

Title	Rotation invariant norms on \$mathbb{R}^{2}\$ and geometric constants (Nonlinear Analysis and Convex Analysis)
Author(s)	Saito, Kichi-Suke; Komuro, Naoto; Tanaka, Ryotaro
Citation	数理解析研究所講究録 = RIMS Kokyuroku (2018), 2065: 94-99
Issue Date	2018-04
URL	http://hdl.handle.net/2433/241908
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

Rotation invariant norms on \mathbb{R}^2 and geometric constants

Kichi-Suke Saito, Naoto Komuro and Ryotaro Tanaka

1 introduction

In this paper, we mainly consider the James constants of rotation invariant norms on \mathbb{R}^2 . Let $\|\cdot\|$ be a norm on \mathbb{R}^2 , and let $\theta \in (0, 2\pi)$. Then $\|\cdot\|$ is said to be θ -rotation invariant if the θ -rotation matrix

$$R(\theta) = \left(\begin{array}{cc} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{array}\right)$$

is an isometry on $(\mathbb{R}^2, \|\cdot\|)$. All norms on \mathbb{R}^2 are clearly π -rotation invariant, and the Euclidean norm is θ -rotation invariant for each $\theta \in (0, 2\pi)$. For the study of James constant, the class of $\pi/2$ -rotation invariant norms are very important; and it is rich since every symmetric absolute norms on \mathbb{R}^2 , that is, a norm satisfying $\|(|a|, |b|)\| = \|(a, b)\| = \|(b, a)\|$ for each (a, b), is $\pi/2$ -rotation invariant.

Now let X be a Banach space. Then S_X denotes the unit sphere of X. The James constant J(X) of X was introduced in 1990 by Gao and Lau [3] as a measure of the squareness of the unit ball. Namely, we define J(X) by

 $J(X) = \sup\{\min\{\|x+y\|, \|x-y\|\} : x, y \in S_X\}.$

It is known that J(X) has the following properties:

- (i) $\sqrt{2} \le J(X) \le 2$ ([3]).
- (ii) If H is a Hilbert space, then $J(H) = \sqrt{2}$.
- (iii) If dim $X \ge 3$, then $J(X) = \sqrt{2}$ implies that X is a Hilbert space ([5]); and hence $J(X) = \sqrt{2}$ if and only if X is a Hilbert space provided that dim $X \ge 3$.
- (iv) J(X) < 2 if and only if X is uniformly non-square, that is, there exists a $\delta > 0$ such that $\min\{||x + y||, ||x y||\} < 2(1 \delta)$ whenever $x, y \in S_X$.

We here emphasize that (iii) does not hold in the two-dimensional case. Indeed, if we consider the norm on \mathbb{R}^2 whose unit sphere is a regular octagon, then its James constant is $\sqrt{2}$ though it is clearly not a Hilbert space. Actually, this fact comes from the following more general result by Gao and Lau [3, Proposition 2.8].

Proposition 1.1 (Gao and Lau [3]). Let $\|\cdot\|$ be a $\pi/4$ -rotation invariant norm on \mathbb{R}^2 . Then $J((\mathbb{R}^2, \|\cdot\|)) = \sqrt{2}$. Thus, in fact, there are many non-Hilbert two-dimensional spaces with James constant $\sqrt{2}$.

The purpose of this paper is to consider the converse to the above proposition. We present a partial converse by using the notion of rotation invariant norms on \mathbb{R}^2 . To do this, the calculation formula for the James constants of $\pi/2$ -rotation rotation invariant norms on \mathbb{R}^2 is given. Moreover, we also give construction of $\pi/4$ -rotation invariant norms using certain convex functions on the unit interval.

2 James constants of $\pi/2$ -rotation invariant norms

We start this section with the following result of Komuro, Saito and Mitani [4] which provides an important characterization of $\pi/2$ -rotation invariant norms on \mathbb{R}^2 . Recall that an element x of a normed space is said to be *isosceles orthogonal* to another element y, denoted by $x \perp_I y$, if ||x + y|| = ||x - y||.

Theorem 2.1. Let $\|\cdot\| \in N_2$. Then the following are equivalent.

- (i) $\|\cdot\|$ is $\pi/2$ -rotation invariant.
- (ii) $x \perp_I y$ if and only if $\langle x, y \rangle = 0$ whenever ||x|| = ||y|| = 1.

In which cases, $x \perp_I R(\pi/2)x$ for each x.

