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Stress inversion meets plasticity theory: A review of the theories of fault-slip analysis
from the perspective of the deviatoric stress-strain space

Atsushi Yamajia, Katsushi Satoa

a Division of Earth and Planetary Sciences, Kyoto University, Kyoto 606-8502, Japan

Abstract

The mechanical behavior of materials is not affected by our choice of a coordinate system. Thus, the description of the behavior
should not be affected by this choice. This is known as the principle of coordinate invariance, and is important not only for plasticity
theory but for theoretical investigations in structural geology. The deviatoric stress-strain space, which fulfills the principle, is shown
to be useful for the formulation of stress inversion. Problems in the inversion schemes of fault data are transformed into geometrical
problems so that we can solve the problems using geometrical interpretations. In addition, the formulation gives the good basis
for defining the classes of dissimilarities between reduced stress tensors that are the solutions of the inversion. We redefine the
classes, here, from the standpoint of probability. It is demonstrated finally that the violation of the principle spoils the accuracy and
resolution of the inversion.

Keywords: stress space, fault-slip analysis, paleostress, hyperspherical Lissajous

1. Introduction

Paleostresses themselves are unobservable, but are inferred
from geologic structures, i.e., permanent deformations brought
about beyond yield conditions. Thus, plasticity theory, which
deals with stresses and permanent deformations, provides a
clear perspective for the methodology of stress inversion of var-
ious geologic structures. The theories of plasticity has inspired
structural geologists and seismologists to develop their methods
to evaluate tectonic strains (e.g., Conel, 1962; Arthaud, 1969;
Arthaud and Mattauer, 1969; Groshong, 1972; Mattauer, 1973;
Kostrov, 1974; Hyndman and Weichert, 1983; Molnar, 1983;
Gauthier and Angelier, 1985; Jackson and McKenzie, 1988;
Marrett and Allmendinger, 1990; Cladouhos and Allmendinger,
1993) and stresses (e.g., Turner, 1953; Rebetsky, 1997, 1999;
Fry, 1999, 2001; Sato and Yamaji, 2006a; Axen et al., 2015;
Rebetsky et al., 2012; Matsumoto, 2016).

A researcher who conducts paleostress analysis expects that
paleostress may be different from the present one, the defor-
mation of which may have overprinted the deformation due
to the paleostress. Consequently, the researcher is confronted
with heterogeneous data, i.e, the collections of fault-slip data
that may belong to different deformation events. However, the
ages of the structures are usually debatable. Since the stress in-
version of faults was proposed some 40 years ago (Carey and
Brunier, 1974; Angelier, 1979), the heterogeneity has raised
problems (e.g., Angelier and Manoussis, 1980).

However, the methodology to deal with heterogeneous fault-
slip data has been greatly advanced in the last quarter century
(Tikoff et al., 2013) by a number of researchers (e.g., Etcheco-
par et al., 1981; Gómez, 1986; Nemcok and Lisle, 1995; Nem-
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cok et al., 1999; Yamaji, 2000; Shan et al., 2003; Rocher et al.,
2004; Yamaji et al., 2006; Tranos, 2015; Yamaji, 2015b; Par-
langeau et al., 2018). The five-dimensional, deviatoric, stress-
strain space of plasticity theory (Prager, 1949; Il’yushin, 1954;
Payne, 1959) provides a clear formulation for the stress inver-
sion to tackle this problem (Fry, 1999, 2001; Sato and Yamaji,
2006a). Il’yushin utilized this parameter space to deal with
non-proportional loading, in which stress and strain orienta-
tions had temporal variation (Il’yushin, 1954, 1961; Wu, 2005,
Chapter 7). So, the parameter space is suitable for coping with
polyphase tectonics, which results in heterogeneous data sets
for the stress inversion.

The strong point of inversion using the parameter space is
that the inversion results are independent of the choice of a co-
ordinate system in the physical space. The independence comes
from the fact that the formulation takes into account the prin-
ciple of coordinate invariance of plasticity theory, the principle
states that material response is independent of the coordinate
system we choose (e.g., Ottosen and Ristinmaa, 2005). This
principle is trivially fulfilled when physical quantities and their
relations are written in terms of tensors. Points in the devia-
toric stress-strain space represent three-dimensional, symmet-
ric, deviatoric tensors (Malvern, 1969; Khan and Huang, 1995;
Ottosen and Ristinmaa, 2005).

The purpose of this paper is to summarize the theories of
stress inversion of fault-slip data from the perspective using the
deviatoric stress-strain space, and to provide mathematical ap-
paratus for the researchers who study the stress inversion. The
space is introduced, and problems concerning the inversion are
addressed in §§2–5. The dissimilarity classes for inversion re-
sults are redefined in §6. Popular inversion schemes are refor-
mulated using the space and reviewed in §7. It is demonstrated
in §8 that the accuracy and resolution of the inversion is spoiled
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Figure 1: The direction of shear stress, τ, on a foot-wall before faulting is
opposite to its displacement. t is the traction acting on the foot-wall before
faulting. The P- and T-axes of a fault are coplanar with n and v, and are inclined
at 45◦ from the fault plane.

by the violation of the principle. It is beyond the scope of this
paper to review the applications of stress inversion to natural
data or to detail the inverse methods based on other formula-
tions. Reviews of this kind are those of Angelier (1994), Ram-
say and Lisle (2000, Session 28), Lacombe (2010), Lacombe
(2012), Célérier et al. (2012), Maury et al. (2013), Tikoff et al.
(2013), Tavani et al. (2015) and Stephens et al. (2018).

2. Mathematical symbols

Vectors are denoted by column matrices throughout of this
paper. Matrices and second-order tensors are denoted by bold
symbols. Three-dimensional (3D) vectors are denoted by bold
symbols, e.g., n, and 5D and 6D vectors are represented by
arrows, e.g., s⃗ (Table 1). We identify vectors with the points
that they indicate as position vectors. A matrix inner product is
denoted by a colon, e.g., A : B =

∑3
i, j=1 Ai jBi j. The diagonal

matrix with the diagonal components, a, b and c, is denoted by
diag(a, b, c).

We refer Sn to a unit hypersphere in nD space, meaning that
the distance of any point on Sn is at unit distance from the cen-
ter of the hypersphere in a nD space. Though an ordinary plane
has two dimensions, hyperplanes in the following sections have
higher dimensions. We specify the dimensions by a bracketed
number such that a hyperplane [n] is defined by linearly inde-
pendent n base vectors in an (n + 1)D or higher dimensional
space, or defined by the perpendicularity with a vector in an
(n + 1)D space. An ordinary plane is a hyperplane [2]. A great
circle is the intersection of a sphere and a plane through the
center of the sphere. Likewise, a great circle [m] is the intersec-
tion of Sn and a hyperplane [m] through the center of Sn, where
n > m. An ordinary great circle on S3 is a great circle [2]. A
great circle arc [n] is a part of a great circle [n].

Compression and shortening are treated as positive stress and
strain in this article. A deviatoric stress tensor is denoted by
σ and ς, the later being normalized by its second basic in-
variant (§4.1), and is called reduced stress tensor. That is,
σ is proportional to ς. The principal stresses satisfy σ3 ≤
σ2 ≤ σ1 as usual. Accordingly, the corresponding eigenval-
ues of ς satisfy ς3 ≤ ς2 ≤ ς1. The stress ratio is defined as
Φ ≡ (σ2−σ3)/(σ1−σ3). This is equivalent to (ς2−ς3)/(ς1−ς3).
The reduced stress tensor lacks information on stress magni-
tude, but bears the information of stress orientation and Φ.

A fault-slip datum obtained from a striated fault plane is rep-
resented by the paired unit vectors, n and v. The former is the

unit normal to the plane with the inward direction for the foot-
wall (Fig. 1); and the latter indicates the slip direction of the
footwall block. In the case of a vertical fault, n is defined to
point towards the southeastern or northeastern fault-block, and
v indicates the movement direction of the block. In case of an
E-W trending vertical fault, n points due south and v indicates
the moving direction of the southern block. We refer also to
the trio, n, v and b = n × v, as the fault-slip datum. The unit
normal, n, is perpendicular to v; and the three vectors make up
an orthonormal system. Fault-slip data are represented by the
pairs or trios.

3. Homogeneous and heterogeneous data sets

Fault-slip data are said to be heterogeneous in literature if
they are taken from faults activated by temporarily or spatially
different stress conditions. However, this definition about het-
erogeneity is inconvenient because the conditions themselves
are unknowns to be determined. Accordingly, in this article
we call data homogeneous if a state of stress explains all the
data. Two or more stresses are required to explain heteroge-
neous data.

Thus, the classification of homogeneous and heterogeneous
sets depends on how the term ‘explain’ is defined. To this
end, we use the Wallace-Bott hypothesis (Wallace, 1951; Bott,
1959), which states that v is parallel to the shear stress acting
on the plane. The misfit angle of this fault is the angle between
v and the slip direction predicted by using this hypothesis under
an assumed stress . If the misfit angles of all faults are smaller
than a given threshold, e.g., 30◦, the data from the faults are
considered to be explained by a stress, and to be homogeneous.
Otherwise, they are heterogeneous.

