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Abstract

The problem of minimizing a function representable as the difference of two monotonic

functions over the unit simplex has a potential for various practical applications. In this

paper, we discretize the problem and develop a branch‐and‐bound algorithm for generat‐

ing an approximate optimal solution within a polynomial number of function evaluations.
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1 Introduction

In this paper, we discuss optimization of a function representable as the difference of mono‐

tonic (d.m.) functions over the unit simplex. Monotonic optimization was first introduced

by Rubinov et al. [10] in 2001 to solve optimization problems defined only with increasing

functions. Since then, Tuy et al. extended it to handle d.m. functions and achieved remarkable

results, including the polyblock algorithm for locating a globally optimal solution [11−14].

Monotonicity is commonly observed in real‐world systems related to economics and engi‐

neering, and besides polynomials, often used in their mathematical modeling, are all d.m.

functions. Therefore, monotonic optimization has a great potential for a broad range of real‐

world applications. In contrast to the objective function, the constraints of our problem are
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rather special and limit the feasible set of solutions to the unit simplex. However, our prob‐

lem still includes various problems of practical and theoretical importance, e.g., the maximum

clique problem [7], Lipschitz optimization [9], and so forth.

In [3], Bomze and de Klerk discretize the problem of minimizing a quadratic function over

the unit simplex, and show that it admits a polynomial‐time approximation scheme (PTAS). In

[4,5], de‐Klerk et al. extend this result and show that the problem of minimizing a polynomial

of fixed degree also has a PTAS. Polynomials, including quadratic functions, are d.m., and

their discretization technique is directly applicable to our problem. Although the number

of feasible solutions to examine is a polynomial in the dimension, it is enormous when the

tolerance for approximation is small enough to use in practical applications. To enumerate

the feasible solutions of the discretized problem efficiently, we develop a branch‐and‐bound

algorithm and show that it generates an approximate optimal solution within a polynomial
number of function evaluations.

In Section 2, after describing the problem formulation, we present two major applications

of the problem. In Section 3, we review some known results on discretization of the problem.

In Sections 4 and 5, we devise a branching and a bounding procedures, respectively, which

are the two main parts of the algorithm. In Section 6, we summarize the branch‐and‐bound

algorithm.

2 Problem formulation and applications

Let us denote the unit n‐cube and the unit (n-1) ‐simplex by [0, 1]^{n} and $\Delta$_{n-1}=\{\mathrm{x}\in \mathbb{R}^{n}|

\mathrm{e}^{\mathrm{T}}\mathrm{x}=1,\mathrm{x}\geq 0\} , respectively, where \mathrm{e} denote the all‐ones n‐vector. For i=1,2, let f_{i}:\mathbb{R}^{n}\rightarrow \mathbb{R}

be a function increasing on [0, 1]^{n} , i.e., for any \mathrm{a},\mathrm{b}\in[0, 1]^{n} , we have f_{i}(\mathrm{a})\leq f_{i}(\mathrm{b}) if \mathrm{a}\leq \mathrm{b}.

Therefore, [0, 1]^{n} is assumed to be a subset of domfl \cap dom  f_{2} , where \mathrm{d}\mathrm{o}\mathrm{m}f_{\mathrm{i}} denotes the

effective domain of f_{i} . The difference of these increasing functions f_{1} and f_{2} is generally

referred to as a d.m. (difference‐of‐monotonic) function [12], whose minimization on $\Delta$_{n-1} is

our problem considered in this paper:

minimize f_{1}(\mathrm{x})-f_{2}(\mathrm{x})
(1)

subject to \mathrm{e}^{\mathrm{T}}\mathrm{x}=1, \mathrm{x}\geq 0.

Despite the simple appearance, (1) includes a wide variety of optimization problems, as will
be seen below.
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STANDARD QUADRATIC OPTIMIZATION

Every polynomial such as a quadratic is d.m. on the nonnegative orthant \mathbb{R}_{+}^{n}=\{\mathrm{x}\in \mathbb{R}^{n}|\mathrm{x}\geq
 0\} , because it can be divided into the sum of positive coefficient terms and the sum of neg‐

ative coefficient terms. Therefore, (1) includes the standard quadratic optimization problem

