron contains
field components Ew

RJ1(𝛽) and Bw
RJ1(𝛽), which rotate in the right-hand direction with the cyclotron frequency,

and they can be in resonance with the electron undergoing the cyclotron motion, resulting in effective elec-
tron acceleration and pitch angle scattering. We call this acceleration as “cyclotron acceleration” through
Landau resonance. In addition to the parallel electric field, the electron sees a nonlinear Lorentz force
v⟂Bw

RJ1(𝛽) along the magnetic field, which contributes to the nonlinear trapping of resonant electrons.
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5. Dynamics of Cyclotron Resonant Electrons
From Nunn and Omura (2015), the time variation of the kinetic energy of a trapped resonant electron due
to the n = 1 cyclotron resonance is given by

dK1

dt
= e

[
v||Ew

z J1(𝛽) + v⟂Ew
RJ0(𝛽) − v⟂Ew

L J2(𝛽)
]

sin 𝜁1, (47)

where 𝜁1 satisfies the second-order cyclotron resonance condition given by

d2𝜁1

dt2 = kz

(dv||
dt

−
dVR

dt

)
= 0, (48)

where

VR = 1
kz

(
𝜔 −

Ωe

𝛾

)
= Vp||

(
1 −

Ωe

𝛾𝜔

)
. (49)

From (51) of Nunn and Omura (2015), we have

dv||
dt

=
𝜔2

t0,1

𝛾kz
sin 𝜁1 −

v2
⟂

2Ωe

dΩe

dz
. (50)

We calculate the time derivative of VR as observed by the cyclotron resonant electron.

dVR

dt
= 1

kz

[
d𝜔
dt

−
v||
𝛾

𝜕Ωe

𝜕z
+

Ωe

𝛾2
d𝛾
dt

]
− 1

k2
z

(
𝜔 −

Ωe

𝛾

) dkz

dt
. (51)

Defining the particle acceleration W1 as in Nunn and Omura (2015), we have

d𝛾
dt

=
W1

c2 sin 𝜁, (52)

where

W1 = e
m0

[
v||Ew

z J1(𝛽) + v⟂ERJ0(𝛽) − v⟂ELJ2(𝛽)
]
. (53)

Substituting (39), (43), and (52) into (51) and using the first-order resonance condition v|| = VR, we obtain

dVR

dt
=

ΩeW1

kz𝛾
2c2 sin 𝜁 + 1

kz

(
1 −

VR

Vg||
)2
𝜕𝜔

𝜕t
−

VR

kz𝛾

[
1 +

𝜒2(Ω − 𝛾𝜔)
2(𝜔e − 𝜔)

]
𝜕Ωe

𝜕z
. (54)

Substituting (50) and (54) into (48), we derive the second-order cyclotron resonance condition as

d2𝜁1

dt2 = 𝜔2
t1,1(sin 𝜁1 + S1) = 0, (55)

where

𝜔2
t1,1 = 1

𝛾

(
𝜔2

t,1 −
𝜔W1

c2

)
, (56)

S1 = − 1
𝜔2

t1,1

{(
1 −

VR

Vg||
)2
𝜕𝜔

𝜕t
+

[
𝜔v2

⟂

2ΩeVp|| −
VR

𝛾

(
1 +

𝜒2(Ωe − 𝛾𝜔)
2(Ωe − 𝜔)

)]
𝜕Ωe

𝜕z

}
, (57)

and

𝜔2
t,1 = e

m0
kz

[
Ew

z J1(𝛽) + Bw
Rv⟂J0(𝛽) − Bw

L v⟂J2(𝛽)
]
. (58)
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Figure 5. Dynamic spectrum of a chorus element observed by RBSP-A at 16:56:26 on 17 March 2013. Wave properties
of the time period between the white dashed lines are further analyzed in Figures 6–9. RBSP = Radiation Belt Storm
Probes.