4. Formulation of fault-slip analysis using the deviatoric
stress-strain space

4.1. Tensor-vector type transformation
Points in the deviatoric stress-strain space represent three-

dimensional, symmetric, deviatoric stress and strain tensors.
The tensors in the physical space are identified with the points
through a tensor-vector type transformation as follows. Let X
be a 3 × 3 symmetric matrix representing a deviatoric tensor
(X = XT and trace X = 0). The second basic invariant of X is

XII ≡
1
2

(
X2

11 + X2
22 + X2

33

)
+ X2

23 + X2
31 + X2

12. (1)

We refer the Roman numeral, II, to the second basic invariant
of a symmetric tensor, e.g., σII. Tensor components are affected
by coordinate rotations, but the values of invariants are remain
constant. If X is such a tensor that is normalized by its second
basic invariant, the tensor can be written as

X =
2
√

3
Q diag

(
cosΛ, cos(Λ − 120◦), cos(Λ + 120◦)

)
QT, (2)

where Q is the orthogonal matrix indicating the eigenvectors of
X (Khan and Huang, 1995, Eq. 4.50). Angelier (1984) used a
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Figure 2: The correspondence of Λ and Φ. Inequalities of X11, X22 and X33
hold true only for the case X has a diagonal form. Solid circles indicate the
points where h⃗ and p⃗ can exist. See text in detail.

reduced stress tensor similar to Eq. (2). His tensor lacks the
factor, 2/

√
3. which makes XII to be 1. Λ is called the Lode

angle, and satisfies

Φ =
Xint − Xmin

Xmax − Xmin
=

2 sinΛ
√

3 cosΛ + sinΛ
, (3)

for 0 ≤ Λ ≤ 60◦, where Xmin, Xint and Xmax are the minimum,
intermediate and maximum eigenvalues of X, and

Φ =
2 sin(120◦ − Λ)

√
3 cos(120◦ − Λ) + sin(120◦ − Λ)

(4)

for 60◦ < Λ < 120◦. The graphs of the right-hand sides of Eqs.
(3) and (4) have reflection symmetry with respect to the point,
Λ = 60◦. If Λ is in the interval, [120◦, 180◦) or [240◦, 300◦),
Λ should be replaced with (Λ mod 120◦) in Eq. (3). If Λ is
in the interval, [180◦, 240◦) or [300◦, 360◦), Λ is replaced with
(Λ mod 120◦) in Eq. (4). As a result, Φ is a periodic function
of Λ, and Φ is equal to 1/2 (Fig. 2) when

Λ = 30◦, 90◦, 150◦, 210◦, 270◦ or 330◦. (5)

Φ is termed the shape ratio of X. In case where X stands for
σ or ς, the shape ratio equals the stress ratio. So, we assign
the symbol, Φ, to the shape ratio as well as the stress ratio. In
the case where X stands for strain, the eigenvectors of X cor-
responding to Xmin and Xmax represent the orientations of the
maximum shortening and maximum elongation, respectively.
Thus, plane strain has the shape ratio at 1/2. Strains with the
ratio at 0 or 1 have oblate and prolate strain ellipsoids, respec-
tively.

The symmetry of X allows us to identify X with the 6D vec-
tor,

X⃗ =
(

X11√
2
,

X22√
2
,

X33√
2
, X23, X31, X12

)T

. (6)

That is, X can be obtained from X⃗, and vice versa. It follows
from Eqs. (1) and (6) that |X⃗| =

√
XII. In the case of XII = 1,

we have
|X⃗| = 1, (7)

and X⃗ indicates a point on a unit hypersphere, S6, in a 6D space.
X and X⃗ carries the same information, and can be transformed
from each other. Let X1 and X2 be symmetric, deviatoric ten-
sors; and X⃗1 and X⃗2 be the corresponding 6D vectors. Then, we
have

X1 : X2 = 2X⃗1 · X⃗2. (8)

The spaces that include these 6D vectors and the following 5D
vectors are called the 6D and 5D deviatoric stress-strain spaces.

We can reduce the dimensionality of the vectors as follows
(Fry, 1999). Analogous to the fact that a unit circle is the in-
tersection of a unit sphere and a plane through its center, a unit
hypersphere, S5, in a 5D space is the intersection of S6 and a hy-
perplane [5] through the center of S6. The equation, trace X =
0, is equivalent with P⃗ · X⃗ = 0, where P⃗ = (1, 1, 1, 0, 0, 0)T.
So, X⃗ is in the hyperplane [5] perpendicular to P⃗ through the
center of S6. Therefore, X⃗ is involved in the intersection of S6
and the hyperplane [5]. That is, the intersection defines a unit
hypersphere, S5, in a 5D space. For this reason, the component
of the vector, X⃗, along the P⃗-direction always vanishes, and can
be truncated. So, X⃗ satisfies

RX⃗ =
(
0
Y⃗

)
, (9)

where Y⃗ is a 5D vector, and R is a 6D rotation matrix that re-
orients the first coordinate axis to the P⃗ direction.

The components of R are determined from the linearly inde-
pendent six vectors, 

P⃗
(0, 1, 0, 0, 0, 0)T

(0, 0, 1, 0, 0, 0)T

(0, 0, 0, 1, 0, 0)T

(0, 0, 0, 0, 1, 0)T

(0, 0, 0, 0, 0, 1)T.

(10)

From these vectors, the Gram-Schmidt process (e.g., Meyer,
2000) yields the orthonormal basis of the 6D space,

P⃗/
√

3
(−1, 2,−1, 0, 0, 0)T/

√
6

(−1, 0, 1, 0, 0, 0)T/
√

2
(0, 0, 0, 1, 0, 0)T

(0, 0, 0, 0, 1, 0)T

(0, 0, 0, 0, 0, 1)T.

The components of the second through to the sixth vectors
make up

R =



1√
3

1√
3

1√
3

0 0 0
− 1√

6
2√
6
− 1√

6
0 0 0

− 1√
2

0 1√
2

0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


. (11)

3

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



Since the choice of the second through sixth vectors in Eq. (10)
is arbitrary, previous authors obtained somewhat different ro-
tation matrices (Sato and Yamaji, 2006a; Yamaji, 2015a), but
their formulations have a common physical meaning. The non-
uniqueness is explained, e.g., by Wu (2005, p. 352).

X, X⃗ and Y⃗ have different mathematical expressions, but rep-
resent the same physical entity. Combining Eqs. (6), (9) and
(11), we have

Y⃗ =
(
−
√

3
6

(X11 − 2X22 + X33),
−X11 + X33

2
, X23, X31, X12

)T

.

The traceless condition, trace X = 0, simplifies the first compo-
nent,

Y⃗ =
− √3X22

2
,
−X11 + X33

2
, X23, X31, X12

T

, (12)

which describes the tensor-vector type transformation. On the
other hand, X is obtained from Y⃗ using the inverse of Eq. (9):

X⃗ = R−1
(
0
Y⃗

)
. (13)

Combining Eqs. (6), (11) and (13), we obtain

X =


− 1√

3
Y1 − Y2 Y5 Y4

Y5
2√
3
Y1 Y3

Y4 Y3 − 1√
3
Y1 + Y2

 , (14)

where Yi is the ith component of Y⃗ . Eq. (14) describes the
vector-tensor type transformation.

4.2. Reduced stress and strain tensors and the Wallace-Bott hy-
pothesis

Our reduced stress tensor satisfies trace ς = 0 and ςII = 1;
and has the form,

ς =
1

3λ
Q diag(2 − Φ, 2Φ − 1,−Φ − 1)QT, (15)

where
λ =

√
(Φ2 − Φ + 1)/3. (16)

In the case where the stress axes are parallel to the coordinate
axes, Eq. (15) reduces to ς = diag(ς1, ς2, ς3). Eq. (15) is
equivalent with Eq. (2), but has Φ explicitly. The parameter, λ,
simplifies the mathematical expressions involving differential
stress (Yamaji, 2015a). We call this axiality because λ has the
maximum, 1/

√
3 ≈ 0.58 when the stress has axial symmetry

(Φ = 0 or 1): The minimum value of λ is 1/2 when Φ = 1/2.
The paired reduced strain tensors, ϵ and ϵ′, represent a fault-

slip datum. n, v and b. That is, the tensors are defined to have
the ijth components,

ϵi j = −(vin j + v jni) (17)
ϵ′i j = −(bin j + b jni). (18)

Obviously, these are symmetric tensors (ϵi j = ϵ ji and ϵ′i j = ϵ
′
ji).

The tensor with the ijth component, vin j, or its symmetric part,
(vin j+v jni)/2, is called Schmid tensor in plasticity theory (e.g.,
Kocks et al., 1998). The minus signs of Eqs. (17) and (18)
mean that a shortening is a positive strain. The tensors in
those equations represent simple shear along the v and b di-
rections, respectively (Fig. 1). The tensors lack information
about strain magnitudes, but bears information about strain ori-
entations. The tensors can be defined for a twin datum as well.

The reduced strain tensors satisfy the equations of X in the
last subsection because they satisfy

trace ϵ = trace ϵ′ = 0, ϵII = ϵ′II = 1. (19)

In addition, they also satisfy

ϵ : ϵ′ = 0. (20)

These tensor relations can be proven using the fault-slip datum
(Fig. 3),

n = (0, 0,−1)T, v = (−1, 0, 0)T, b = (0, 1, 0)T. (21)

That is, these vectors have the corresponding tensors,

ϵ =

 0 0 −1
0 0 0
−1 0 0

 , ϵ′ =
0 0 0
0 0 1
0 1 0

 . (22)

Indeed, these tensors satisfy Eqs. (19) and (20). Note that we
have not specified the directions of the coordinate axes to write
the vector components in Eq. (21). Rectangular Cartesian co-
ordinates can be arbitrarily oriented, and the vectors in Eq. (21)
can point to any directions in the physical space. Hence, any
fault-slip datum satisfies Eq. (19) as long as the datum is de-
noted by the orthonormal vectors, n, v and b. These vectors
are first rank tensors, whereas ϵ and ϵ′ are second rank ones.
It is the advantage of describing physical quantities in terms of
tensors that tensor relations are independent of the choice of a
coordinate system (e.g., Aris, 1989). So it does for the tensor
relations in Eq. (19) and (20).