(standard QP) which minimizes \mathrm{x}^{\mathrm{T}}Q\mathrm{x} on $\Delta$_{n-1} for any Q\in \mathbb{R}^{n\times n}[2,3] . An important example

of this class is the maximum clique problem. Let G=(V,E) be an undirected graph, where

V=\{1, \cdots, n\} is the vertex set and E\subset V\times V is the edge set, and let A denote the adjacency

matrix of G, i.e., a_{ij}=1 if (i,j)\in E , and a_{ij}=0 otherwise. It is known [7] that finding a

clique of maximum cardinality in G is equivalent to

minimize \mathrm{x}^{\mathrm{T}}(A+I)\mathrm{x}
(2)

subject to \mathrm{x}\in$\Delta$_{n-1},

where I\in \mathbb{R}^{n\times n} is the identity matrix. Since all entries in A+I are nonnegative, (2) is a special

case of (1) where f_{2} is absent. For other applications of the standard QP, the reader should

refer to [2].

LIPSCHITZ OPTIMIZATION OVER A SIMPLEX

The problem (1) also includes Lipschitz optimization over the unit simplex:

minimize g(\mathrm{x})
(3)

subject to \mathrm{x}\in$\Delta$_{n-1},

where g is Lipschitzian with Lipschitz constant L>0 , i.e., |g(\mathrm{a})-g(\mathrm{b})|\leq L\Vert \mathrm{a}-\mathrm{b}\Vert for any

\mathrm{a},\mathrm{b}\in dom  g . In [9], it is shown that (3) can be reduced to minimization of an increasing

positively homogeneous (IPH) function under the assumption where L is measured in the l_{1}

norm. However, even if we do not impose such an assumption, (3) invariably belongs to the

class (1). Let

h(\mathrm{x};\mathrm{y})=g(\mathrm{y})-L\Vert \mathrm{x}-\mathrm{y}\Vert.

Then we have g(\mathrm{x})\geq h(\mathrm{x};\mathrm{y}) for any \mathrm{x},\mathrm{y}\in dom  g , where the equality holds if \mathrm{x}=\mathrm{y} . Assuming

[0, 1]^{n}\subset dom  g , let us define a function

f(\mathrm{x})=\left\{\begin{array}{ll}
h(\mathrm{x};\mathrm{x}+(1-\mathrm{e}^{\mathrm{T}}\mathrm{x})\mathrm{e}) & \mathrm{i}\mathrm{f} \mathrm{e}^{\mathrm{T}}\mathrm{x}\leq 1\\
\mathrm{e}^{\mathrm{T}}\mathrm{x}+L\sqrt{n}+g(0) & \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e}.
\end{array}\right.
Obviously, we have f(\mathrm{x})=g(\mathrm{x}) for any \mathrm{x}\in$\Delta$_{n-1} . Moreover, we can show that f is increasing
on [0, 1]^{n}.
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Proposition 2.1 Let \mathrm{a},\mathrm{b}\in[0, 1]^{n} . If 0\leq \mathrm{a}\leq \mathrm{b}, then f(\mathrm{a})\leq f(\mathrm{b}) .

Thus, replacing the objective function g with f in (3), we have an equivalent d.m. opti‐

mization problem, which is again a special case of (1) where f_{2}(\mathrm{x})\equiv 0 . This class of (1)

also includes minimization of ordinary IPH functions on the unit simplex, which is discussed

in [1], because IPH functions are basically increasing on \mathbb{R}_{+}^{n}.

3 Discretization of the problem

Instead of dealing with (1) directly, we propose to discretize it, using a prescribed integer
m>0, into an approximation problem:

minimize f_{1}(\mathrm{x})-f_{2}(\mathrm{x})
(4)

subjectto \mathrm{e}^{\mathrm{T}}\mathrm{x}=1, \mathrm{x}\geq 0, m\mathrm{x}\in \mathbb{Z}^{n}.