6. Evaluation of Electron Acceleration by Test Particle Simulations
We perform test particle simulations of energetic electrons interacting with a chorus wave packet generated
at the equator with a growing amplitude and a rising-tone frequency as shown in the right panels of Figure 2.
The variation of the amplitude and frequency is a solution of chorus equations (Omura et al., 2009), which
are derived from the nonlinear wave growth theory of chorus emissions. However, we do not intend to dis-
cuss the generation process in this section. The purpose of the simulation is to check the nonlinear trapping
motion of resonant electrons along with the variation of the inhomogeneity factors S0 and S1 obtained in
the previous sections. The wave packets propagate away from the equator along the magnetic field in the
direction of the static magnetic field with a fixed wave normal angle of 10◦. For simplicity, we assume a
simplified profile of a chorus element without subpacket structures. We plot trajectories of six electrons in
the z − Vz, z − S0,1, and z − t plains in Figures 3a–3c, respectively. The trajectories in red (particles 1–3)
undergo Landau resonance, and those in blue (particles 4–6) undergo n = 1 cyclotron resonance. The solid,
dash-dot, and dotted lines represent trajectories of particles with different initial kinetic energies 2 MeV,
200 keV, and 20 keV, respectively.

Particles 1–3 all move away from the equator and trapped by the wave packet moving in the same direction.
The trajectories 1–3 show oscillations in the parallel velocity Vz indicating nonlinear trapping by the wave
packet. During the nonlinear trapping, the inhomogeneity factor S0 takes the values between 0 and 1 in
agreement with the second-order resonance condition for Landau resonance as shown in Figure 3b.

Particles 5 and 6 with energies 0.2 and 0.02 MeV interact with the wave packet through cyclotron resonance,
are trapped by it, and move in the opposite direction to its propagation as shown in Figure 3c. The thicker
parts of the trajectories in Figure 3c indicate the periods of nonlinear wave trapping. Particle 4 at 2 MeV, on
the other hand, get into the cyclotron resonance moving in the same direction with the wave because the
cyclotron resonance velocity with n = 1 becomes positive because of the high value of the Lorentz factor
𝛾 . The inhomogeneity factors S1 are between −1 and 0 when these particles are trapped by the wave due to
n = 1 cyclotron resonance.
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Figure 6. (a) Wave form of one of the perpendicular component of the magnetic field B⟂ of the chorus element shown
in Figure 5. (b) Electric field amplitude Ew

R of the R-mode wave component. (c) The normalized instantaneous
frequency f∕fc obtained from the phase variation. (d) The wave normal angle 𝜃 obtained from the wave magnetic field.

7. Evaluation of Electron Acceleration Based on Wave Observations
We first calculate the interaction time ΔTL for Landau resonant electrons to go through a half-wave cycle
𝛿t of the waveforms. The length of half the wavelength along the ambient magnetic field is given by Vg||𝛿t
where the parallel group velocity is given by (A22) of Hsieh and Omura (2017a). The interaction time is
obtained by dividing half the wave length by the relative velocity between the wave packet moving with Vg||
and a resonant electron moving with the parallel phase velocity Vp||. We have

ΔTL =
Vg||𝛿t|Vg|| − Vp|||

(
1 −

Vg||Vp||
c2

)
, (59)

where the relativistic effect for the relative velocity is included. Likewise, the interaction time ΔTc for
cyclotron resonant electrons is given by

ΔTc =
Vg||𝛿t|Vg|| − VR|

(
1 −

Vg||VR

c2

)
, (60)

where VR = (𝜔−Ω∕𝛾)∕kz. Using (28) and the second-order resonance condition (35) for Landau resonance,
we calculate the accelerations by the parallel Ew

z component and the perpendicular Ew
𝑦

component through
Landau resonance as

ΔKL|| = −eEw
z Vp||ΔTLS0J0(𝛽0), (61)

and

ΔKL⟂ = eEw
𝑦

V⟂0ΔTLS0J1(𝛽0), (62)

respectively. The perpendicular velocity V⟂0 is calculated by

V⟂0 =
√

c2(1 − 𝛾−2) − V 2
p||, (63)
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Figure 7. Inhomogeneity factors (a) S1 and (b) S0 at different energy and time for the chorus element shown in Figure 5.

and we can calculate

𝛽0 =
𝛾V⟂0kx

Ωe
. (64)

