

NOTES ON PRODUCTS OF LINDELÖF SPACES WITH POINTS G_{δ}

TOSHIMICHI USUBA

Abstract

In this note，under some extra assumptions，we study some con－ structions of regular T_{1} Lindelöf spaces with points G_{δ} whose product have a large extent．

1．Introduction

For a topological space X ，the Lindelöf degree of $X, L(X)$ ，is the minimal car－ dinal κ such that every open cover of X has a subcover of size $\leq \kappa$ ．A space X is Lindelöf if $L(X)=\omega$ ，that is，every open cover of X has a countable subcover． The extent of $X, e(X)$ ，is $\sup \{|C| \mid C \subseteq X$ is closed and discrete $\}$ ．It is clear that $|X| \geq L(X) \geq e(X)$ ．

It is well－known that the product of compact spaces is compact．In contrast with compact spaces，it is also known that the product of Lindelöf spaces needs not to be Lindelöf；If S is the Sorgenfrey line，S is Lindelöf but $e(S \times S)=2^{\omega} \leq L(S \times S)$ ． This fact suggests the following natural question：

Question 1．1．Are there Lindelöf spaces X and Y with $e(X \times Y)>2^{\omega}$ ？
For this question，Shelah［3］and Gorelic［1］proved the following consistency results：

Fact 1．2．（1）Under $V=L$ ，there are regular T_{1} Lindelöf spaces X and Y with points G_{δ} such that $e(X \times Y)=\left(2^{\omega}\right)^{+}$．
（2）Suppose $C H$ ．Then there is a σ－closed，ω_{2}－c．c．forcing notion which forces the following statement：There are regular T_{1} Lindelöf spaces X and Y with points G_{δ} such that $e(X \times Y)=2^{\omega_{1}}$ and $2^{\omega_{1}}$ is arbitrary large．

However it is still open whether the existence of such spaces is provable from ZFC．In this note，we will give relatively simple proofs of Shelah and Gorelic＇s results．First，we show that the Cohen forcing creates such spaces：

Theorem 1．3．The Cohen forcing forces the following：There are regular T_{1} Lin－ delöf spaces X and Y with points G_{δ} such that $e(X \times Y)=\left(2^{\omega_{1}}\right)^{V}$ ．

We also prove the following theorem．A space X is a P－space if every $G_{\boldsymbol{\delta}}$－subset of X is open in X ．

Theorem 1.4. Suppose there is a regular T_{1} Lindelöf P-space X with character $\leq \omega_{1}$. Then there are regular Lindelöf spaces X_{0} and X_{1} with points G_{δ} such that $e\left(X_{0} \times X_{1}\right)=|X|$.

It is known that under $V=L$, there is a regular T_{1} Lindelöf P -space of weight ω_{1} and size $\left(2^{\omega}\right)^{+}=\omega_{2}$ (Juhász-Weiss [2]).

2. In the Cohen forcing extension

For Theorem 1.3, we prove the following which would be interesting in its own right.

Proposition 2.1. Let X be a zero-dimensional T_{1} Lindelöf space X with points G_{δ}. Then the Cohen forcing forces the following statement: There are zero-dimensional T_{1} Lindelöf spaces X_{0} and X_{1} with points G_{δ} such that $e\left(X_{0} \times X_{1}\right)=|X|$.

We can obtain Theorem 1.3 by the combination of the proposition with the following fact:

Fact 2.2 (Usuba [4]). The Cohen forcing forces the following: There exists a zerodimensional T_{1} Lindelöf space X with points G_{δ} such that $|X|=\left(2^{\omega_{1}}\right)^{V}$.