For any c\geq 0 , let

M(c,n,m)=c$\Delta$_{n-1}\displaystyle \cap\frac{1}{m}\mathbb{Z}^{n},
where c$\Delta$_{n-1}=\{c\mathrm{x}\in \mathbb{R}^{n}|\mathrm{x}\in$\Delta$_{n-1}\} . Then M(1,n,m) represents the feasible set of(4), which

is the set of grid points generated by subdividing each edge of $\Delta$_{n-1} into m segments of length

\sqrt{2}/m . Since the number of gird points is identical to the (m+1)\mathrm{t}\mathrm{h}(n-1) ‐simplex number,

the figurate number for an (n-1) ‐simplex [6], the total number of feasible solutions to this

approximation problem (4) is bounded from above by

|M(1,n,m)|=\left(\begin{array}{ll}
n+m & -1\\
m & 
\end{array}\right),
which is a polynomial in n . Therefore, as discussed in [3−5], the problem (4) is polynomial‐

time solvable if f_{1} and f_{2} can be evaluated in time polynomial in n . A typical such case is

when both f_{1} and f_{2} are polynomials of fixed degree. In that case, we can also estimate the

approximation quality of(4) beforehand.

Let us denote the optimal values of (1) and (4) by \underline{z} and z^{*} , respectively. Also let \overline{z} denote

the optimal value of
maximize f_{1}(\mathrm{x})-f_{2}(\mathrm{x})

(5)
subject to \mathrm{e}^{\mathrm{T}}\mathrm{x}=1, \mathrm{x}\geq 0.

In [3,4], the following result is proven:

Proposition 3.1 Ifboth f_{1} and f_{2} are polynomials ofdegree d and m\geq d, then

z^{*}-\displaystyle \underline{z}\leq (1-\frac{m!}{m^{d}(m-d)!}) \left(\begin{array}{ll}
2d & -1\\
d & 
\end{array}\right)d^{d}(\displaystyle \overline{z}-\underline{z}) .
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Especially ifd=2,3, this bound can be tightened, respectively, into

z^{*}-\displaystyle \underline{z}\leq\frac{1}{m}(\overline{z}-\underline{z}) , z^{*}-\underline{z}\leq\frac{4}{m}(\overline{z}-\underline{z}) .

For any given tolerance  $\varepsilon$>0 and any polynomials f_{1} and f_{2} of fixed degree d , we can

choose an integer m\geq d to satisfy

 $\varepsilon$\displaystyle \leq (1-\frac{m!}{m^{d}(m-d)!}) \left(\begin{array}{ll}
2d & -\mathrm{l}\\
d & 
\end{array}\right)d^{d}(\displaystyle \overline{z}-\underline{z}) .

The number of feasible solutions to (4) denved from this integer m is |M(1,n,m)| , which

is polynomial in n as seen above. These two facts imply that our target problem (1) allows a

polynomial‐time approximation scheme (PTAS) (see e.g., [8]) when both f_{1} and f_{2} are polyno‐

mials of fixed degree. Even though it is polynomial, |M(1,n,m)| is an enormous number when

the tolerance  $\varepsilon$ is reasonably small. In the rest of this section, we develop a branch‐and‐bound

algorithm for implicitly enumerating all points in the feasible set  M(1,n,m) of (4).

4 Branching procedure

Let \mathrm{a}\in \mathbb{R}^{n} be a nonnegative vector satisfying \mathrm{e}^{\mathrm{T}}\mathrm{a}<1, 0\leq m\mathrm{a}\in \mathbb{Z}^{n} , and let c=1-\mathrm{e}^{\mathrm{T}}\mathrm{a} . Ob‐

viously, mc is a positive integer. For K=\{j_{1}, \cdots, j_{k}\}\subset N=\{1, \cdots, n\} , consider a subproblem

of the approximation problem (4):

\mathrm{P}(\mathrm{a},K)

minimize f_{1}(\mathrm{x})-f_{2}(\mathrm{x})

subject to \mathrm{e}^{\mathrm{T}}\mathrm{x}=1, \mathrm{x}\geq 0, m\mathrm{x}\in \mathbb{Z}^{n}

x_{j}\geq a_{j}, j\in K

x_{j}=a_{j}, j\not\in K,

which is equivalent to

\mathrm{m}nimize f_{1}(\mathrm{x})-f_{2}(\mathrm{x})

subject to \mathrm{y}\in M(c,k,m)
(6)

y_{i}=x_{j_{i}}-a_{j_{i}}, i=1, \cdots, k
x_{j}=a_{j}, j\not\in K.

