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Abstract We consider the boundary value problem of the stationary transport equation in
the slab domain of general dimensions. In this paper, we discuss the relation between dis-
continuity of the incoming boundary data and that of the solution to the stationary transport
equation. We introduce two conditions posed on the boundary data so that discontinuity of
the boundary data propagates along positive characteristic lines as that of the solution to
the stationary transport equation. Our analysis does not depend on the celebrated velocity
averaging lemma, which is different from previous works. We also introduce an example in
two dimensional case which shows that piecewise continuity of the boundary data is not a
sufficient condition for the main result.
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1 Introduction

We consider the stationary transport equation:

ξ ·∇x f (x,ξ )+µt(x) f (x,ξ ) = µs(x)
∫

Sd−1
p(x,ξ ,ξ ′) f (x,ξ ′)dσξ ′ ,

(x,ξ ) ∈Ω ×Sd−1, (1)
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where Ω is the slab domain Rd−1×(0,1) of the dimension d ≥ 2 and Sd−1 is the unit sphere
in Rd . The stationary transport equation describes propagation of particles interacting only
with the media, for example neutron (Case and Zweifel (1967)) or photon (Chandrasekhar
(1960)). The function f (x,ξ ) describes the density of particles at the point x ∈ Ω with
direction ξ ∈ Sd−1. The coefficient µt and the product µs p characterize the effect of the
media; they are called the attenuation coefficient and the scattering indicatrix, respectively.

We pose the incoming boundary condition as follows. Let

Γ− := {(x,ξ ) ∈ ∂Ω ×Sd−1|n(x) ·ξ < 0},

where n(x) is the outer normal vector at x ∈ ∂Ω . Then, for a given function f0 on Γ−, a
solution f to the stationary transport equation (1) must satisfy

f (x,ξ ) = f0(x,ξ ), (x,ξ ) ∈ Γ−. (2)

In this paper, we discuss the relation between discontinuity of the boundary data and that
of the solution to the stationary transport equaton. Aoki et al. (2001) emphasize importance
and significance of this analysis.

We assume that two coefficients µt and µs are nonnegative bounded continuous func-
tions on Ω satisfying

inf
x∈Ω

(
µt(x)−µs(x)

)
> 0. (3)

We note that, from the assumption above, we have

µt := inf
x∈Ω

µt(x)> 0

and

M := sup
x∈Ω

(
µs(x)
µt(x)

)
< 1,

which are crucial and facilitate our analysis dramatically. Although the assumption (3) does
not hold in some relevant mathematical models, the linearized Boltzmann equation and the
linearized BGK equation, in gas dynamics, it is reasonable in the case of radiative transfer.

We also assume that the integral kernel p is a nonnegative bounded continuous function
on Ω ×Sd−1×Sd−1 which satisfies∫

Sd−1
p(x,ξ ,ξ ′)dσξ ′ = 1

for all (x,ξ ) ∈Ω ×Sd−1.
We regard the directional derivative ξ ·∇x f (x,ξ ) as

ξ ·∇x f (x,ξ ) :=
d
dt

f (x+ tξ ,ξ )|t=0

and the measure dσξ ′ is the Lebesgue measure on the sphere Sd−1.
We introduce some notations. Let

X := (Ω ×Sd−1)∪Γ−.

We introduce two functions τ± on X defined by

τ±(x,ξ ) := inf{t > 0|x± tξ 6∈Ω}.
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Let
Sd−1
± := {ξ = (ξ1,ξ2, . . . ,ξd) ∈ Sd−1|ξd ≷ 0}

and let Γ−,ξ and Γ−,x be projections of Γ− on ∂Ω and Sd−1
± respectively, that is,

Γ−,ξ := {x ∈ ∂Ω |n(x) ·ξ < 0}, ξ ∈ Sd−1
±

and
Γ−,x := {ξ ∈ Sd−1|n(x) ·ξ < 0}, x ∈ ∂Ω .

At last, let disc( f ) and disc( f0) be the set of discontinuous points for a function f on X and
for a function f0 on Γ−, respectively.

The main result in this paper is as follows:

Theorem 1. Suppose that a boundary data f0 is bounded and that it satisfies at least one of
the following two conditions:

1. f0(·,ξ ) is continuous on Γ−,ξ for almost all ξ ∈ Sd−1
± ,

2. f0(x, ·) is continuous on Γ−,x for almost all x ∈ ∂Ω .