We start the proof of the proposition. Fix a space X as in the assumption of the proposition. For each $x \in X$, take open sets $G_{n}^{x}(n<\omega)$ such that $\bigcap_{n<\omega} G_{n}^{x}=\{x\}$. By the assumption for X, we may assume that each G_{n}^{x} is clopen and $G_{0}^{x} \supseteq G_{1}^{x} \supseteq$ \cdots. Let $H_{n}^{x}=G_{n}^{x} \backslash G_{n+1}^{x}$. Note that the following:
(1) H_{n}^{x} is clopen.
(2) $H_{n}^{x} \cap H_{m}^{x}=\emptyset$ for every $n<m<\omega$.
(3) $x \notin H_{n}^{x}$.
(4) $G_{m}^{x}=\{x\} \cup \bigcup_{m \leq n<\omega} H_{n}^{x}$.

Let \mathbb{C} be the Cohen forcing notion $2^{<\omega}$. Take a (V, \mathbb{C})-generic G, and we work in $V[G]$. Let $a=\{n<\omega \mid \bigcup G(n)=0\}$ and $b=\{n<\omega \mid \bigcup G(n)=1\}$. We define the space X_{a} as the following manner. For $x \in X$, let $W_{a}^{x}=\bigcup\left\{H_{n}^{x} \mid n \in a\right\} \cup\{x\}$. W_{a}^{x} is a closed subset of X. Then the topology of X_{a} is generated by the family $\{O \subseteq X \mid O$ is open in $X\} \cup\left\{W_{a}^{x} \mid x \in X\right\}$ as a subbase. One can check that X_{a} is a zero-dimensional T_{1}-space with points G_{δ}. We define X_{b} by the same way but replacing a by $b . X_{a}$ and X_{b} are finer spaces than X. We shall show that X_{a} and X_{b} are required spaces.

Lemma 2.3. $e\left(X_{a} \times X_{b}\right)=|X|$. Namely, the diagonal $\Delta=\{\langle x, x\rangle \mid x \in X\}$ is a closed discrete subset of $X_{a} \times X_{b}$.

Proof. Since X_{a} and X_{b} are Hausdorff, it is clear that Δ is closed. To see that Δ is discrete, take $\langle x, x\rangle \in \Delta$. Consider $W_{a}^{x} \times W_{b}^{x}$. It is obvious that $W_{a}^{x} \times W_{b}^{x}$ is an open neighborhood of $\langle x, x\rangle$ in $X_{a} \times X_{b}$. We check that $\Delta \cap\left(W_{a}^{x} \times W_{b}^{x}\right)=\{\langle x, x\rangle\}$. Take
$\langle y, y\rangle \in \Delta \cap\left(W_{a}^{x} \times W_{b}^{x}\right)$ and suppose $y \neq x$. Since $W_{a}^{x}=\bigcup\left\{H_{n}^{x} \mid n \in a\right\} \cup\{x\}$ and $W_{b}^{x}=\bigcup\left\{H_{n}^{x} \mid n \in b\right\} \cup\{x\}$, there are $n_{a} \in a$ and $n_{b} \in b$ such that $y \in H_{n_{a}}^{x} \cap H_{n_{b}}^{x}$. $n_{a} \neq n_{b}$ because $a \cap b=\emptyset$. However then $H_{n_{a}}^{x}$ is disjoint from $H_{n_{b}}^{x}$, this is a contradiction.
Lemma 2.4. X_{a} and X_{b} are Lindelöf.
Proof. We prove it only for $X_{a} . X_{b}$ can be checked by the same argument. Our argument which will be used in this proof came from Usuba [5].

Let \mathcal{U} be an open cover of X_{a}. We may assume that every element of \mathcal{U} is of the form $O \cap W_{a}^{x_{0}} \cap \cdots \cap W_{a}^{x_{n}}$ for some open set O in X and $x_{0}, \ldots, x_{n} \in X$. Let $W_{a}^{x_{0}, \ldots, x_{n}}=W_{a}^{x_{0}} \cap \ldots \cap W_{a}^{x_{n}}$. Take a \mathbb{C}-name $\dot{\mathcal{U}}$ for \mathcal{U}, and let \dot{a} be a name for a.