Similarly using (47) and the second-order resonance condition (55) for cyclotron resonance, we obtain
accelerations by the parallel Ew

z component and the perpendicular components as

ΔKc|| = −eEw
z VRΔTcS1J1(𝛽1), (65)

and

ΔKc⟂ = −eV⟂1ΔTcS1[Ew
RJ0(𝛽1) − Ew

L J2(𝛽1)], (66)

respectively, where

V⟂1 =
√

c2(1 − 𝛾−2) − V 2
R, (67)

and

𝛽1 =
𝛾V⟂1kx

Ωe
. (68)

Using (9), we rewrite (66) as

ΔKc⟂ = −e
V⟂1

2
ΔTcS1{Ew

x [J0(𝛽1) + J2(𝛽1)] + Ew
𝑦
[J0(𝛽1) − J2(𝛽1)]}. (69)

In the cyclotron resonance, the acceleration by the perpendicular componentΔKc⟂ is much greater than that
by the parallel component ΔKc||, because Ew

z << Ew
x ,E

w
𝑦
, J1(𝛽1) < J0(𝛽1), and VR << V⟂1 for quasi-parallel

propagation, as we find in Figure 6 of Hsieh and Omura (2017a). In Landau resonance, the acceleration
by the parallel component ΔKL|| may play more significant contribution to the acceleration because J0(𝛽0),
which is greater than J1(𝛽0) for 𝛽0 < 1, is multiplied to the parallel component. For relativistic energies,
however, we find ΔKL|| << ΔKL⟂ as is demonstrated with the data analysis of the observed chorus emission
described below.
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Figure 8. Energy gains over each half-wave period at different energy and times by (a) cyclotron resonance and
(b) perpendicular electric field at Landau resonance.

The 17 March 2013 storm event was characterized by a deep (100×) dropout and rapid (1,000×) recovery of
megaelectron volts outer zone radiation belt electron fluxes (Baker et al., 2014; Foster et al., 2014). Using the
formulae derived above, we evaluate the efficiency of electron acceleration through interaction with chorus
emissions observed with the Electric and Magnetic Field Instrument Suite and Integrated Science (Kletzing
et al., 2013) onboard the twin Van Allen Probes satellites (also known as the Radiation Belt Storm Probes;
Mauk et al., 2013). Figure 5 shows a strong rising-tone chorus observed by Van Allen Probe A at 16:56:26
UT on 17 March 2013. From the zero crossings of the perpendicular component of the wave magnetic field
shown in Figure 6a, we can calculate instantaneous frequencies, which are plotted in Figure 6c. This is a
lower-band chorus element with a range of frequency 0.2–0.32 fc, where fc is the local electron cyclotron
frequency as shown in Figure 6c. The wave packet was generated near the magnetic equator and propagated
away from the equator to the spacecraft location, undergoing convective wave growth especially at the higher
frequency as shown in Figures 6a and 6b. The convective growth rates are higher for higher wave frequencies
(Omura, Nakamura, et al., 2015).

With such a large amplitude coherent wave, we can expect nonlinear trapping of resonant electrons to take
place. The necessary conditions for cyclotron and Landau resonant trappings are |S1| < 1 and |S0| < 1,
respectively. Using (57) and (37), we calculated S1 and S0 for the chorus element discussed above and plotted
them in Figures 7a and 7b, respectively. Both of them satisfy the condition for the nonlinear trappings with
its maximum absolute values less than 0.2. The S0 for Landau resonance mostly takes positive values because
𝜔2

t1,0 given by (32) is negative.

The number of trapped particles decreases as |S| increases from 0 to 1, because the size of the trapping
potential shrinks to zero. The size of the trapping potential in the velocity phase space is given by

ΔV
Vtr

=
√

cos 𝜁1 − cos 𝜁0 + (𝜁0 − 𝜁1)S
2

, (70)

where cos 𝜁0 and cos 𝜁1 are solutions of the second-order resonance conditions: sin 𝜁 + S = 0, and Vtr is
the trapping velocity, that is, the size of the potential around the resonance velocity for S = 0. The phases
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Figure 9. Energy gains through nonlinear trapping by the chorus element shown in Figure 5. Contributions by the
parallel and perpendicular electric fields at Landau and cyclotron resonances and the total gain are plotted in different
colors.