Then, there exists a unique solution f to the boundary value problem (1)-(2) and the fol-
lowing relation holds:

disc( f ) = {(x∗+ tξ∗,ξ∗)|(x∗,ξ∗) ∈ disc( f0),0≤ t < τ+(x∗,ξ∗)}.

Here, we call a bounded function f on X a solution to the boundary value problem
(1)-(2) if it satisfies the stationary transport equation (1) for all (x,ξ ) ∈ Ω × Sd−1 and the
boundary condition (2) for all (x,ξ ) ∈ Γ−. This theorem means that discontinuity of the
boundary data propagates along positive characteristic lines as that of the solution to the
stationary transport equation.
Remark 1. If the boundary data f0 is bounded continuous on Γ−, then there exists a unique
solution f . Moreover, since disc( f0) is the empty set by assumption, disc( f ) is also the
empty set, which implies that the solution f is also bounded continuous on X .

Anikonov et al. (1993) have shown this property assuming condition 1 in a three dimen-
sional bounded convex domain with piecewise continuous coefficients. They also assumed
so-called general convexity to these pieces. They made use of this property to solve the
inverse problem to determine the coefficient µt from the knowledge of the boundary mea-
surements f |Γ+ , where

Γ+ := {(x,ξ ) ∈ ∂Ω ×Sd−1|n(x) ·ξ > 0}

and n(x) is again the outer normal vector at x ∈ ∂Ω .
On the other hand, Aoki et al. (2001) have shown the same property assuming condition

2 in the two dimensional half plane domain with µt = µs = 1 and p = 1/2π . We note that
this assumption violates ours because µt − µs = 0 for all x ∈ Ω . They also assume that
the boundary data is periodic with respect to the spacial variable and is independent of the
directional variable. We have succeeded in modifying their assumptions. Their analysis is
based on the celebrated velocity averaging lemma, which works in L2-framework only when
p is constant. On the other hand, p is not constant in our setting. So, we cannot apply their
approach directly. However, we overcome this point by L∞-based discussion.

We mention some relevant works in gas dynamics. In the time dependent case, Kim
(2011) has investigated formation and propagation of discontinuity of solutions to the Boltz-
mann equation in non-convex domains with three kinds of boundary conditions, which
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are the incoming boundary condition, the diffuse boundary condition and the bounce-back
boundary condition. Also, Guo and Yang (2016) have discussed existence and BV-regularity
for transport equation with a combination of the incoming boundary condition and the dif-
fuse boundary condition in non-convex domains. On the other hand, in the stationary case,
Aoki et al. (2001) have numerically analyzed discontinuity of solutions to the BGK equa-
tion in a two dimensional square domain with the diffuse boundary condition with discon-
tinuous temperature. Esposito et al. (2013) also have discussed discontinuity of solutions
to the Boltzmann equation with non-isothermal diffuse boundary condition in non-convex
domains.

The ingredient of the rest part in this paper is as follows. In Section 2, we derive inte-
gral equations from the boundary value problem, and we show existence and uniqueness of
solutions to derived integral equations. In Section 3, we discuss regularity of the solution to
integral equations. Especially, we decompose the solution into two parts, the discontinuous
part and the continuous part. In Section 4, we check the equivalence between the boundary
value problem and integral equations. In other words, we prove that the solution to integral
equations indeed satisfies the stationary transport equation under the assumption in Theo-
rem 1. In Section 5, we introduce an example in two dimensional case which shows that
piecewise continuity of the boundary data is not a sufficient condition for the main result.

2 Existence and uniqueness of solutions to the stationary transport equation

In this section, we derive integral equations from the boundary value problem, and we show
existence and uniqueness of solutions to derived integral equations.

For (x,ξ ) ∈ X , by integrating the stationary transport equation (1) from x along the neg-
ative characteristic line {x− tξ |t > 0} until the line touches the boundary ∂Ω and by taking
the boundary condition (2) into consideration, we obtain the following integral equations:
when ξd 6= 0,

f (x,ξ ) =exp
(
−Mt

(
x,ξ ;τ− (x,ξ )

))
f0
(
x− τ−(x,ξ )ξ ,ξ

)
+
∫

τ−(x,ξ )

0
µs(x− sξ )exp

(
−Mt(x,ξ ;s)

)
×
∫

Sd−1
p(x− sξ ,ξ ,ξ ′) f (x− sξ ,ξ ′)dσξ ′ds, (4)

and when ξd = 0,

f (x,ξ ) =
∫

∞

0
µs(x− sξ )exp

(
−Mt(x,ξ ;s)

)∫
Sd−1

p(x− sξ ,ξ ,ξ ′) f (x− sξ ,ξ ′)dσξ ′ds, (5)

where
Mt(x,ξ ;s) :=

∫ s

0
µt(x− rξ )dr.