Return to V. Let $p \in \mathbb{C}$ be such that $p \Vdash_{\mathbb{C}}$ " $\dot{\mathcal{U}}$ is an open cover of $X_{\dot{a}}$ ". Take a sufficiently large regular cardinal θ, and a countable $M \prec H_{\theta}$ containing all relevant objects. We see that $p \Vdash_{\mathbb{C}}$ " $\left\{O \cap W_{\dot{a}}^{x_{0}, \ldots, x_{n}} \in \dot{\mathcal{U}} \mid O, x_{0}, \ldots, x_{n} \in M\right\}$ is a cover of $X_{\dot{a}}$ ". Since M is countable, we have that $p \vdash_{\mathbb{C}}$ " $\dot{\mathcal{U}}$ has a countable subcover" as required.

In order to show it, fix $x^{*} \in X$ and $p^{\prime} \leq p$. We will find $r \leq p^{\prime}$ and $O, x_{0}, \ldots, x_{n} \in$ M with $r \Vdash_{\mathbb{C}} " x^{*} \in O \cap W_{\dot{a}}^{x_{0}, \ldots, x_{n}} \in \dot{\mathcal{U}}$ ". For a condition $q \leq p^{\prime}$ and $x \in X$, let $a_{q}=\{n \in \operatorname{dom}(q) \mid q(n)=0\}$ and $W_{q}^{x}=\bigcup\left\{H_{n}^{x} \mid n \in a_{q}\right\} \cup G_{\operatorname{dom}(q)}^{x}$. Then for $x_{0}, \ldots, x_{n} \in X$, let $W_{q}^{x_{0}, \ldots, x_{n}}=W_{q}^{x_{0}} \cap \cdots \cap W_{q}^{x_{n}}$. Note that $W_{q}^{x_{0}, \ldots, x_{n}}$ is open in X.

Now let \mathcal{V} be the set of all $O \cap W_{q}^{x_{0}, \ldots, x_{n}}$ such that $q \leq p^{\prime}$ and $q \Vdash_{\mathbb{C}}$ " $O \cap W_{\dot{a}}^{x_{0}, \ldots, x_{n}} \in$ $\dot{\mathcal{U}}$ ". We claim that \mathcal{V} is an open cover of X. Take $y \in X$. Then there are $q \leq p$, open $O \subseteq X$, and $x_{0}, \ldots, x_{n} \in X$ such that $q \Vdash_{\mathbb{C}} " y \in O \cap W_{\dot{a}}^{x_{0}, \ldots, x_{n}} \in \dot{\mathcal{U}}$ ". Clearly $y \in O$, and $y \in G_{0}^{x_{i}}$ for every $i \leq n$. We see $y \in W_{q}^{x_{i}}$. Fix $i \leq n$.

Case 1: $y=x_{i}$. Then trivially $y \in W_{q}^{x_{i}}$.
Case 2: $y \neq x_{i}$. Then there is a unique $m<\omega$ with $y \in H_{m}^{x_{i}}$. If $m \geq \operatorname{dom}(q)$ or $m \in \operatorname{dom}(q)$ but $q(m)=1$, we can take a condition $q^{\prime} \leq q$ with $m \in \operatorname{dom}\left(q^{\prime}\right)$ and $q^{\prime}(m)=1 . \quad q^{\prime} \Vdash_{\mathbb{C}} " m \notin \dot{a} "$, hence $q^{\prime} \Vdash_{\mathbb{C}} " y \notin W_{\dot{a}}^{x_{i}} \supseteq W_{\dot{a}}^{x_{0}, \ldots, x_{n} "}$, this is a contradiction. Thus $m \in \operatorname{dom}(q)$ and $q(m)=0$, hence $y \in W_{q}^{x_{i}}$.