The tensors in Eq. (22) have the eigenvalues, 0 and ±1,
meaning that the tensors represent plane strains. The eigen-
vectors of ϵ are denoted by ±e+1, ±e0 and ±e−1 in Fig. 3; and
those of ϵ′ by ±e′

+1, ±e′0 and ±e′−1. The subscripts denote the
eigenvectors. The eigenvectors of a tensor are generally bidi-
rectional: If e is an eigenvector of the tensor, −e is also en
eigenvector. Accordingly, plus-minus signs are attached to em-
phasize the bidirectional character. ±e0 and ±e′0 are parallel to
b; and v, respectively. ±e+1 and. ±e−1 meet n and v at the angles
of 45◦. So, they coincide with the P- and T-axes (Fig. 1). ±e′

+1
and ±e′−1 meet n and b also at the angles of 45◦. Note that the
directions the Cartesian coordinates were not specified to define
the vectors in Eq. (21). So, the orientations of the eigenvectors
relative to the vectors in Fig. 3 are not affected by the choice of
the coordinate directions.

The Wallace-Bott hypothesis, the basis of the majority of in-
version schemes for faults and seismic focal mechanisms, is
expressed as tensor relations as follows. Traction upon the fault
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Figure 3: A fault-slip datum, n, v and b = n×v (Fig. 1), and the principal orien-
tations (bold lines) of the corresponding strain tensors, ϵ and ϵ′, both of which
have the eigenvalues, +1, 0 and −1. The orientations parallel to the eigen-
vectors of ϵ are denoted by e+1, e0 and e−1, where the subscripts indicate the
corresponding eigenvalues. Likewise, those of ϵ′ are indicated by e′

+1, e′0 and
e′−1. The imaginary slip along b direction, which brings about the imaginary
strain ϵ′, is shown in (b).

is denoted by t = ςn. The direction of shear stress must be op-
posite to v (Fig. 1). Therefore, we have v · t < 0. It follows that
v ·ςn =

∑3
i, j=1 ςi jvin j =

∑3
i, j=1 ςi j(vin j + v jni)/2 = (ς : ϵ)/2 < 0,

where Eq. (18) and the symmetry, ϵi j = ϵ ji, are used. On
the other hand, the Wallace-Bott hypothesis is expressed as
b · t = 0 (Angelier and Goguel, 1979), which is rewritten as∑3

i, j=1 ςi jbin j = (ς : ϵ′)/2 = 0. Thus, faulting satisfies the in-
equality and equation,

ς : ϵ > 0, ς : ϵ′ = 0. (23)

This inequality states that the energy dissipation by faulting
must be positive in sign (Yamaji and Sato, 2006). It means that
the inequality always holds irrespective of the hypothesis.

4.3. 5D and 6D vectors representing stresses and fault-slip
data

Not only the reduced stress tensor, but also the reduced strain
tensors are expressed as 6D unit vectors (Eqs. 6 and 7). That is,
the vectors,

ς⃗ =

(
ς11√

2
,
ς22√

2
,
ς33√

2
, ς23, ς31, ς12

)T

ϵ⃗ = −
(√

2n1v1,
√

2n2v2,
√

2n3v3,

n2v3 + n3v2, n3v1 + n1v3, n1v2 + n2v1

)T

ϵ⃗ ′ = −
(√

2n1b1,
√

2n2b2,
√

2n3b3,

n2b3 + n3b2, n3b1 + n1b3, n1b2 + n2b1

)T
.

(24)

represent stress and a datum from a fault or a mechanical twin.
It follows from (Eq. 20) that ϵ⃗ · ϵ⃗ ′ = 0, i.e., ϵ⃗ and ϵ⃗ ′ are per-
pendicular to each other.

Now, Eq. (8) allows us to rewrite the conditions in Eq. (23)
as the pair, ς⃗ · ϵ⃗ > 0 and ς⃗ · ϵ⃗ ′ = 0. This pair means that ς⃗ is
perpendicular to ϵ⃗ ′ and makes an acute angle with ϵ⃗, i.e., they
state that the endpoint of ς⃗ exists on the great-circle arc [4] with
the pole, ϵ⃗ ′ and the arc length of 180◦ centered by ϵ⃗. We call it
a 6D Fry arc. We can reduce the dimensionality of the arc using
Eq. (9). That is, the geometrical propositions concerning ς⃗, ϵ⃗

OOO

p

s′

Fry arc

s

h�

Figure 4: Schematic illustrations of Fry arcs (thick lines) on S5. The orthogonal
projection of s⃗ onto the plane spanned by h⃗ and p⃗ is denoted by s⃗ ′. The line
through the ends of the arc is depicted by a dotted line. Open circle indicates
the center of the arc denoted by h⃗. Shear stress on the fault corresponding to
the arc has the maximum value when s⃗ indicate this point.

Figure 5:

and ϵ⃗ ′ hold for the corresponding 5D vectors. As a result, we
obtain the 5D vectors,

s⃗ =
 √3

2
ς22,

1
2

(−ς11 + ς33), ς23, ς31, ς12

T

h⃗ =
(√

3n2v2, −n1v1 + n3v3,

n2v3 + n3v2, n3v1 + n1v3, n1v2 + n2v1

)T

p⃗ =
(√

3n2b2, −n1b1 + n3b3,

n2b3 + n3b2, n3b1 + n1b3, n1b2 + n2b1

)T
, (25)

where ‘s,’ ‘h’ and ‘p’ stand for stress, hemisphere and pole.
Inheriting the properties of the 6D vectors, these vectors satisfy

|s⃗| = |⃗h| = | p⃗| = 1, h⃗ · p⃗ = 0. (26)

4.4. 5D Fry arc

By means of the 5D vectors, the condition of faulting is writ-
ten as

p⃗ · s⃗ = 0, h⃗ · s⃗ > 0. (27)

A 5D Fry arc on S5 is defined by the pair in (27) (Fig. 5). That
is, s⃗ is involved in the equatorial hyperplane [4] with the pole,
p⃗, and is in the hemisphere centered by h⃗. The components of
s⃗, h⃗ and p⃗ are affected by the choice of a coordinate system in
the physical space, but Eqs. (26) and (27) hold irrespective of
the choice. Thus, the formulation of stress inversion using the
vectors acquires the coordinate invariance.

The point indicated by s⃗ can exist anywhere on S5, but those
indicated by h⃗ or p⃗ are not. Note that S5 is a curved 4D space,
analogous to a sphere in the physical space is a curved 2D
space. In contrast, a fault-slip datum denoted by n, v and b
has only three-degrees of freedom, which is represented by, for
example, the dip and strike of the fault plane and the rake of the
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Figure 6: (a) Four possible directions of n, v and b compatible with a strain tensor, ϵ. The first two possibilities indicate the fault movements of footwall and
hangingwall block, and are geologically identical. This is called the fault-slip datum A. The latter two among the four possibilities are also geologically identical,
and indicate the fault-slip datum B. (b) Stereoplot of the fault-slip data A and B compatible with ϵ. (c) Stereoplot of the fault-slip data C and D compatible with ϵ′.
A Fry arc is represented by ϵ and ϵ′. P and T denote the P- an T-axes for the faults represented by n, v and b.

slip direction. Accordingly, the pair, h⃗ and p⃗, has only three-
degrees of freedom. Consequently, neither h⃗ nor p⃗ densely cov-
ers S5. The eigenvalues of both ϵ and ϵ′ are 0 and ±1. X has
the same eigenvalues only when Λ has a value of Eq. (5). Oth-
erwise, ϵ and ϵ′ do not indicate plane strains. Therefore, the
points on S5 indicated by any h⃗ or p⃗ must have the shape ratio
at 1/2. Other points on S5 cannot have corresponding fault-slip
data.

4.5. Mapping from a 5D Fry arc to a fault-slip datum

A fault-slip datum denoted by the trio, n, v and b, has a one-
to-one correspondence with a Fry arc. It has been shown above
that a Fry arc is uniquely determined from a datum. The op-
posite is shown below using an example. Suppose that a Fry
arc with h⃗ = (0, 0, 0, 1, 0)T and p⃗ = (0, 0,−1, 0, 0)T is given.
These vectors are transformed through Eq. (14) to the reduced
strain tensors. The results are shown in Eq. (22) which have
the eigenvalues +1, 0 and −1. The principal orientations of ϵ
corresponding to the eigenvalues, +1 and −1, are parallel to the
P- and T-axes, respetively. However, there are four trios of n, v
and b that have the eigenvectors in common (Fig. 6). How do
we choose the trio appropriate to the Fry arc?

The appropriate trio is chosen as follows. Let e+1, e0, e−1
be the eigenvectors of ϵ; and e′

+1, e′0, e′−1 be those of ϵ′ of ϵ′.
The subscripts indicate the corresponding eigenvalues. The an-
gular relations of these eigenvectors and the trio, n, v and b,
are shown in Fig. 3. The orientations of b are readily given as
b = ±e0, and those of n and v as the bisectors of ±e+1 and ±e−1.
However, the directions of n, v and b remain uncertain due to
the fact that the eigenvectors are bidirectional. As a result, ϵ

gives four possible trios (Fig. 6a) and two possible fault-slip
data (Fig. 6b). Likewise, ϵ′ gives two possible fault-slip datum
(Fig. 6c). Finally, we can choose uniquely the fault-slip da-
tum corresponding to the given Fry arc by finding the identical
fault-slip datum in Figs. 6b and c. Thanks to the coordinate in-
variance of the present formulation, this procedure is good for
any Fry arc to determine the corresponding fault-slip datum.
Note that the pair, n and v, cannot be determined uniquely only
from h, nor from ϵ.