We call a bounded function f on X a solution to integral equations (4)-(5) if it satisfies
integral equations (4)-(5) for all (x,ξ ) ∈ X .

We note that, although solutions to the boundary value problem (1)-(2) satisfy integral
equations (4)-(5), the converse does not hold in general. However, as we will see later in
Section 4, under the assumption in Theorem 1, the solution to integral equations (4)-(5) is
also the solution to the boundary value problem (1)-(2). Therefore, our current task is to find
a solution to integral equations (4)-(5).
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Proposition 1. The solution to integral equations (4)-(5) is unique, if it exists.

Proof. Let f1 and f2 be two solutions to integral equations (4)-(5). Then the difference
f̃ := f1− f2 is also bounded on X and satisfies the following integral equation:

f̃ (x,ξ ) =
∫

τ−(x,ξ )

0
µs(x − sξ )exp

(
−Mt(x,ξ ;s)

)∫
Sd−1

p(x,ξ ,ξ ′) f̃ (x − sξ ,ξ ′)dσξ ′ds

for all (x,ξ ) ∈ X . Then, we have

| f̃ (x,ξ )| ≤

(
sup

(x,ξ )∈X
| f̃ (x,ξ )|

)∫
τ−(x,ξ )

0
µs(x− sξ )exp

(
−Mt(x,ξ ;s)

)
ds

≤

(
sup

(x,ξ )∈X
| f̃ (x,ξ )|

)∫
∞

0

µs(x− sξ )

µt(x− sξ )

∣∣∣∣ d
ds

exp
(
−Mt(x,ξ ;s)

)∣∣∣∣ ds

≤M

(
sup

(x,ξ )∈X
| f̃ (x,ξ )|

)

for all (x,ξ ) ∈ X . We emphasize that the supremum in this paper is not the essential supre-
mum, which enables us to justify the pointwise discussion. Therefore,

sup
(x,ξ )∈X

| f̃ (x,ξ )| ≤M

(
sup

(x,ξ )∈X
| f̃ (x,ξ )|

)
. (6)

Since M < 1, the inequality (6) implies sup(x,ξ )∈X | f̃ (x,ξ )|= 0, that is, f1 = f2 for all (x,ξ )∈
X .

At last, we prove existence of a solution by iteration. This strategy is standard in the
field of radiative transfer. For example, see Anikonov et al. (1993). Let us define a family of
functions { f (n)}n≥0 on X as follows:

f (0)(x,ξ ) :=

{
exp
(
−Mt

(
x,ξ ;τ−(x,ξ )

))
f0(x− τ−(x,ξ )ξ ,ξ ), ξd 6= 0,

0, ξd = 0,
(7)

and

f (n+1)(x,ξ ) :=
∫

τ−(x,ξ )

0
µs(x− sξ )exp

(
−Mt(x,ξ ;s)

)
×
∫

Sd−1
p(x− sξ ,ξ ,ξ ′) f (n)(x− sξ ,ξ ′)dσξ ′ds. (8)

Now we prove that the sum f := ∑
∞
n=0 f (n) is a solution to integral equations (4)-(5). To

begin with, we prove that f := ∑
∞
n=0 f (n) is indeed defined on X . Especially, we show the

following two propositions.

Proposition 2. Suppose that the boundary data f0 is bounded on Γ−. Then, f (n) is also
bounded on X for all n≥ 0.
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Proof. We use the induction on n.
For (x,ξ ) ∈Ω ×Sd−1 and ξd = 0, we have

| f (0)(x,ξ )|= 0≤ sup
(x,ξ )∈Γ−

| f0(x,ξ )|,

and for otherwise, we have

| f (0)(x,ξ )| ≤exp
(
−Mt

(
x,ξ ;τ−(x,ξ )

))
| f0(x− τ−(x,ξ )ξ ,ξ )|

≤ sup
(x,ξ )∈Γ−

| f0(x,ξ )|.