In either cases, we have $y \in W_{q}^{x_{i}}$, hence $y \in \bigcap_{i \leq n} W_{q}^{x_{i}}=W_{q}^{x_{0}, \ldots, x_{n}}$.
By the elementarity of M, we have $\mathcal{V} \in M$. Since X is Lindelöf, \mathcal{V} has a countable subcover \mathcal{V}^{\prime}. We may assume that $\mathcal{V}^{\prime} \in M . \mathcal{V}^{\prime} \subseteq M$ because \mathcal{V}^{\prime} is countable. Now, we can take $O \cap W_{q}^{x_{0}, \ldots, x_{n}} \in \mathcal{V}^{\prime}$ with $x^{*} \in O \cap W_{q}^{x_{0}, \ldots, x_{n}}$. It is clear that $O, x_{0}, \ldots, x_{n} \in M$, and $q \Vdash_{\mathbb{C}} " O \cap W_{\dot{a}}^{x_{0}, \ldots, x_{n}} \in \dot{\mathcal{U}}$ ". Finally we have to find $r \leq q$ with $r \Vdash_{\mathbb{C}} " x^{*} \in O \cap W_{\dot{a}}^{x_{0}, \ldots, x_{n} "}$, this completes our proof.

Since $x^{*} \in W_{q}^{x_{0}, \ldots, x_{n}}$, for each $i \leq n$, if $x^{*} \neq x_{i}$ then $x^{*} \in H_{k}^{x_{i}}$ for some $k<\omega$. Hence there is a large $m<\omega$ such that $m>\operatorname{dom}(q)$ and if $x^{*} \neq x_{i}$ then $x^{*} \in H_{k}^{x_{i}}$ for some $k<m$. Define $r \leq q$ by $\operatorname{dom}(r)=m$, and $r(k)=0$ for every $\operatorname{dom}(q) \leq k<m$.
 $x^{*} \neq x_{i}$. We can find $k<m$ such that $x^{*} \in H_{k}^{x_{i}}$. By the choice of r, we have $r \Vdash_{\mathbb{C}} " k \in \dot{a} "$, hence $r \Vdash_{\mathbb{C}} " x^{*} \in H_{k}^{x_{i}} \subseteq W_{\dot{a}}^{x_{i}} "$.

Remark 2.5. As in [5], for each positive $n<\omega$ we can prove the following: In the Cohen forcing extension, there is a regular Lindelöf space X with points G_{δ} such that X^{n} is Lindelöf but $e\left(X^{n+1}\right)=\left(2^{\omega_{1}}\right)^{V}$.

3. Using P-spaces

In this section, we prove Theorem 1.3. Fix a regular Lindelöf $T_{1} \mathrm{P}$-space X with character $\leq \omega_{1}$. Let $Y=\left\{x \in X \mid \chi(x, X)=\omega_{1}\right\}$. Note that every $x \in X \backslash Y$ is an isolated point.

Let S be the Sorgenfrey line, namely, the underlying set of S is the real line \mathbb{R}, and the topology of S is generated by the family $\{[r, s) \mid r, s \in \mathbb{R}\}$ as an open base. S is a first countable regular T_{1} Lindelöf space.

For a subset $A \subseteq X$, let $\llbracket A \rrbracket=\bigcup\{\{x\} \times \mathbb{R} \mid x \in A \cap Y\} \cup(A \backslash Y)$. By the assumption, for each $x \in Y$, there is a sequence $\left\langle G_{\alpha}^{x} \mid \alpha<\omega_{1}\right\rangle$ such that:
(1) G_{α}^{x} is clopen in X.
(2) $\left\langle G_{\alpha}^{x} \mid \alpha<\omega_{1}\right\rangle$ is \subseteq-decreasing, and $G_{\alpha}^{x}=\bigcap_{\beta<\alpha} G_{\beta}^{x}$ if α is limit.
(3) $\bigcap_{\alpha<\omega_{1}} G_{\alpha}^{x}=\{x\}$.