𝜁0 and 𝜁1 are stable equilibrium point for trapped electrons and the saddle point for the separatrix of the
trapping potential (Tobita & Omura, 2018). Since the trapping potential is two-dimensional in the velocity
phase space, we can evaluate the number of trapped electrons by a function Ft(S) = (ΔV∕Vtr)2. Noting that
𝜁0 = 𝜋 + arcsin S and 𝜁1 = 2𝜋 − arcsin S for S > 0, we obtain

F(S) =
√

1 − S2 + (arcsin |S| − 𝜋

2
)|S|, (71)

for |S| < 1, and we set F(S) = 0 for |S| ≥ 1. We then multiply each of the accelerations (61), (62), (65),
and (69) by F(S) to evaluate corresponding energy gains. We have

GL|| = ΔKL||F(S0) , GL⟂ = ΔKL⟂F(S0), (72)

for Landau resonance, and

Gc|| = ΔKc||F(S1) , Gc⟂ = ΔKc⟂F(S1), (73)

for the cyclotron resonance.

The energy gains evaluated above are for each half-wave period 𝛿t. We plot Gc⟂ and GL⟂ as functions of time
with different electron kinetic energies in Figures 8a and 8b, respectively. The time period is for the duration
of the chorus element shown in Figure 5.

By summing up each of the time series of energy gains throughout the chorus wave packet, we can estimate
total energy gains through Landau and cyclotron resonances by the single chorus element as shown in
Figure 9.

8. Summary and Discussion
We summarize results obtained by the present theoretical and observational studies on interaction between
energetic electrons and whistler-mode chorus emissions as follows.

1. Efficient cyclotron acceleration of relativistic electrons takes place through Landau resonance with
obliquely propagating whistler-mode chorus emissions. The perpendicular component Ey of the electric
field plays major role in the Landau resonant cyclotron acceleration. It can be more efficient than that
through cyclotron resonance because of the longer interaction time between the Landau resonant electron
and the wave packet.
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2. Formulae of Inhomogeneity factors S0 and S1 for Landau and cyclotron resonances have been derived
theoretically, and they are tested with test particle simulations with a chorus element. Nonlinear trappings
by Landau and cyclotron resonances are confirmed to take place when 0 < S0 < 1 and −1 < S1 < 0,
respectively.

3. In evaluating the efficiency of resonant electron acceleration in a chorus element observed by the Van
Allen Probes, the values of S0 and S1 are calculated from the frequency sweep rates and the gradient of
the local magnetic field. For substantial parts of the chorus element, we find |S0| < 1 and |S1| < 1,
confirming the capability of nonlinear trapping by both Landau and cyclotron resonances.

4. In evaluating the total efficiency of electron acceleration by chorus, we have taken into account the prob-
ability of nonlinear trapping based on the sizes of the trapping potentials which are functions of the
inhomogeneity factors.

We have demonstrated high efficiency of acceleration by chorus emissions with oblique wave normal angles,
focusing on nonlinear trapping of resonant electrons through Landau and cyclotron resonances. The time
scale of the electron acceleration is a duration period of a single chorus element as shown in Figure 5.
Untrapped resonant electrons also contribute to the wave growth of chorus emissions giving energy to the
waves, and some of them are scattered into the loss cone, resulting in microbursts. The generation process of
chorus emissions has been studied by self-consistent simulations under an assumption of parallel propaga-
tion (Crabtree et al., 2017; Harid et al., 2014; Hikishima et al., 2009; Katoh & Omura, 2007, 2013; Nunn et al.,
1997; Nunn & Omura, 2012; Tao, 2014). The overall efficiency of acceleration processes should be verified
by self-consistent simulations in two-dimensional systems allowing propagation of oblique whistler-mode
waves (Katoh, 2014; Ke et al., 2017).

As an effort to model the outer radiation belt, a long time evolution of the phase space density has been eval-
uated by the numerical Green's function method for parallel propagation (Kubota & Omura, 2018, Omura,
Miyashita, et al., 2015), demonstrating rapid formation of the outer radiation belt. Some of the Green's func-
tions for obliquely propagating chorus emissions have also been calculated (Hsieh & Omura, 2017a). More
thorough construction of the Green's functions including oblique wave-particle interaction and simulations
of long time evolution of the relativistic electron fluxes are left as future studies.
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