These estimates imply that f (0) is bounded on X .
Now, we assume that f (n) is bounded on X for some n ∈ N. Then,

| f (n+1)(x,ξ )| ≤
∫

τ−(x,ξ )

0
µs(x− sξ )exp

(
−Mt(x,ξ ;s)

)
×
∫

Sd−1
p(x− sξ ,ξ ,ξ ′)| f (n)(x− sξ ,ξ ′)|dσξ ′ds

≤

(
sup

(x,ξ )∈X
| f (n)(x,ξ )|

)∫
τ−(x,ξ )

0
µs(x− sξ )exp

(
−Mt(x,ξ ;s)

)
ds

≤M

(
sup

(x,ξ )∈X
| f (n)(x,ξ )|

)
(9)

for all (x,ξ ) ∈ X . This inequality implies that f (n+1) is defined and bounded on X . This
completes the proof.

Proposition 3. Suppose that the boundary data f0 is bounded on Γ−. Then, the sum ∑
∞
n=0 f (n)(x,ξ )

converges absolutely and uniformly on X.

Proof. From the inequality (9), we have

sup
(x,ξ )∈X

| f (n)(x,ξ )| ≤M

(
sup

(x,ξ )∈X
| f (n−1)(x,ξ )|

)

≤Mn

(
sup

(x,ξ )∈X
| f (0)(x,ξ )|

)
≤Mn

(
sup

(x,ξ )∈Γ−

| f0(x,ξ )|

)
for all n≥ 0. Thus,

∞

∑
n=0
| f (n)(x,ξ )| ≤

∞

∑
n=0

sup
(x,ξ )∈X

| f (n)(x,ξ )|

≤
∞

∑
n=0

Mn

(
sup

(x,ξ )∈Γ−

| f0(x,ξ )|

)

=
1

1−M

(
sup

(x,ξ )∈Γ−

| f0(x,ξ )|

)
< ∞,

which implies absolute and uniform convergence of the sum ∑
∞
n=0 f (n)(x,ξ ) on X .
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From Proposition 2 and Proposition 3, the sum f (x,ξ ) = ∑
∞
n=0 f (n)(x,ξ ) converges ab-

solutely and uniformly on X and satisfies

f (x,ξ ) = f (0)(x,ξ )+
∞

∑
n=0

f (n+1)(x,ξ )

= f (0)(x,ξ )+
∫

τ−(x,ξ )

0
µs(x− sξ )exp

(
−Mt(x,ξ ;s)

)
×
∫

Sd−1
p(x− sξ ,ξ ,ξ ′)

∞

∑
n=0

f (n)(x− sξ ,ξ ′)dσξ ′ds

= f (0)(x,ξ )+
∫

τ−(x,ξ )

0
µs(x− sξ )exp

(
−Mt(x,ξ ;s)

)
×
∫

Sd−1
p(x− sξ ,ξ ,ξ ′) f (x− sξ ,ξ ′)dσξ ′ds

for all (x,ξ ) ∈ X , which is the pair of integral equations (4)-(5). Thus, the sum f (x,ξ ) =
∑

∞
n=0 f (n)(x,ξ ) is the solution to integral equations (4)-(5).

3 Regularity of the solution

In this section, we discuss regularity of the solution to integral equations (4)-(5). We decom-
pose the solution f into two parts as below:

f (x,ξ ) = F0(x,ξ )+F1(x,ξ ),

where

F0(x,ξ ) := f (0)(x,ξ ),

F1(x,ξ ) :=
∞

∑
n=1

f (n)(x,ξ ).

From now, we observe discontinuity of F0 and prove continuity of F1. This decomposition
is the main idea in our analysis.

3.1 Discontinuity of F0

First, we prove the following proposition.

Proposition 4.

disc(F0) = {(x∗+ tξ∗,ξ∗)|(x∗,ξ∗) ∈ disc( f0),0≤ t < τ+(x∗,ξ∗)}.

Proof. Let us recall the explicit formula of F0 (7): when ξd 6= 0,

F0(x,ξ ) = exp
(
−
∫

τ−(x,ξ )

0
µt(x− rξ )dr

)
f0(x− τ−(x,ξ )ξ ,ξ ).