4.6. Some important properties of the deviatoric stress-strain
space

Important quantities of stress inversion can be interpreted as
geometrical relations in the 5D space. For example, antipodal
points on S5 indicate the opposite stresses, under which faults
slip in the opposite directions irrespective of their attitudes (Fry,
1999). That is, given a state of stress with the stress ratio, Φ,
its opposite stress is obtained by interchanging the σ1- and σ3-
axes and exchangingΦwith 1−Φ. Orife and Lisle (2003) called
the second tensor the negative tensor of the first one. The misfit
angle, µ, between v and the theoretical slip direction for ς is
equal to the angle between h⃗ and the orthogonal projection of s⃗
onto the plane spanned by h⃗ and p⃗ (Fig. 5) (Sato and Yamaji,
2006a).

Given two reduced stress tensors, a reduced stress tensor be-
tween them can be obtained through the following procedure.
Let s⃗ (1) and s⃗ (2) be the points on S5 corresponding to the two
tensors. Then, their intermediate tensor is represented by the
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point,

s⃗ =
[
sin(tΘ)
sinΘ

]
s⃗ (1) +

{
sin[(1 − t)Θ]

sinΘ

}
s⃗ (2), (28)

where Θ is the angle between s⃗ (1) and s⃗ (2), and 0 ≤ t ≤ 1. This
is the spherical linear interpolation (e.g., Ghali, 2008) of points
along S5. The point, s⃗, moves with increasing t along the great
circle [2] from s⃗ (1) to s⃗ (2).

Stress magnitude can be incorporated into the 5D space as
follows (Yamaji, 2015a). That is, deviatoric stress tensor has
the expression, σ = λ∆σς, where λ is defined in Eq. (16), and
∆σ is differential stress. This tensor corresponds to the vector,
λ∆σs⃗, in the 5D deviatoric stress-strain space. The resolved
shear stress along v in the physical space is written as

τ = λ∆σs⃗ · h⃗. (29)

Deviatoric stress tensor, λ∆σς, has a one-to-one correspon-
dence with the 5D vector, λ∆σs⃗.

It follows that τ has the maximum value if s⃗ is at the center
of the Fry arc (Fig. 5). In this case, the fault is the most favor-
ably oriented fault under the state of stress denoted by s, and
its P- or T-axes (when Φ = 0 or 1) or both (when 0 < Φ < 1)
are parallel to the σ1- and σ3-axes, respectively. In contrast, τ
vanishes at the ends of a Fry arc even for ∆σ > 0. Note that the
ends of a Fry arc represent 3D subspace (i.e., a hyperplane [3])
in the 5D deviatoric stress-strain space, because the ends are
defined by the set of position vectors perpendicular to the 2D
plane spanned by h⃗ and p⃗. When a fault plane is parallel to a
stress axis in the physical space, s⃗ is in the 3D subspace perpen-
dicular to this 2D plane; and the resolved shear stress vanishes
on the fault plane.

Eq. (29) shows the factorization of the resolved shear stress
into the factors of axiality, differential stress, s- and h-vectors.
This expression is useful for the stress inversion of mechan-
ical twin data (Yamaji, 2015a,b). Transforming the s-vector
into the corresponding reduced stress tensor, we have another
expression for the factorization of resolved shear stress: τ =
−λ∆σvςn (Yamaji, 2015a, Eq. 11). The minus sign comes
from the opposite directions of v and shear stress (Fig. 1).

5. Trajectories on S5

The resolution and accuracy of stress inversion is concerned
with the temporal and/or spatial perturbation of reduced stress
tensor and with the perturbations due to measurement errors.
The perturbation makes the point, s⃗, migrate on S5; and the per-
turbations due to the errors result in the shifting of the points
denoted by h- and p-vectors. Thus, it is essential to understand
how the perturbations in the physical space lead to the migra-
tion of the points on S5. So, we investigated the trajectories of
the point, Y⃗ , on S5 corresponding to the rotation of the principal
axes of X and to a change in Λ (Eq. 2). Since the mathematical
equations and their derivation processes of the trajectories are
lengthy, they are shown in the Supplement.

Λ

�₁

�₂
�₃

1

2
�

3

�₂

�₃

�₁

 

(a) (b)

�����

Λ

(c)

ΛΛ

Figure 7: (a) Rotations about the axes of rectangular Cartesian coordinates.
Thick lines depict the principal axes of the gray ellipsoid that visualizes the
symmetric matrix X. (b) Schematic illustration of the trajectories of the end-
point of Y⃗ on S5 defined by the change of either of the values of Λ, ϕ1, ϕ2 or ϕ3.
Solid circles indicate the points on S5 where h⃗ and p⃗ can exist. The points are
arranged with 60◦ intervals along the Λ direction. (c) The continuous move-
ment of a datum point (solid circles) and the trajectory, Y⃗(Λ), associated with
successive rotations about a fixed axis in the physical space.

5.1. Lode angle
The position of the point, Y⃗ , on S5 is a function of the princi-

pal orientations (Fig. 7a) and the shape ratio of X in the phys-
ical space (Eq. 2). The orientations are denoted by Q. When
Q is kept constant, the trajectory on S5 has only the parameter,
Λ, which denotes the shape ratio. That is, we have the function,
Y⃗(Λ). As a result, Y⃗(Λ) is a great circle [2] on S5 (Fig. 7b).
This is shown as follows. Eq. (2) and the trigonometric iden-
tity, cos(Λ ± 2π/3) = −(1/2) cosΛ ∓ (√

3/2
)

sinΛ, allow us to
rewrite the components of X in Eq. (2) in terms of the linear
combinations of sinΛ and cosΛ. The same is true for the com-
ponents of Y⃗ in Eq. (12), such that Y⃗ has the ith component,
Ai sinΛ + Bi cosΛ. The coefficients, Ai and Bi are the linear
combinations of the quadratic terms of the components of Q.
Since the point, Y⃗ , is constrained upon S5, the 5D vector with
the ith component,

Ti ≡
∂Yi

∂Λ
= Ai cosΛ − Bi sinΛ, (30)

is tangent to the trajectory, Y⃗(Λ) (e.g., Lipschutz et al., 2009).
It can be seen that |T⃗ | = 1 (Supplement). Then, the 5D vector,
K⃗ ≡ ∂T⃗/∂Λ, indicates the local curvature of the trajectory. K⃗
generally points to the center of the local curvature. The local
radius of curvature is equal to 1/|K⃗|. It follows from Eq. (30)
that K⃗ = ∂T⃗/∂Λ = ∂(Ai cosΛ − Bi sinΛ)/∂Λ = −Y⃗ . It means
that |K⃗| = |Y⃗ | = 1 and that the trajectory is a great circle [2] on
S5. It follows from |T⃗ | = 1 that the angular distance between
points on this great circle is equal to the difference of Λ values
of the two tensors that correspond to the points. The endpoints
of h⃗ and p⃗ can exist at the points with intervals of 60◦ along the
great circle (Fig 7b).

5.2. Infinitesimal rotation
A rotation of stress axes or a fault-slip datum is denoted by

the rotation of X. Any 3D rotation can be achieved by the suc-
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cessive rotations about the axes of Cartesian coordinates (Fig.
7a). In this case, the principal orientations of X has the expres-
sion,

Q =

cos ϕ3 − sin ϕ3 0
sin ϕ3 cos ϕ3 0

0 0 1


 cos ϕ2 0 sin ϕ2

0 1 0
− sin ϕ2 0 cos ϕ2


×

1 0
0 cos ϕ1 − sin ϕ1
0 sin ϕ1 cos ϕ1

 , (31)

where ϕi is the angle of rotation about the ith axis. In case of
ϕ1 = ϕ2 = ϕ3 = 0, we have Q = I, and X in Eq. (2) is a diagonal
matrix with X11, X22 and X33 being the maximum, intermedi-
ate and minimum eigenvalues, respectively. The corresponding
eigenvectors are parallel to the 1-, 2- and 3-coordinate axes.

A small rotation of X is denoted by the small movement of Y
on S5, which is denoted further by the tangent vectors, ∂Y⃗/∂ϕ1,
∂Y⃗/∂ϕ2 and ∂Y⃗/∂ϕ3. These three tangent vectors and T⃗ in Eq.
(30) are perpendicular from each other (Supplement). How-
ever, there are exceptional cases. When X has axial symmetry
(Φ = 0 or 1) and when the rotation axis in the physical space
is parallel to the symmetry axis, the tangent vector that cor-
responds to the rotation vanishes. However, such a rotation is
meaningless because the ellipsoid representing X is not affected
by the rotation. The points where datum vectors, h⃗ and p⃗, can
exist are arranged discretely along the Λ⃗ direction on S5 (Fig.
7b), but the rotation of a datum in the physical space leads to
the continuous movement of a Fry arc across this direction (Fig.
7c).

5.3. Finite rotation
Now, we look at the global pattern of the trajectory on S5 as

a function of Q with a fixed Λ value. It is shown in this subsec-
tion that the trajectory corresponding to a rotation of X about
an arbitrary chosen axis in the physical space is a Lissajous-
like curve on S5. Eq. (31) indicates the rotation by the angle of
ϕ3 about an arbitrarily chosen axis with respect to the principal
orientations of X. The direction of this axis is denoted by ϕ1
and ϕ2. Therefore, the trajectory corresponding to such a rota-
tion is described by the function, Y⃗(ϕ3), with Λ, ϕ1 and ϕ2 kept
constant.