By definition, M(c,k,m) is the set of grid points generated by subdividing each edge of the

(k-1) ‐simplex c$\Delta$_{k-1} into mc segments of length \sqrt{2}/m . The number of grid points is given

by

|M(c,k,m)|= \left(\begin{array}{ll}
k+mc & -1\\
mc & 
\end{array}\right) , (7)
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which is the number of evaluations of f_{1} and f_{2} required to solve \mathrm{P}(\mathrm{a},K) . To perform this

recursively, we first select an index, say r, from K . Then we divide \mathrm{P}(\mathrm{a},K) into two problems:

\mathrm{P}(\mathrm{a}+\mathrm{e}_{r}/m,K)

minimize f_{1}(\mathrm{x})-f_{2}(\mathrm{x})
subject to \mathrm{e}^{\mathrm{T}}\mathrm{x}=1, \mathrm{x}\geq 0, m\mathrm{x}\in \mathbb{Z}^{n}

x_{j}\geq a_{j}, j\in K\backslash \{r\}
x_{r}\geq a_{r}+1/m

x_{j}=a_{j}, j\not\in K,

and

\mathrm{P}(\mathrm{a},K\backslash \{r\})

minimize f_{1}(\mathrm{x})-f_{2}(\mathrm{x})
subject to \mathrm{e}^{\mathrm{T}}\mathrm{x}=1, \mathrm{x}\geq 0, m\mathrm{x}\in \mathbb{Z}^{n}

x_{j}\geq a_{j}, j\in K\backslash \{r\}
x_{r}=a_{r}

x_{j}=a_{j}, j\not\in K,

where \mathrm{e}_{r} is the rth standard basis n‐vector. These are rewritten, respectively, as follows:

minimize f_{1}(\mathrm{x})-f_{2}(\mathrm{x})
subject to \mathrm{y}\in M(c-1/m,k,m)

y_{i}=x_{j_{i}}-a_{j_{i}}, i=1, k-1 (8)

y_{k}=x_{r}-a_{r}-1/m

x_{j}=a_{j}, j\not\in K,

and

minimize f_{1}(\mathrm{x})-f_{2}(\mathrm{x})
subject to \mathrm{y}\in M(c,k-1,m)

y_{i}=x_{j_{i}}-a_{j_{i}}, i=1, k-1 (9)

x_{r}=a_{r}

x_{j}=a_{j},

Note that

|M(c-1/m,k,m)|=\left(\begin{array}{ll}
k+mc & -2\\
-mc\mathrm{l} & 
\end{array}\right),
Since the following relation is well‐known:

j\not\in K.

|M(c,k-1,m)|=\left(\begin{array}{ll}
k+mc & -2\\
mc & 
\end{array}\right).

\left(\begin{array}{l}
k+mc-1\\
mc
\end{array}\right)=\left(\begin{array}{l}
k+mc-2\\
-mc1
\end{array}\right)+\left(\begin{array}{ll}
k+mc & -2\\
mc & 
\end{array}\right),
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we have

|M(c,k,m)|=|M(c-1/m,k,m)|+|M(c,k-1,m)|.

If the same procedure is applied to both \mathrm{P}(\mathrm{a}+\mathrm{e}_{r}/m,K) and \mathrm{P}(\mathrm{a},K\backslash \{r\}) recursively, we

eventually have \left(\begin{array}{l}
k+mc-1\\
mc
\end{array}\right) subproblems, each of which is a trivial problem with a single feasible

solution corresponding to some grid point in the feasible set M(c,k,m) of (4).

If we start this branching procedure from \mathrm{P}(0,N) , the original discretized problem (4),

then \left(\begin{array}{l}
n+m-\mathrm{l}\\
m
\end{array}\right) trivial subproblems are generated. Simultaneously, we have a branching binary
tree T rooted at \mathrm{P}(0,N) with \left(\begin{array}{l}
n+m-\mathrm{l}\\
m
\end{array}\right) leaves.

Lemma 4.1 The total number ofnodes in T is 2 \left(\begin{array}{l}
n+m-\mathrm{l}\\
m
\end{array}\right)-1.

5 Bounding procedure

Again, consider the subproblem \mathrm{P}(\mathrm{a},K) , or equivalently (6), of the approximation problem

(4). To simplify the illustration, let K=\{1, \cdots,k\} and N\backslash K=\{k+1, \cdots, n\} . Also let \mathrm{a}_{K}=

(al, \cdots ,  a_{k})^{\mathrm{T}} and \mathrm{a}_{N\backslash K}=(a_{k+1}, \ldots,a_{n})^{\mathrm{T}} . Introducing tJie following functions defined on \mathbb{R}^{k} :

f_{i,K}(\mathrm{y})=f_{i}(\mathrm{y}+\mathrm{a}_{K},\mathrm{a}_{N\backslash K}) , i=1,2,

we can rewrite \mathrm{P}(\mathrm{a},K) and (6) in a more tidy form:

minimize f_{1,K}(\mathrm{y})-f_{2,K}(\mathrm{y})
(10)

subject to \mathrm{y}\in M(c,k,m) .