τ− is continuous on X with ξd 6= 0 because of its explicit formula:

τ−(x,ξ ) =

{
xd/ξd , ξd > 0,
(xd−1)/ξd , ξd < 0.
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Thus, we have when ξd 6= 0,

(x,ξ ) ∈ disc(F0)⇔ (x− τ−(x,ξ )ξ ,ξ ) ∈ disc( f0),

which implies that the statement holds when ξd 6= 0.
Thus, only we have to check is continuity of F0 at (x,ξ ) ∈Ω ×Sd−1 with ξd = 0. In this

setting, continuity of F0 with respect to x is obvious from the explicit formula of it (7). So,
we focus on continuity of F0 with respect to ξ . Since

lim
ξd→0

τ−(x,ξ ) = ∞

for all x ∈Ω and since f0 is bounded on Γ−, we have

lim
ξd→0
|F0(x,ξ )| ≤

(
sup

(x,ξ )∈Γ−

| f0(x,ξ )|

)
lim

ξd→0
exp
(
−
∫

τ−(x,ξ )

0
µt(x− rξ )dr

)

≤

(
sup

(x,ξ )∈Γ−

| f0(x,ξ )|

)
lim

ξd→0
exp
(
−µtτ−(x,ξ )

)
= 0,

which means limξd→0 F0(x,ξ ) = 0 for all x ∈ Ω . So F0 is continuous at (x,ξ ) ∈ Ω × Sd−1

with ξd = 0. This completes the proof.

3.2 Continuity of F1

Secondly, we prove continuity of F1. To do so, we prove by induction that functions f (n),
defined above, are bounded continuous on X for all n≥ 1. After that, we know from Proposi-
tion 3 that the sum ∑

∞
n=1 f (n) converges uniformly on X , which implies that it is also bounded

continuous on X .

Lemma 1. Under the assumption in Theorem 1, f (1) is bounded countinuous on X.

Proof. Boundedness of f (1) was proved in Section 2, so here we prove continuity of it. By
substituting the explicit formula of f (0) (7) for one appeared in the recursive formula (8)
with n = 0, we have

f (1)(x,ξ ) =
∫

τ−(x,ξ )

0
µs(x− sξ )exp

(
−Mt(x,ξ ;s)

)
×
∫

Sd−1
p(x− sξ ,ξ ,ξ ′) f (0)(x− sξ ,ξ ′)dσξ ′ds

=
∫

τ−(x,ξ )

0
µs(x− sξ )exp

(
−Mt(x,ξ ;s)

)
G(x− sξ ,ξ )ds,

where
G(x,ξ ) = G+(x,ξ )+G−(x,ξ ),

and

G±(x,ξ ) :=
∫

Sd−1
±

p(x,ξ ,ξ ′)exp
(
−Mt

(
x,ξ ′;τ−(x,ξ ′)

))
f0(x− τ−(x,ξ ′)ξ ′,ξ ′)dσξ ′ . (10)

Then, we introduce the following lemma, whose proof will be appeared later.
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Lemma 2. Under the assumption in Theorem 1, G is bounded continuous on Ω ×Sd−1.

Remark 2. Lemma 2 is the very key idea in this paper. Aoki et al. (2001) proved the same
lemma when p is constant, which led them to success.

Admitting Lemma 2, we continue to prove Lemma 1. Let G̃ be the zero extension of G
to Rd×Sd−1, that is,

G̃(x,ξ ) :=

{
G(x,ξ ), (x,ξ ) ∈Ω ×Sd−1,

0, otherwise.

Also let µ̃t be the zero extension of µt to Rd and let M̃t be the corresponding Mt . Then, f (1)

can be written as the following.

f (1)(x,ξ ) =
∫

∞

0
µ̃s(x− sξ )exp

(
−M̃t(x,ξ ;s)

)
G̃(x− sξ ,ξ )ds,

Since the integrand is dominated by(
sup
x∈Ω

µs(x)
)(

sup
(x,ξ )∈Ω×Sd−1

|G(x,ξ )|

)
exp(−µts),

which is integrable with respect to s on the half line [0,∞), and since the integrand is con-
tinuous at each point (x,ξ ) ∈ Ω × Sd−1 for almost all s ∈ [0,∞), we apply the dominated
convergence theorem to prove continuity of f (1) on X .

Proof of Lemma 2. Since boundedness of G+ and G− is obvious from their formulae (10),
we focus on discussing continuity of them. At first, we fix a point (x,ξ ) ∈ Ω × Sd−1 and
prove continuity of G+ at the point (x,ξ ).

We first suppose that the boundary data f0 satisfies condition 1. Since τ− is continuous
on X , the integrand

p(x,ξ ,ξ ′)exp
(
−Mt

(
x,ξ ′;τ−(x,ξ ′)

))
f0(x− τ−(x,ξ ′)ξ ′,ξ ′)

is continuous at (x,ξ ) ∈ Ω × Sd−1 for almost all ξ ′ ∈ Sd−1
+ . Furthermore, the integrand is

bounded by (
sup

(x,ξ ,ξ ′)
p(x,ξ ,ξ ′)

)(
sup

(x,ξ )∈Γ−

| f0(x,ξ )|

)
.