Y⃗(ϕ3) is a complicated function of ϕ3 (Supplement), but, in
short, can be written as

Y1
Y2
Y3
Y4
Y5

 =

C1 D1 0 0 G1
C2 D2 0 0 G2
0 0 E3 F3 0
0 0 E4 F4 0

C5 D5 0 0 G5



cos 2ϕ3
sin 2ϕ3
cos ϕ3
sin ϕ3

1

 , (32)

where the components of this square matrix are the functions
of Λ, ϕ1 and ϕ2. Eq. (32) indicates the periodic change of the
components of Y⃗ . Y3 and Y4 has the same periodicity, and cycles
just with ϕ3. In contrast, the periodicity of Y1, Y2 and Y5 is
two times larger than that of ϕ3, because the three components
include cos 2ϕ3 and sin 2ϕ3. Therefore, the trajectory of Y⃗ is a
spherical Lissajous—a Lissajous curve lying on S5 (Fig. 8).

1−Φ

Φ

Figure 8: Schematic illustration of a spherical Lissajous (thick line) on S5.
Solid circles depict the antipodal pair of points representing opposite stresses
with the shape ratios of Φ and 1 − Φ.

The trajectory corresponding to a rotation about an axis in the
physical space is a great circle arc [2] upon S5 only if Φ = 1/2,
because antipodal points on S5 represent the tensors with Φ and
1 − Φ (§4.6). Thus, antipodal points have the same shape ratio
only if Φ = 1/2 (Fig. 8). It means that if the tensor to be
rotated has an other ratio, the trajectory cannot be a great circle
arc [2]. Accordingly, the spherical linear interpolation, s⃗, in
Eq. (28) does not always represent a stress with the same Φ
value with the stress(es) corresponding to one or both ends of
the interpolated interval.

The same is true for strain tensors. Points along the trajectory
on S5 due to a rotation of ϵ or ϵ′ about an axis in the physical
space do not have the same shape ratio unless the shape ratio
of the strain tensor is 1/2. Consequently, the point obtained as
the linear interpolation of two h-vectors, or the 6D ϵ-vectors in
Eq. (24), represent a strain whose shape ratio is not always 1/2.
Points standing for tensors without the shape ratio at 1/2 do not
represent plane strains. That is, the point does not represent
a fault-slip datum as long as the vectors do not represent the
strain tensors with the eigenvectors in common, The fault-slip
data whose n-, v- and b-vectors are permuted have common
eigenvectors. The impossibility for the linear interpolation of
h-vectors to be a fault-slip datum is contrary to the statement of
Shan et al. (2019) who attempted to use the imaginary e-twin
datum obtained through the linear interpolation.

6. Dissimilarity classes of reduced stress tensors

Dissimilarity between reduced stress tensors has practical
importance (Michael, 1987; Orife and Lisle, 2003). That is, it
can be used to judge whether the inversion results from differ-
ent rock bodies have a significant difference. If it is not, we can
argue that the bodies were subjected to more or less the same
stress condition.

6.1. Dissimilarity measures
In the formulation of stress inversion using the deviatoric

stress-strain space, it is natural to use the angular distance, Θ,
on S5 between the points, s⃗ (1) and s⃗ (2) as the dissimilarity of
the stresses that are represented by the points (Fig. 10). Ya-
maji and Sato (2006) called Θ angular stress distance. Since
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Figure 9: The geometrical interpretations of the dissimilarity measures, DM,
DOL and Θ, of reduced stress tensors. Reduced stress tensors are represented
by the endpoints of s⃗ (1) and s⃗ (2) on S5, which has the center, O.

Figure 10:

the s-vectors have unit lengths, we have Θ = cos−1
[
s⃗ (1) · s⃗ (2)

]
(Yamaji and Sato, 2006). Stresses with Θ = 0◦ are equivalent
with each other; and those with Θ = 180◦ are opposite stresses.
If a reduced stress tensor changes its principal axes, the distance
between the initial and ‘roaming’ tensor is related to the rotation
of the axes. However, it is not easy to evaluate the dissimilar-
ity only from the visual inspection of stress axes in a stereonet,
because the dissimilarity depends not only on the angle of rota-
tion but also on stress ratio. The same amount of rotations about
different rotation axes can lead to different dissimilarities. For
example, a rotation does not change an axially symmetric stress
condition (Φ = 0 or 1) if the axis of rotation is parallel to the
symmetry axis. The rotation of the stress tensor about its σ2-
axis by the angle, ϕ, leads to Θ = cos−1[3(cos 2ϕ − 1)/6λ2 + 1]
(Figs. 11a and b). If stress orientations are unchanged, a change
only in Φ leads to a different tensor (Fig. 11c).

The dissimilarity measures between reduced stress tensors,
DM and DOL, were proposed by Michael (1987) and Orife and
Lisle (2003). We call them Michael and Orife-Lisle distances.
Both the distances range from 0 to 2. They are related to each
other through the equations (Yamaji and Sato, 2006),

DOL =
∣∣∣s⃗ (1) − s⃗ (2)

∣∣∣ = 2 sin(Θ/2) (33)

DM = 1 − s⃗ (1) · s⃗ (2) = 1 − cosΘ = D2
OL/2. (34)

The distances, Θ, DOL and DM, are invariants under coordinate
rotations in the physical space.
Θ has an important property. Let Θ be the angular stress dis-

tance of a trial stress tensor from the correct solution of stress
inversion. Then, the mean misfit angle of the trial tensor for
randomly oriented fault planes is approximately equal toΘ (Ya-
maji and Sato, 2006). That is, we have⟨

cos−1(s(1) · s(2))
⟩
≈ Θ,

where s(i) is the unit vector indicating the theoretical slip di-
rection of the fault with the unit normal, n, under the i stress;
and the mean, ⟨· · ·⟩, is taken over all the possible directions of
n. Accordingly, we can tell the representative difference in the
slip directions under two stresses using Θ.

D2
OL is proportional to the mean difference of shear stresses

on randomly oriented fault planes as follows. The shear stress

30° 90°60°

30° 90°60°

30° 90°60°

Θ = 51° Θ = 97° Θ = 120°

Θ = 60° Θ = 120° Θ = 180°

Θ = 29° Θ = 51° Θ = 60°

σ�

σ 

σ�

(a)

(b)

Reference

Reference

Φ = 1/2

Φ = 0

Reference

σ 

σ�

Φ = 1/2Φ = 0 Φ = 1

(c)

Θ = 30° Θ = 60°

Figure 11: Stereoplots showing the variation of Θ corresponding to the rotation
of stress axes from the reference tensors. The variation associated with the
progressive rotations of triaxial (a) and axial (b) stress tensors. (c) The variation
associated with the change in Φ with fixed principal orientations. Changes of
stress conditions in (c) and those in (a, b) correspond to the movement of a
point along the Λ-direction the remaining directions, respectively, on S5 (Fig.
7b).
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on the fault with the unit normal, n, can be expressed as the vec-
tor quantity, τ, whose length equals the shear stress magnitude
on the reduced stress tensor, ς. The sense of shear is denoted by
the direction of τ. Since this vector is the orthogonal projection
of traction, ςn, we have τ = [diag (1, 1, 1)− nn⊤]ςn, where the
contents of the square brackets represents the projection (e.g.,,
Meyer, 2000, Eq. 5.6.2). Sato (2012b) derived the equation,⟨

τ(1) − τ(2)
⟩
=

2
5

D2
OL,

where τ(i) is the vectorial shear stress on the fault with the unit
normal, n, under the ith reduced stress tensor. Combining this
and Eq. (34), we obtain ⟨τ(1) − τ(2)⟩ = 4DM/5.

6.2. Dissimilarity classes

Orife and Lisle (2003) proposed a classification scheme for
the dissimilarities. As a result, they defined ‘very similar,’
‘similar,’ ‘different’ and ‘very different’ classes as the inter-
vals, DOL = 0.00–0.66, 0.68–1.01, 1.01–1.71 and 1.71–2.00, re-
spectively. The classification scheme was based on POL(DOL),
the probability density function of DOL for tensor pairs ran-
domly chosen from the uniform distribution of reduced stress
tensors. Unfortunately, their reasoning to settle the intervals of
the classes was groundless. Here, we give new meaning to the
classes and adjust the boundary values.

The uniform distribution of reduced stress tensors is repre-
sented by a uniform distribution of points on S5. This geomet-
rical interpretation yields the analytical expression (Yamaji and
Sato, 2006) (Fig. 12a),

POL(DOL) =
3
16

D3
OL

(
4 − D2

OL
)
.

Orife and Lisle (2003) obtained a good approximation
of this equation using a Monte Carlo technique. This
distribution has the mean and standard deviation, m =∫ 2

0 DOLPOL(DOL) dDOL = 48/35 ≈ 1.37 and sd =
[∫ 2

0 (m −

DOL)2POL(DOL) dDOL

]1/2
= (146/1225)1/2 ≈ 0.35. Orife and

Lisle (2003) determined the class boundaries at DOL = m−2sd,
m − sd and m + sd (Fig. 12a).

However, the choice of a dissimilarity measure is arbitrary.
The probability density function of DM for the uniform distri-
bution is PM(DM) = 3

4 DM(2 − DM) with the mean and standard
deviation, 1 and ∼0.45, which corresponds to DOL ≈ 1.41 and
0.95, respectively. That of Θ is

PΘ(Θ) =
3
4

sin3Θ (35)

with the mean and standard deviation, 90◦ and ∼28◦, corre-
sponding to DOL ≈ 1.41 and 0.48, respectively (Fig. 12b) (Ya-
maji and Sato, 2006). Therefore, their reasoning to determine
the class boundaries depends on the choice of a dissimilarity
measure. The mean and standard deviation of POL(DOL) are
not suitable to reason out the classification scheme.