We also see that \mathrm{P}(\mathrm{a},K) is an approximation problem of

minimize f_{1,K}(\mathrm{y})-f_{2,K}(\mathrm{y})
(11)

subject to \mathrm{y}\in c$\Delta$_{k}.

Let z^{*}(\mathrm{a},K) and \underline{z}(\mathrm{a},K) denote the optimal values of (10) and (11), respectively. Needless to

say, z^{*}(\mathrm{a},K) is the optimal value of \mathrm{P}(\mathrm{a},K) , and greater than or equal to \underline{z}(\mathrm{a},K) . It should also
be noted that z^{*}(0,N)=z^{*} and \underline{z}(0,N)=\underline{z}.

Note that M(c,k,m)\subset c$\Delta$_{k}\subset c[0, 1]^{k}=\{\mathrm{x}\in \mathbb{R}^{k}|0\leq \mathrm{x}\leq c\mathrm{e}\}. Since f_{i,K} is still increasing

on c[0, 1]^{k} for each i, we have a lower bound on z^{*}(\mathrm{a},K) immediately as follows:

u_{1}(\mathrm{a},K)=f_{1,K}(0)-f_{2,K}(c\mathrm{e})=f_{1}(\mathrm{a})-f_{2}(\mathrm{a}_{K}+c\mathrm{e},\mathrm{a}_{N\backslash K}) . (12)

If u_{1}(\mathrm{a},K)\geq f_{1}(\mathrm{x}^{*})-f_{2}(\mathrm{x}^{*}) for some \mathrm{x}^{*}\in M(1,n,m) obtained in the course of the algorithm,

we can prune \mathrm{P}(\mathrm{a},K) from the branching tree. This lower bound u_{1}(\mathrm{a},K) is handy to obtain,
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but unfortunately it is not strong enough.

To strengthen the lower bound for \mathrm{P}(\mathrm{a},K) , let us consider k cubes, each of which is a

proper subset of [0, 1]^{k} :

B_{j}=\displaystyle \frac{1}{n}((n-1)[0,1]^{k}+\mathrm{e}_{j})=\{\mathrm{x}\in \mathbb{R}^{k} 0\leq x_{i}\leq 1-1/n1/n\leq x_{j}\leq 1' i\neq j \}, j\in K,

where \mathrm{e}_{j} is the jth standard basis k‐vector. Since cB_{j}\subset c[0, 1]^{k} for each j\in K, the minimum
and the maximum of f_{i,K} on cB_{j} are achieved at the vertices (c/n)\mathrm{e}_{j} and (c/n)((n-1)\mathrm{e}+\mathrm{e}_{j}) ,

respectively. Let

v_{j}=f_{1,K}(\displaystyle \frac{c}{n}\mathrm{e}_{j}) , w_{j}=f_{2,K}(\frac{c}{n}((n-1)\mathrm{e}+\mathrm{e}_{j})) , j\in K,
and let

u2(\displaystyle \mathrm{a},K)=\min\{v_{j}|j\in K\}-\max\{w_{j}|j\in K\}.

Proposition 5.1 The following inequalities hold:

u_{1}(\mathrm{a},K)\leq u_{2}(\mathrm{a},K)\leq z^{*}(\mathrm{a},K) .