Therefore, we can apply the dominated convergence theorem to conclude that G+ is bounded
continuous on Ω ×Sd−1.

Next, we suppose that f0 satisfies condition 2. By changing variables of integration
y0 = (y1,y2, . . . ,yd−1,0) = x− τ−(x,ξ ′)ξ ′, we have

G+(x,ξ ) =
∫
Rd−1

p
(

x,ξ ,
x− y0

|x− y0|

)
exp
(
−Mt

(
x,

x− y0

|x− y0|
; |x− y0|

))
× f0

(
y0,

x− y0

|x− y0|

)
xd

|x− y0|d
dy1dy2 · · ·dyd−1,

where xd/|x− y0|d is the Jacobian of this change.
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By condition 2, for almost all (y1,y2, . . . ,yd−1) ∈ Rd−1, the integrand

p
(

x,ξ ,
x− y0

|x− y0|

)
exp
(
−Mt

(
x,

x− y0

|x− y0|
; |x− y0|

))
f0

(
y0,

x− y0

|x− y0|

)
xd

|x− y0|d

is continuous at (x,ξ ) ∈Ω ×Sd−1. Furthermore, the integrand is uniformly bounded by((
sup

(x,ξ ,ξ ′)
p(x,ξ ,ξ ′)

)(
sup

(x,ξ )∈Γ−

| f0(x,ξ )|

))
/(|x− y0|− ε/2)d

on the neighorhood Bε/2(x)×Sd−1, where Bε/2(x) is the closed ball with centre x and radius
ε/2, and xd > ε > 0. Since the dominant is integrable with respect to y1, y2, . . . , and yd−1, we
can apply the dominated convergence theorem to conclude that G+ is bounded continuous
at (x,ξ ) ∈Ω ×Sd−1.

Thus, it follows from the discussion above that G+ is bounded continuous on Ω ×Sd−1

if the boundary data f0 satisfies the assumption in Theorem 1. In the same way, we can
show that G− is also bounded continuous on Ω × Sd−1. After all, G itself is also bounded
continuous on Ω ×Sd−1.

Remark 3. Our technique, changing variables of integration, seems available in the case of
a general convex domain Ω with C1 boundary ∂Ω . However, the authors have not found the
Jacobian of this change in the general case.

Lemma 3. Suppose that the function f (n), defined by recursive formulae (7)-(8), is bounded
continuous on X for some n ∈ N. Then, the successive function f (n+1) is also bounded con-
tinuous on X.

Proof. As the proof of Lemma 1, let f̃ (n) be the zero extention of f (n) to Rd × Sd−1. Also
let µ̃s and p̃ be the zero extensions of µs and p to Rd and Rd × Sd−1× Sd−1, respectively.
Then, we have

f (n+1)(x,ξ ) =
∫

∞

0
µ̃s(x− sξ )exp

(
−M̃t(x,ξ ;s)

)
×
∫

Sd−1
p̃(x− sξ ,ξ ,ξ ′) f̃ (n)(x− sξ ,ξ ′)dσξ ′ds

for all (x,ξ ) ∈ X . Since f (n) is continuous on X , the integrand

µ̃s(x− sξ )exp
(
−M̃t(x,ξ ;s)

)∫
Sd−1

p̃(x− sξ ,ξ ,ξ ′) f̃ (n)(x− sξ ,ξ ′)dσξ ′

is also continuous at each point (x,ξ )∈ X for almost all s∈ [0,∞). In addition, this integrand
is dominated by (

sup
x∈Ω

µs(x)
)(

sup
(x,ξ )∈X

| f (n)(x,ξ )|

)
exp
(
−µts

)
,

which is integrable with respect to s. Thus, we can apply Lebesgue’s convergence theorem
to prove continuity of f (n+1) on X .

By Lemma 1 and Lemma 3, f (n) is bounded countinuous on X for all n ∈ N, and by
Proposition 3, the sum ∑

∞
n=1 f (n)(x,ξ ) converges uniformly on X , which implies that the

function F1 is also bounded continuous on X .
Thus, we succeed to separate the solution into two parts, the discontinuous part F0 and

the continuity part F1.
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4 Equivalence between the boundary value problem and derived integral equations

In this section, we check the equivalence between the boundary value problem (1)-(2) and
integral equations (4)-(5). As we noted in Section 2, although solutions to the boundary value
problem (1)-(2) satisfy integral equations (4)-(5), the converse does not hold in general. So,
we see that, under the assumption in Theorem 1, the solution to integral equations (4)-(5)
is indeed the solution to the boundary value problem (1)-(2). In other words, we prove the
following two propositions.