Here, we present a new way of reasoning and redefine the
class boundaries. That is, the class boundaries are defined with

DOL
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Figure 12: The probability density functions of DOL (a) and Θ (b) for randomly
chosen tensors. Boldface letters indicate the dissimilarity classes of reduced
stress tensors of (Orife and Lisle, 2003) (a) and this study (b). The mean and
standard deviation of POL(DOL) are denoted by m and sd in (a). Diamonds
indicate the DOL values corresponding to the class boundaries in (b), where the
dissimilarity classes with the boundaries at the 1, 5, 15 and 95 percentile points.

the 1, 5, 15 and 95 percentiles of the probability density func-
tion of the dissimilarity. Eq. (35) gives the cumulative distribu-
tion function,

F(Θ) ≡
∫ Θ

0
PΘ(t) dt =

1
4

(
cos3 Θ − 3 cosΘ + 2

)
,

with which we defines the class boundaries. That is, solving
te equations, F(Θ) = 0.01, 0.05, 0.15 and 0.95, we have the
boundary values, Θ ≈ 28.09◦, 43.17◦, 59.26◦ and 136.83◦,
respectively (Fig. 12, Table 9). The definitions of the class
boundaries in terms of percentile points are independent from
the choice of a dissimilarity measure. That is, Eqs. (33) and
(34) transform those class boundaries to the same percentile
points of POL(DOL) and PM(DM).

When the classes are defined in terms of percentiles, they are
practically convenient. If ‘very similar’ stresses are obtained
by the stress inversion of data sets from two rock masses, it
is highly probable that the masses experienced the same stress
condition, because the probability for two stresses in the ‘very
similar’ class by chance is only 1%. The probability for the
stress tensors in the ‘similar’ class to have Θ < 43.17◦ by
chance is smaller than 5%. So, if stresses detected from two
rock masses are ‘similar’ to each other, the masses experienced
probably the same or at least similar stress conditions. The ‘re-
semble’ class is defined, here, because such a 5% confidence
limit is sometimes too strict for practical tectonic studies.
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7. Stress inversion of faults

The majority of the current inversion schemes of fault data
are based on the Wallace-Bott hypothesis, allowing us to
use Fry arcs or the paired equation and inequality in (27).
Gushchenko (1973) and Carey and Brunier (1974) pioneered
the paleostress analysis based on the hypothesis. Several re-
searchers challenged the hypothesis (Pollard et al., 1993; Nieto-
Samaniego and Alaniz-Alvarez, 1997; Pascal, 2002; Lisle,
2013; Lejri et al., 2015, 2017). Those studies showed the situa-
tions where the hypothesis has discrepancies typically as large
as a few degrees between the direction of maximum resolved
shear stress and the slip direction. The inversion scheme that
is not based on the hypothesis but on the slip tendency (Morris
et al., 1996) were proposed recently (McFarland et al., 2012;
Tranos, 2015), which is discussed in §7.3.

7.1. The linear programming problem corresponding to the in-
version

The idea of the inversion by Fry (1999) can be formulated as
a linear programming problem. That is, the s-vector represent-
ing the optimal stress is the solution of the linear system,

h⃗(1) · s⃗ > 0, . . . , h⃗(N) · s⃗ > 0, (36)

p⃗(1) · s⃗ = 0, . . . , p⃗(N) · s⃗ = 0 (37)

where N is the number of data, h⃗(i) and p⃗(i) are the h- and p-
vectors of the ith datum (Eq. 27). The s-vector that minimizes∑N

i=1[ p⃗(i) · s⃗]2 with the constraints in (36) represents the optimal
stress in a least square sense. Given a homogeneous data set,
the optimal s-vector is determined through the method of Lan-
guages multiplier. That is, the orientation-distribution matrix,

N∑
i=1

p⃗(i)[p⃗(i)]⊤, (38)

characterizes the distribution of the p-vectors (Borradaile, 2003,
Eq. 10.11). And, the eigenvector corresponding to the mini-
mum eigenvalue is the optimal s-vector.

It follows from the inequalities in (36) that s⃗ makes acute an-
gles with all the h-vectors; and define the feasible region for
s⃗. Linearly independent h-vectors are always in a hemisphere
if N ≤ 5 because the deviatoric stress-strain space has five di-
mensions. In this case, the feasible region does exist whether or
not the conditions in Eq. (37) are fulfilled by s⃗ in the feasible
region. The sixth h-vector in the other hemisphere violates the
condition for the feasible region to exist. That is, the condition
in (36) is always fulfilled by five data, but can be violated by
six data.

On the other hand, it follows from the simultaneous equa-
tions (Eq. 37) that s⃗ is perpendicular to the p-vectors (Fig. 14a).
In other words, s⃗ is the intersection of the hyperplanes [4] per-
pendicular to the p-vectors. Since the deviatoric stress-strain
space is five-dimensional, linearity independent four p-vectors
can be perpendicular to a s-vector: the four p-vectors and s-
vector make up the base vectors of the space. In this case, the

��� ���

(b)(a) (1)
s

(2)
s

(1)
s
(2)
s

(1)
s

Figure 13: Schematic illustrations of datum vectors on S4 corresponding to
homogeneous (a) and heterogeneous (b) fault-slip data. The stresses responsi-
ble for the faulting are indicated by long arrows. The positions of short black
arrows on the spheres indicate the endpoints of p-vectors which are scattered
along great circles [4] with the poles indicated by the arrows. The points are
aligned along the great circle if the data are free from perturbations. The di-
rections of the short arrows indicate the h-vectors, and show the distinction
whether the data came from the stresses represented by s⃗(1) and s⃗(2). Short
arrows in the group of s⃗(i) make acute angles with s⃗(i) (i = 1 or 2).

Figure 14:

s-vector is readily obtained using the equation,

s⃗ =
1
A

det


p(1)

1 · · · p(4)
1 e⃗(1)

...
...

...

p(1)
5 · · · p(4)

5 e⃗(5)

 , (39)

where p(i)
j is the jth component of the ith p-vector, e⃗(1) through

e⃗(5) in the rightmost column are the orthonormal bases of the
five-dimensional deviatoric stress-strain space, and A is the nor-
malizing factor making the right-hand side of this equation into
a unit vector (Shurman, 2016, p. 421). However, this equation
leaves the direction of s⃗ uncertain, because both +s⃗ or −s⃗ sat-
isfy Eq. (37). Instead, the sign is determined by the inequalities
(36). At least four p-vectors are required to determine the opti-
mal s⃗. In case of N < 4, Eq. (37) is an under-determined sys-
tem, meaning that the s-vector cannot be uniquely determined.
In case of N > 4, it is an over-determined one. That is, the hy-
perplanes perpendicular to the p-vectors can intersect various
points on S5. Even in this case, we can get the optimal solution
that satisfies the equations (37) in a least-square sense.

Several researchers adopted the aforementioned approach
(Fry, 1999, 2001; Shan et al., 2003, 2004b). They determined,
first, the optimal s-vector(s) from Eq. (37) in a least square
sense, first; and, second, the directions of the vector(s). Given a
heterogeneous data set, the points on S5 indicated by p-vectors
are scattered along two or more great circles [4] (Fig. 14b).
Shan and his coworkers employed fuzzy clustering to separate
stresses from such a set (Shan et al., 2004b). That is, they fitted
one or more great circles [4] to the points on S5 indicated by the
p-vectors.

The approach is successful for homogeneous data. However,
given heterogeneous ones, it is theoretically inferior to those
using Fry arcs (§7.2) with respect to the accuracy and resolu-
tion of the stress inversion. However, the opposite may be true
depending on the computational grid, numerical optimization
schemes and others of computer programs. The shortcoming of
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the approach comes from the fact that it does not treat the equal-
ity and inequality constraints (Eqs. 36 and 37) equally. The lat-
ter is used only to choose the sign(s) of the optimal solution(s)
that have been determined from the former. Stress tensors are
determined primarily only from p-vectors, where the informa-
tion of h-vectors are not used. Note that p-vectors along differ-
ent great circles [4] are intermingled around the intersections of
the circles (Fig. 14), but the their h-vectors are the indicators
of their great circles. Since the approach does not utilize the
indicators when great circles are fitted, the resolution and accu-
racy of the approach are spoiled by the intermingled data points
more than the inversion schemes that use both p- and h-vectors
equally.

7.2. Inversion schemes using Fry arcs

Given N data, the same number of Fry arcs are determined
using Eq. (27). That is, we have the N constraints,{

h⃗(1) · s⃗ > 0
p⃗(1) · s⃗ = 0

, . . . ,

{
h⃗(N) · s⃗ > 0
p⃗(N) · s⃗ = 0

,

for the stress inversion, where each pair defines a Fry arc. The
inversion scheme using Fry arcs treat the equality and inequal-
ity constraints equally.

If an exactly single stress tensor results in faulting, the Fry
arcs from the faults meet at the point on S5 that represents the
stress (Fig. 15a). However, natural data are subjected to pertur-
bations to some extent. Measurement errors shifts Fry arcs on
S5 even if the data are homogeneous. The arcs do not meet at
a single point, but make intersections. The center of the clus-
ter made by the intersections represents the optimal stress (Fig.
15b). Given a heterogeneous data set, the intersections make
two or more dense clusters (Fig. 15c), and the cluster centers
indicate the optimal stresses.