Fix an injection $\sigma: \omega_{1} \rightarrow \mathbb{R}$. For $x \in Y, \alpha<\omega_{1}$, and open $O \subseteq S$, let $W(x, \alpha, O)=$ $\bigcup\left\{\llbracket G_{\beta}^{x} \backslash G_{\beta+1}^{x} \rrbracket \mid \alpha \leq \beta, \sigma(\beta) \in O\right\} \cup(\{x\} \times O)$.

We define the space X_{0} as in [4] using X and S. The underlying set of X_{0} is $\llbracket X \rrbracket$. The topology of X_{0} is generated by the family $\{\llbracket W \rrbracket \mid W \subseteq X$ is open $\} \cup$ $\left\{W(x, \alpha, O) \mid x \in Y, \alpha<\omega_{1}, O \subseteq S\right.$ is open $\}$ as an open base. We know that X_{0} is a regular T_{1} Lindelöf space with points G_{δ} (see [4]).

For X_{1}, let S^{\prime} be the space \mathbb{R} equipped with the reverse Sorgenfrey topology, namely, it is generated by the family $\{(r, s] \mid r, s \in \mathbb{R}\}$ as an open base. S^{\prime} is also a first countable regular T_{1} Lindelöf space. We define X_{1} by the same way to X_{0} but replacing S with S^{\prime}. Again, X_{1} is a regular Lindelöf space with points G_{δ}.

We show that $e\left(X_{0} \times X_{1}\right)=|X|$. Let $\Delta=\{\langle x, x\rangle \mid x \in X \backslash Y\} \cup\{\langle\langle x, r\rangle,\langle x, r\rangle\rangle \mid$ $x \in Y, r \in \mathbb{R}\}$. One can check that Δ is closed in $X_{0} \times X_{1}$. We see that Δ is discrete. If $x \in X \backslash Y$, then x is isolated in X, hence $\langle x, x\rangle$ is also isolated in $X_{0} \times X_{1}$. Let $x \in Y$ and $r \in \mathbb{R}$. Let $O_{0}=[r, r+1)$ and $O_{1}=(r-1, r]$. O_{0} is open in S with $r \in O_{0}$, and O_{1} is open in S^{\prime} with $r \in O_{1}$. Moreover we have $O_{0} \cap O_{1}=\{r\}$. Consider open sets $W\left(x, 0, O_{0}\right) \subseteq X_{0}$ and $W\left(x, 0, O_{1}\right) \subseteq X_{1}$. By the choice of O_{0} and O_{1}, we have $W\left(x, 0, O_{0}\right) \cap W\left(x, 0, O_{1}\right)=\{\langle x, r\rangle\}$. Then $\Delta \cap\left(W\left(x, 0, O_{0}\right) \times W\left(x, 0, O_{1}\right)\right)=\langle\langle x, r\rangle,\langle x, r\rangle\rangle$, as required.

Remark 3.1. The existence of a regular T_{1} Lindelöf P-space with character $\leq \omega_{1}$ and size $>\omega_{1}$ is independent from ZFC.

References

[1] I. Gorelic, On powers of Lindelöf spaces. Comment. Math. Univ. Carol. Vol. 35, No. 2 (1994), 383-401.
[2] I. Juhász, W. Weiss, On a problem of Sikorski, Fund. Math. 100 (1978) 223-227.
[3] S. Shelah, On some problems in general topology. Contemp. Math. 192 (1996), 91-101.
[4] T. Usuba, Large regular Lindelöf spaces with points G_{δ}, Fund. math. 237 (2017) 241-260.
[5] T. Usuba, G_{δ}-topology and compact cardinals, preprint.
(T. Usuba) Faculty of Science and Engineering, Waseda University, Okubo 3-4-1, Shinjyuku, Tokyo, 169-8555 Japan

E-mail address: usuba@waseda.jp