Proposition 5. Let f be the solution to integral equations (4)-(5). Suppose that the bound-
ary data f0 satisfies the assumption in Theorem 1. Then, the directional derivative ξ ·
∇x f (x,ξ ) is defined for all (x,ξ ) ∈Ω ×Sd−1 and f satisfies the stationary transport equa-
tion (1).

Proposition 6. The solution f to integral equations (4)-(5) satisfies the boundary condition
(2).

Proof of Proposition 5. Making use of the following equality

τ−(x+ tξ ,ξ ) = τ−(x,ξ )+ t

for (x,ξ ) ∈Ω ×Sd−1 and t ∈ R such that x+ tξ ∈Ω , we have

f (0)(x+ tξ ,ξ ) =

{
exp
(
−Mt

(
x+ tξ ,ξ ;τ−(x,ξ )+ t

))
f0(x− τ−(x,ξ )ξ ,ξ ), ξd 6= 0,

0, ξd = 0.

When ξd 6= 0, since

Mt
(
x+ tξ ,ξ ;τ−(x,ξ )+ t

)
= Mt

(
x,ξ ;τ−(x,ξ )

)
−Mt

(
x,ξ ;−t

)
,

we have

ξ ·∇x f (0)(x,ξ ) =
dMt

dt
(x,ξ ;−t)|t=0 exp

(
−Mt

(
x,ξ ;τ−(x,ξ )

))
f0(x− τ−(x,ξ )ξ ,ξ )

=−µt(x)exp
(
−Mt

(
x,ξ ;τ−(x,ξ )

))
f0(x− τ−(x,ξ )ξ ,ξ )

=−µt(x) f (0)(x,ξ ).

When ξd = 0, it is obvious that ξ ·∇x f (0)(x,ξ ) = 0 =−µt(x) f (0)(x,ξ ).
Thus, in both cases, we have

ξ ·∇x f (0)(x,ξ ) =−µt(x) f (0)(x,ξ ) (11)

for all (x,ξ ) ∈Ω ×Sd−1.
Since not only f (1) but also G, appeared in the proof of Lemma 1, is bounded continuous

on Ω ×Sd−1, the function

f (1)(x+ tξ ,ξ ) =
∫

τ−(x+tξ ,ξ )

0
µs(x+ tξ − sξ )exp

(
−Mt(x+ tξ ,ξ ;s)

)
G(x+ tξ − sξ ,ξ )ds

=
∫

τ−(x,ξ )

−t
µs(x− sξ )exp

(
Mt(x,ξ ;−t)−Mt(x,ξ ;s)

)
G(x− sξ ,ξ )ds
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is differentiable with respect to t at t = 0 for all (x,ξ ) ∈Ω ×Sd−1 and

ξ ·∇x f (1)(x,ξ ) =µs(x,ξ )G(x,ξ )

−µt(x)
∫

τ−(x,ξ )

0
µs(x− sξ )exp

(
−Mt(x,ξ ;s)

)
G(x− sξ ,ξ )ds

=µs(x)
∫

Sd−1
p(x,ξ ,ξ ′) f (0)(x,ξ ′)dσξ ′ −µt(x) f (1)(x,ξ ) (12)

for all (x,ξ ) ∈Ω ×Sd−1.
Since the functions f (n) are bouded continuous on X for all n ∈ N by Lemma 3, the

following relation holds from the direct calculation:

ξ ·∇x f (n+1)(x,ξ ) = µs(x)
∫

Sd−1
p(x,ξ ,ξ ′) f (n)(x,ξ ′)dσξ ′ −µt(x) f (n+1)(x,ξ ) (13)

for all (x,ξ ) ∈Ω ×Sd−1 and for all n ∈ N.
By Proposition 3, we can sum up right hand sides of (11), (12), and (13) to obtain

ξ ·∇x f (x,ξ ) = ξ ·∇x

∞

∑
n=0

f (n)(x,ξ ) =
∞

∑
n=0

ξ ·∇x f (n)(x,ξ )

=
∞

∑
n=0

µs(x)
∫

Sd−1
p(x,ξ ,ξ ′) f (n)(x,ξ ′)dσξ ′ −

∞

∑
n=0

µt(x) f (n)(x,ξ )

=µs(x)
∫

Sd−1
p(x,ξ ,ξ ′)

∞

∑
n=0

f (n)(x,ξ ′)dσξ ′ −µt(x)
∞

∑
n=0

f (n)(x,ξ )

=µs(x)
∫

Sd−1
p(x,ξ ,ξ ′) f (x,ξ ′)dσξ ′ −µt(x) f (x,ξ ).

for all (x,ξ )∈Ω×Sd−1, which is the stationary transport equation (1) itself. Thus, the direc-
tional derivative ξ ·∇x f (x,ξ ) is defined for all (x,ξ ) ∈Ω ×Sd−1 by termwise diffrentiation
and the original function f satisfies the stationary transport equation (1).