Several inversion schemes employ the idea analogous to the
generalized Hough transform (Ballard, 1981), a technique of
image processing to recognize plural objects in an image, to
cope with heterogeneous data. That is, the dihedra (Ange-
lier and Mechler, 1977), y-R diagram (Gómez, 1986), trihe-
dra (Lisle, 1987), multiple inverse (Yamaji, 2000), Ginko (Ya-
maji, 2003), Hough transform (Yamaji et al., 2006) and Gauss
(Žalohar and Vrabec, 2007) methods superpose Fry arcs to
search for their intersections. Among them the right-dihedra
method is the most accessible because it requires only a stere-
onet. It have been applied to natural data from various areas,
and have been employed for the visualization of the results of
newly developed schemes (e.g., Nemcok et al., 1999; Lisle et
al., 2001; Shan et al., 2019). The method superposes “beach-
ball patterns” on a stereonet. The patterns are the shadows
of Fry arcs projected onto a 2D plane. The limitation of the
method, including the incapability of determining stress ratio,
comes from this projection. Suppose a few clumpy clouds cast-
ing their shadows onto the ground. Even if the shadows overlap
each other on the ground, it is not difficult to recognize each
lamps from an airplane. Generally, it is difficult to separate
objects that exist in a high dimensional space from their pro-
jections in a lower dimensional space. The objects should be

(a) (c)(b)

Figure 15: Schematic illustrations of Fry arcs (thick lines) on S5. (a) Fry arcs
corresponding to homogeneous data without perturbations. (b) Those of ho-
mogeneous one with perturbations. (c) Heterogeneous data resulting from two
stresses. White circles indicate the clusters made by the intersections of Fry
arcs.

recognized in the high dimensional one. The multiple inverse
and Hough transform methods were devised not to spoil the
separation of Fry arcs when they are projected onto a 2D plane
for the visualization of inversion results.

The Fry arcs of heterogeneous data have a great number of
intersections, which act as noise to hinder the stress inversion
(Fig. 15c). The multiple inverse method (Yamaji, 2000; Ot-
subo and Yamaji, 2006; Otsubo et al., 2008) reduces the noises
and enhances significant solutions by ignoring the areas on S5
where only a few Fry arc pass. The method is used to in-
vert not only geological fault–slip data but seismological fo-
cal mechanism data (e.g., Kassaras and Kapentanidis, 2018).
Sato (2012c) attempted to reduce the computation time of the
method using Eq. (39). The capability of the multiple inverse
and Hough transform methods to deal with heterogeneous data
enables the bedding tilt test of paleomagnetism combined with
the methods to determine the timing of stress(es) relative to
folding from fault-slip data collected in folded strata (Yamaji
et al., 2005; Tonai et al., 2011).

7.3. Unfavorably oriented faults

Faults nearly parallel to a stress axis are said to be unfavor-
ably oriented, because shear stresses acting on the faults are
small even if ∆σ is not small. The faults can still be activated
by the lubrication of the fault surfaces by high pressure fluids
or weak gouge. Data from the faults make the stress inversion
result unstable if data from such faults are dominant. The in-
stability arises from the fact that nearly opposite stresses can
result in fault-slip data with similar directions (Fig. 17a). Fur-
thermore, small perturbations affecting fault-slip data can lead
to an abrupt jump of an inversion result between the opposite
stresses, if data from unfavorably oriented faults are dominant.

The origin of the instability has a geometrical interpretation
in the deviatoric stress-strain space. It comes from the fact that
the ends of a Fry arc have singularity for the misfit angle on the
fault corresponding to the arc as follows. Firstly, shear stress
on an unfavorably oriented fault is small. It follows from Eq.
(29) that s⃗ · h⃗ ≈ 0, meaning that s⃗ and h⃗ make an angle of
∼90◦. Therefore, the point exists near an end of the Fry arc,
because a Fry arc has a length of 180◦, and is centered by h⃗.
Secondly, due to the geometrical relation in Fig. 5 about a mis-
fit angle and the Fry arc, misfit contours meet at the ends of the
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Figure 16: (a) Unfavorably oriented normal and thrust faults with similar atti-
tudes and slip directions under normal and reverse faulting stress regimes. (b)
Schematic illustration of the contours of misfit angles (thin lines) on S5 (Fig.
5). For example, if the point denoted by the solid circle represents the stress that
activated a fault, the misfit angle on the fault represented by the Fry arc (thick
line) is 30◦. (c) Schematic illustrations of the Fry arcs of unfavorably oriented
faults. The arcs approach or intersect with each other around antipodal points
on S5. Their intersection jumps between the points by a small perturbation.

Figure 17:

arc (Fig. 17b). Fry arcs are slightly shifted by small measure-
ment errors in fault attitudes and slip directions; and the point,
s⃗, moves slightly on S5 by a small perturbation in the state of
stress. Both of these small effects result in rapid changes of the
misfit angle of an unfavorably oriented fault, resulting in the in-
stability. In addition, the lengths of the arcs (180◦) are enough
for their intersections to jump between antipodal points by the
perturbations (Fig. 17c).

Gephart and Forsyth (1984) addressed this problem. They
considered that the problem arises by using the misfit angles as
the residuals of the inversion. And, they replaced the misfit an-
gles with the minimum angles of fault-slip data to eliminate the
misfit angles under a trial stress tensor. However, this redefini-
tion of the residuals does not solve the problem: The instability
arises by the nature of the stress inversion (Figs. 17b, c). The
rotation of a fault-slip datum proposed by Gephart and Forsyth
(1984) shifts a Fry arc to make it pass through the point on S5
corresponding to a trial stress. That is, the Fry arc in Fig. 17b
is moved to the point indicated by the solid circle in the figure.
However, both the antipodal points on S5 represented by the
centers of the dark and white areas in Fig. 17c are in the vicin-
ity of Fry arcs. This example demonstrates that the redefinition
does not remove the instability from the inversion.

The stress inversion based on slip tendency (Morris et al.,
1996) is not either, because the slip tendency neglects the lubri-
cation effect (Sato, 2016). The tendency is not proportional to,
but has a positive correlation with τ (Eq. 29). So, the inversion
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Figure 18: Schematic illustrations of faults providing full datum and two types
of incomplete fault-slip data (a–c) and corresponding solid figures lying on S5
(d–f). Arrow in (a) indicates the slip direction, v, of the footwall. Arrows in
(b) indicate the possible ones. White fan in (c) indicates the range of possible v
directions, and the dotted arrow points the center of the range. A key bed, dike,
etc., can be the reference plane for us to judge the sense of faulting (a) or to
recognize this central direction (c).

based on slip tendency (McFarland et al., 2012; Tranos, 2015)
makes little of such stresses that have corresponding s-vectors
near the ends of Fry arcs. As a result, the lubrication effect that
can lead to the instability is virtually ignored, and the terminal
parts are cut off from the arcs. The proposal to use shear stress
magnitudes for the residuals by Angelier (1990) also takes little
account of the effect.

7.4. Incomplete fault-slip datum

An ordinary fault-slip datum consists of the information of
the attitude of a fault plane, the orientation of striae and sense
of faulting to uniquely determine n and v of the fault. If all
the information is obtained from a fault, the fault data is called
a full datum (Fig. 18a). Without offset markers such as dis-
placed strata, the sense of faulting can be judged from asym-
metric slickenside striations (e.g., Petit, 1987). Such a fault
provides a complete datum as well. Data with insufficient in-
formation are said to be incomplete. Sato (2006) called the
data without the information of fault sense line-only data (Fig.
18b). And, he called those with unknown fault senses line-only
data (Fig. 18c). Incomplete data are collected more often than
complete data in practice. Active fault studies are popular in
Japan, but they have not routinely described the slip directions
of faults. Consequently, they have produced sense-only data,
clues to Holocene and late Pleistocene stress field (Tsutsumi et
al., 2012). Therefore, it is important to develop an inversion
scheme to deal with incomplete data.

Lisle et al. (2001) pioneered the stress inversion of sense-
only data. They noticed the vertical components of the dis-
placements of (oblique) normal and reverse faults. The sign
of the components indicate their up- and downward displace-
ments of the footwalls (Fig. 18c). The signs should be concor-
dant with the resolved shear stresses along their dip directions,
which depend on a trial stress tensor. Thus, sense-only data can
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be inverted to determine the optimal stress. That is, those con-
straints can be expressed by the inequalities (36) provided that
the h-vectors are computed from the unit vector indicated by
the dotted arrow in Fig. 18c, though they did not employed the
geometrical interpretations of the inequalities.

Shan et al. (2004a) adopted the “slack variables” of linear
programming (e.g., Boyd and Vandenberghe, 2009) to trans-
form an inequality constraint from a sense-only datum to an
equality constraint, thereby they devised an inversion scheme.
Every such datum has a slack variable, which is an unknown
to be determined by the inversion along with the optimal stress.
So, the number of unknown quantities increases unfortunately
with the number of data, making the inversion difficult.

The methods of Lisle et al. (2001) and Shan et al. (2004a)
have a limitation that all faults must have reference planes with
the same attitudes to judge whether they have normal or reverse
senses. For example, if marker beds are the references, all of
them should be horizontal. However, the marker beds gener-
ally have various attitudes. In addition, sense-only data are as
common as line-only data, which the methods cannot deal with.
Sato (2006) solved these problems by adapting the Hough trans-
form method of Yamaji et al. (2006), and succeeded in dealing
with complete data and two types of incomplete data.

Sato (2006) found the solid figures lying on S5 corresponding
to the incomplete fault-slip data types. That is, the great circle
[4] perpendicular to p⃗ represents a line-only datum (Fig. 18d),
where the circle is composed of the two Fry arcs that are com-
puted from the fault attitude, n, and the possible slip directions,
±v. And, the hemisphere centered by h⃗ represents a sense-only
datum (Fig. 18e), where h⃗ is computed from the center of the
possible slip directions (Fig. 18c). Full data are represented by
Fry arcs. So, the optimal stress(es) can be determined by su-
perimposing those figures upon S5: The clustered intersections
of the figures indicate the optimal stress(es). In addition, the
method of Sato (2006) is capable of dealing with the various
attitudes of reference planes, making a fold test possible (Tonai
et al., 2011).