For each j\in K, if we further replace B_{j} with the union of k cubes

B_{j\ell}=\displaystyle \frac{1}{n}((n-1)B_{j}+\mathrm{e}_{\ell}) , \ell\in K,
and define

v_{j}'=\displaystyle \min\{f_{1,K}(\mathrm{y})|\mathrm{y}\in\bigcup_{l\in K}cB_{j\ell}\}, w_{j}'=\max\{f_{2,K}(\mathrm{y})|\mathrm{y}\in\bigcup_{\ell\in K}cB_{jl}\}, j\in K.
Then we obtain another lower bound on z^{*}(\mathrm{a},K) :

u3 (\displaystyle \mathrm{a},K)=\min\{v_{j}'|j\in K\}-\max\{w_{j}'|j\in K\},

which is expected to be tighter than u_{2}(\mathrm{a},K) . In principle, by applying this procedure re‐

cursively to B_{j\ell}' \mathrm{s} , we can strengthen the lower bound for \mathrm{P}(\mathrm{a},K) endlessly. The polyblock

algorithm for solving more general class of monotonic optimization problems is essentially

based on the same idea [11−14]. However, while u_{1} requires a single function evaluation for

each of f_{1} and f_{2} , the strengthened bounds u_{2} and u3 need O(n) and O(n^{2}) function evalua‐

tions, respectively. As a tool for bounding, this kind of lower bound would be too expensive

to use if we expected it to be tighter than u3.
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6 Algorithm description and performance

Let us summarize the discussion so far into a branch‐and‐bound algorithm. For prescribed

integers m>0 and s\in\{1,2, 3\} , it can be described as follows:

algorithm \mathrm{d}\mathrm{m}_{-}\mathrm{b}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{c}\mathrm{h}_{-}\mathrm{b}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{d}(f_{1},f_{2},m,s)

\mathscr{P}\leftarrow\{\mathrm{P}(0, \{1, \ldots,n\})\};\mathrm{x}^{*}\leftarrow \mathrm{n}\mathrm{u} z^{*}\leftarrow+\infty;\mathrm{a}\leftarrow 0 ;

while \mathscr{P}\neq\emptyset do

select a subproblem \mathrm{P} ( \mathrm{a} , {jl, \cdots ,  j_{k}\} ) from \mathscr{P} ;
K\leftarrow\{j_{1}, \cdots, j_{k}\};c\leftarrow 1-\mathrm{e}^{\mathrm{T}}\mathrm{a};\mathrm{x}^{\mathrm{o}}\leftarrow \mathrm{a} ;
select a point \mathrm{y}^{\mathrm{o}}\in cS^{k} ; \# extraction of a solution

for  i=1 , \cdots ,  k do

x_{\mathring{j}_{i}}\leftarrow x_{\mathring{j}_{i}}+y_{i}^{\mathrm{o}}
end for;

if f_{1}(\mathrm{x}^{\mathrm{O}})-f_{2}(\mathrm{x}^{\mathrm{o}})<z^{*} then \# update of the incumbent

\mathrm{x}^{*}\leftarrow \mathrm{x}^{\mathrm{o}};z^{*}\leftarrow f_{1}(\mathrm{x}^{\mathrm{o}})-f_{2}(\mathrm{x}^{\mathrm{o}}) ;

end if;

compute a lower bound u_{s}(\mathrm{a},K) for \mathrm{P}(\mathrm{a},K) ; \# bounding process
if  u_{s}(\mathrm{a},K)<z^{*} then

select an index r from K ; \# branching process

\mathscr{P}\leftarrow(\mathscr{P}\backslash \{\mathrm{P}(\mathrm{a},K)\})\cup\{\mathrm{P}(\mathrm{a}+\mathrm{e}_{r}/m,K),\mathrm{P}(\mathrm{a},K\backslash \{r\})\}
end if

end while;

return \mathrm{x}^{*}

end.

It should be remarked in this description that \mathrm{y}^{\mathrm{o}} is chosen from the simplex c$\Delta$_{k} , not from

the set of grid points M(c,k,m) . As a result, the output \mathrm{x}^{*} of the algorithm might not a

feasible solution to the approximation problem (4). However, \mathrm{x}^{*} is still feasible for the original

problem (1), and besides never inferior to any feasible solution of(4).

Theorem 6.1 The algorithm dm‐branch‐bound terminates after 2\left(\begin{array}{l}
n+m-\mathrm{l}\\
m
\end{array}\right)-1 iterations at

most, and generates afeasible solution \mathrm{x}^{*}of (1) satisfying

f_{1}(\displaystyle \mathrm{x}^{*})-f_{2}(\mathrm{x}^{*})\leq f_{1}(\mathrm{x})-f_{2}(\mathrm{x}) , \forall \mathrm{x}\in$\Delta$_{m}\cap\frac{1}{m}\mathbb{Z}^{n}.
Numerical results of the algorithm dm‐branch‐bound will be reported in details elsewhere.
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