Proof of Proposition 6. For all (x,ξ ) ∈ Γ−,

f (n)(x,ξ ) =

{
f0(x,ξ ), n = 0,
0, n≥ 1.

Therefore,

f (x,ξ ) =
∞

∑
n=0

f (n)(x,ξ ) = f0(x,ξ )

for all (x,ξ ) ∈ Γ−.

From proposition 5 and Proposition 6, it follows that the boundary value problem (1)-(2)
and integral equations (4)-(5) are equivalent in this setting.
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5 Example for nonequivalence between the stationary transport equation and derived
integral equations

In this section, we introduce an example in two dimensional case which shows that piecewise
continuity of the boundary data is not a sufficient condition for the main result. Let d = 2
and fix x = (x1,x2) ∈Ω . We introduce the polar coordinate to S1:

ξ (θ) = (cosθ ,sinθ), θ ∈ [0,2π).

We note that, by this coordinate, S1
+ and S1

− are identified with intervals (0,π) and (π,2π),
respectively. We introduce pieces of Γ− by

Γ−,1 := {(x,ξ (θ)) ∈ Γ−|x2 = 0,x1 ≥ x1− x2 cotθ ,θ ∈ (0,π)},
Γ−,2 := {(x,ξ (θ)) ∈ Γ−|x2 = 0,x1 < x1− x2 cotθ ,θ ∈ (0,π)},
Γ−,3 := {(x,ξ (θ)) ∈ Γ−|x2 = 1,θ ∈ (π,2π)}.

We note that Γ− = Γ−,1∪Γ−,2∪Γ−,3 and Γ−,1∩Γ−,2 = Γ−,2∩Γ−,3 = Γ−,3∩Γ−,1 = /0.
We take the boundary data f0 as follows:

f0(x,ξ ) :=

{
1, (x,ξ ) ∈ Γ−,1,

0, (x,ξ ) ∈ Γ−,2∪Γ−,3.

The boundary data f0 is obviously bounded and constant on each Γ−,i, i = 1,2,3, which
implies that the boundary data f0 is indeed piecewise continuous.

With this boundary data f0, we define a family of functions { f (n)}n≥0 on X by re-
cursive formulae (7)-(8). Through the same discussion in Section 2, we see that the sum
f = ∑

∞
n=0 f (n) is still the unique solution to the integral equations (4)-(5). However, the di-

rectional derivative ξ ·∇x f (x,ξ ) of this sum f is not defined at (x,ξ ) for all ξ ∈ S1.
In this setting, the function G−, defined by the formula (10) in Section 3, is identically

zero, which implies that G− is continuous in Ω ×S1, while G+, also defined by the formula
(10) in Section 3, is discontinuous with respect to x at (x,ξ ) for all ξ ∈ S1. Thus, G =
G+ +G− is also discontinuous with respect to x at (x,ξ ) for all ξ ∈ S1. Although G is
discontinuous with respect to x at one point, f (1) is continuous on X . This implies that the
directional derivative ξ ·∇x f (n)(x,ξ ) is defined for all (x,ξ ) ∈ Ω × S1 and for all n ≥ 2,
whereas ξ ·∇x f (1)(x,ξ ) is not defined at (x,ξ ) ∈ Ω × S1. Since ξ ·∇x f (0)(x,ξ ) is defined
for all (x,ξ ) ∈ Ω × S1, we have to conclude that ξ ·∇x ∑

∞
n=0 f (n)(x,ξ ) is not defined at

(x,ξ ) ∈Ω ×S1, which means that the sum f (x,ξ ) = ∑
∞
n=0 f (n)(x,ξ ) is not a solution to the

boundary value problem (1)-(2). This conclusion implies that this boundary value problem
(1)-(2) has no solution.

Acknowledgements The authors would like to thank Emeritus Professor Kazuo Aoki for suggesting this
problem.
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