8. The side effects of lacking the coordinate invariance

Fry (1999, 2001) pioneered the geometrical interpretation
of the stress inversion by means of high dimensional param-
eter space, but his formulation is unfortunately affected by the
choice of a coordinate system due to the lack of the factors,
1/
√

2 and
√

2, in Eq. (24). This gives rise to the variable
lengths and angles of the 5D and 6D vectors depending on the
choice of a coordinate system in the physical space (Fig. 19).
The 5D datum vector of Shan et al. (2003), which corresponds
to our p⃗ but lacks the factors, has a variation in length from ∼0.7
to 1.2, which spoils the accuracy and resolution of the inversion
(Sato and Yamaji, 2006b). The factors cancel out the variations
of the length and angles, and make our formulation agree with
the principle of coordinate invariance.

8.1. Inaccuracy

Shan et al. (2003) developed an inverse method based on the
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Figure 19: (a) Lower-hemisphere stereoplot showing a stress condition (Φ =
1/2) and a fault-slip datum denoted by n, v and b. The stress axes are indicated
by crosses. The first and second coordinates lie on the horizontal plane, and
the direction of the former is denoted by θ. (b) Polar plot showing the variation
of the lengths and angles of ς⃗, ϵ⃗ and ϵ⃗ ′ that are evaluated without the factors,
1/
√

2 and
√

2, in Eq. (24) for the case of the stress condition and fault-slip
datum in (a).

formulation of Fry (1999). They used the 5D datum vector,

q⃗ =
(
n1b1 − n3b3, n2b2 − n3b3,

n2b1 + n1b2, n3b1 + n1b3, n3b2 + n2b3
)T (40)

to invert fault-slip data. A numerical experiment using a mil-
lion orthonormal pairs of n and b with random orientations
showed that |q⃗| had the mean and standard deviation at 1.0046
and 0.0835. The origin of this variation is explained as follows.
The vector in Eq. (40) corresponds to our p⃗ in Eq. (25) through
the equation,

q⃗ =


0 −1 0 0 0√
3/2 −1/2 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0

 p⃗. (41)

Given the unit vectors, n and b, p⃗ indicates a point on S5 (Eq.
26). Thus, Eq. (41) says that q⃗ indicates a point on a hyper-
ellipsoid. These solid figures are analogous to a unit sphere
and strain ellipsoid. That is, the square matrix in Eq. (41) rep-
resents a deformation, and we refer the deformation gradient
tensor, F, to this matrix. Then, the right Cauchy-Green tensor,
B = FFT, represents the quadratic strain: The principal strains
and strain axes are the square-roots of the eigenvalues and the
eigenvectors of B (Malvern, 1969). That is, we have the prin-
cipal strains,

√
6/2, 1, 1, 1 and

√
2/2, indicating an anisotropic

deformation. Lengths and angles are generally changed by such
a deformation. The choice of coordinate directions in the phys-
ical space affects the components of n and b, leading to the
variable lengths and angles of the q-vectors. If, on the other
hand, q⃗ is a unit vector, the corresponding n and b in the phys-
ical space do not make an orthonormal system except for some
cases, e.g., n = (0, 0, 1)⊤ and b = (1, 0, 0)⊤.

The variable length gives rise to inaccuracy to the inverse
method. That is, in this case the matrix corresponding to
Eq. (38) has the form, M =

∑N
i=1 q⃗(i)[q⃗(i)]⊤. An orientation-

distribution matrix characterizes the orientation distribution of
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unit vectors, but M is not an orientation-distribution matrix due
to the variable lengths of the q-vectors. Instead, the quantity,
I − M, is known as a moment of inertia tensor (e.g., Lan-
dau and Lifshitz, 1976, p. 99), where I is an identity matrix.
The eigenvector corresponding to the minimum eigenvalue of
an orientation-distribution matrix was identified with the vector
representing the optimal stress in §7.1. However, a moment de-
pends generally on the lengths of moment arms. Consequently,
not only the orientation distribution of the q-vectors but also
their variable lengths affect the eigenvectors of M, giving rise
to the inaccuracy of the inversion. The variation comes from
the fact that the formulation using the datum vector in Eq. (40)
lacks the coordinate invariance.

8.2. Anisotropic resolution

The lack of the coordinate invariance gives rise to the
anisotropic resolution of the stress inversion. A numerical ex-
periment was carried out to compare the formulation with and
without the factor 1/

√
2 in Eq. (6) using a synthetic, heteroge-

neous fault-slip data set (Fig. 20a). A hundred faults were as-
sumed to be activated by Stress A with σ1-axis at 090◦/00◦, σ3-
axis at 000◦/90◦ and Φ = 1/2, and another hundred by Stress
B with σ1-axis at 180◦/45◦, σ3-axis at 000◦/45◦ and Φ = 1/2.
The stresses had the σ1 orientations and stress ratios in com-
mon and Θ = 90◦: They are classified into ‘different’ stresses
(Table 2). We chose those stresses because their correspond-
ing 5D vectors, s⃗A = (0,−1, 0, 0, 0)T and s⃗B = (0, 0, 1, 0, 0)T,
had a sharp difference in the absolute values of the first and
second components, which are affected by the factor of 1/

√
2.

The fault planes were randomly oriented; and the slip direc-
tions were calculated according to the Wallace-Bott hypothesis.
Gaussian perturbations with the zero mean and the standard de-
viation of 15◦ were imposed on the slip directions.

The data set was processed with the fast multiple inverse
method (Sato, 2012a), which used a computational grid of re-
duced stress tensors as the candidates of optimal solutions. To
see the effect of the factor of 1/

√
2, two types of grids were

examined. The first one consisted of 60,000 points uniformly
distributed over S5 using the formulation with the factor (Ya-
maji and Sato, 2011). The lack of the factor brings about the
distortion of this distribution (Sato and Yamaji, 2006b, Fig. 7)
analogous to the deformation represented by Eq. (41). Both
the grids consisted of the same number of grid points, but the
intervals of the points were not uniform in the second one due
to the distortion.

As a result, it was found that the factor of 1/
√

2 gives rise
to the anisotropic detectability of stresses. The result of the in-
version with the factor is shown in Fig. 20b, where the stresses
are depicted by the clusters of σ1 orientations. The two clus-
ters had similar densities, indicating the stresses were equally
significant, consistent with the fact that the synthetic data were
the mixture of the data sets with the same number of data. In
contrast, Stress B is indicated by a smaller cluster compared
to Stress A in Fig. 20c. It means that Stress A was detected
more easily than Stress B using the distorted computational
grid. Such inequality spoils the resolution of stress inversion.

9. Summary

A point in the deviatoric stress-strain space has a one-to-one
correspondence with a symmetric, deviatoric tensor. In addi-
tion, complete and incomplete fault-slip data have correspond-
ing solid figures in the space. The correspondence allows us to
interpret the inversion as a geometrical problem in the space.

Since the geometric relations of the solid figures and the
points representing stresses are invariant under the coordinate
rotations in the physical space, the relations give a clear per-
spective to develop the inversion techniques to deal with het-
erogeneous data from the interpretation. In addition, the stress
inversion using the space has isotropic resolution thanks to the
invariance. In formulation without the coordinate invariance,
equations presented in this article must have the correction fac-
tors that denote the distortion of the parameter space employed
in the formulation.

The dissimilarity classes of reduced stress tensors were re-
defined in terms of a random distribution of points in the space
which represent the random distribution of reduced stress ten-
sors.
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Žalohar, J., Vrabec, M., 2007. Paleostress analysis of heterogeneous fault-slip
data: The Gauss method. J. Struct. Geol. 29, 1798–1810.

17

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



Table 1: List of symbols.

Symbols Explanations

b unit vector perpendicular to n and v
DM Michael distance
DOM Orife-Lisle distance
great circle [n] the intersection of an hyperplane [n] and higher dimensional sphere
h⃗ 5D unit vector corresponding to ε
hyperplane [n] nD subspace in a higher dimensional space
n unit normal vector
P⃗ 6D vector
p⃗ 5D unit vector corresponding to ε′

P( ) probability density function
Q 3D orthogonal matrix representing principal axes
R 3D or 6D rotation matrix
s⃗ 5D unit vector representing reduced stress tensor
S5, S6 5D and 6D unit hypersphere
v unit vector indicating the slip direction of footwall
X 3D, symmetric, deviatoric tensor
X⃗ 6D vector corresponding to X
XII the second basic invariant of X
Y⃗ 5D vector corresponding to X
∆σ differential stress
ϵ reduced strain tensor representing n and v
ϵ′ reduced strain tensor representing n and b
ϵ⃗ 6D unit vector corresponding to ε
ϵ⃗ ′ 6D unit vector corresponding to ε′

Θ angular stress distance
κ1, κ2 concentration parameters
Λ Lode angle
λ axiality
σ stress tensor or deviatoric stress tensor
σ non-dimensional deviatoric stress tensor
ς reduced stress tensor
ς⃗ 6D vector corresponding to ς
σ1, σ2, σ3 principal stresses
τ shear stress
τc critical resolved shear stress
Φ stress ratio, shape ratio
Ψ radius of a spherical cap on S5

18

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



Table 2: Dissimilarity classes of reduced stress tensors adjusted to practical
stress inversion studies. A parenthesis and a square bracket denote the open
and closed endpoints of an interval, respectively. Stresses with Θ = 0 and 180◦

are equivalent and opposite stresses, respectively.

Θ DOL

very similar (0.00◦, 28.09◦) (0.000, 0.485)
similar [28.09◦, 43.17◦) [0.485, 0.736)
resemble [43.17◦, 59.26◦) [0.736, 0.989)
different [59.26◦, 136.83◦) [0.989, 1.729)
very different [136.83◦, 180.00◦) [1.729, 2.00)
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