Now let Ψ_2 be the set of all convex functions ψ on [0,1] satisfying max $\{1-t,t\} \leq \psi(t) \leq 1$. For each $\psi \in \Psi_2$, the formula

$$\|(a,b)\|_{\psi} = \begin{cases} (|a|+|b|)\psi\left(\frac{|b|}{|a|+|b|}\right) & ((a,b) \neq (0,0)) \\ 0 & ((a,b) = (0,0)) \end{cases}$$

defines an absolute normalized norm on \mathbb{R}^2 , that is, $||(a, b)||_{\psi} = ||(|a|, |b|)||_{\psi}$ for each (a, b)and $||(1, 0)||_{\psi} = ||(0, 1)||_{\psi}$. Let AN_2 be the set of all absolute normalized norms on \mathbb{R}^2 . Then, the correspondence $\psi \mapsto || \cdot ||_{\psi}$ gives a bijection from Ψ_2 onto AN_2 ; see [2, 9].

Using convex functions in Ψ_2 , we can construct more general two-dimensional normed spaces. Namely, for each pair $\varphi, \psi \in \Psi_2$, let $\|\cdot\|_{\varphi,\psi}$ be the norm on \mathbb{R}^2 given by

$$\|(a,b)\|_{arphi,\psi} = \left\{ egin{array}{cc} \|(a,b)\|_arphi & (ab \ge 0) \ \|(a,b)\|_arphi & (ab \ge 0) \ \end{array}
ight.$$

The space $(\mathbb{R}^2, \|\cdot\|_{\varphi,\psi})$ is called a Day-James space, and is denoted by $\ell^2_{\omega,\psi}$; see [8].

In fact, the class of Day-James spaces are essential among all two-dimensional real normed spaces in the following sense.

Proposition 2.2 (Alonso [1]). Every two-dimensional real normed space is isometrically isomorphic to some Day-James space.

For each $\psi \in \Psi_2$, let $\widetilde{\psi}(t) = \psi(1-t)$ for each $t \in [0,1]$. Then $\widetilde{\psi} \in \Psi_2$.

The following proposition shows that the Day-James space $\ell^2_{\psi,\tilde{\psi}}$ is always $\pi/2$ -rotation invariant for any $\psi \in \Psi_2$.

Proposition 2.3. Let $\psi \in \Psi_2$. Then $\|\cdot\|_{\psi,\widetilde{\psi}}$ is $\pi/2$ -rotation invariant.

We have a refinement of Proposition 2.2 for the case of $\pi/2$ -rotation invariant norms on \mathbb{R}^2 .

Theorem 2.4 ([6]). Let $\|\cdot\|$ be a $\pi/2$ -rotation invariant norm on \mathbb{R}^2 . Then there exists a $\psi \in \Psi_2$ satisfying the following conditions.

- (i) $(\mathbb{R}^2, \|\cdot\|)$ is isometrically isomorphic to $\ell^2_{\psi, \widetilde{\psi}}$.
- (ii) $\|\cdot\| \in N_2(\theta)$ if and only if $\|\cdot\|_{\psi,\widetilde{\psi}} \in N_2(\theta)$ for each $\theta \in [0, 2\pi]$.

Hence, the Day-James space of the form $\ell^2_{\psi,\widetilde{\psi}}$ are essential among all $\pi/2$ -rotation invariant normed spaces.

We now consider the class of two-dimensional normed spaces with James constant $\sqrt{2}$. Let X be a normed space. For each $x \in S_X$, let

$$\beta(x) = \sup\{\min\{\|x+y\|, \|x-y\|\} : y \in S_X\}.$$

Then $J(X) = \sup\{\beta(x) : x \in S_X\}$. By [3, Lemma 2.2], if $y \in S_X$ and $x \perp_I y$ then $||x+y|| = ||x-y|| = \beta(x)$.

The following is the $\pi/2$ -rotation invariant analogue of [7, Theorem 1].

Proposition 2.5. Let $\psi \in \Psi_2$. Then

$$J(\ell_{\psi,\tilde{\psi}}^2) = \max\left\{\max_{0 \le t \le 1/2} \frac{2-2t}{\psi(t)} \psi\left(\frac{1}{2-2t}\right), \max_{1/2 \le t \le 1} \frac{2t}{\psi(t)} \psi\left(\frac{2t-1}{2t}\right)\right\}.$$

In what follows, for each ψ , let

respectively. The following lemma is simple, but important.

Lemma 2.6. Let $\psi \in \Psi_2$. Then

$$f_{\psi}(t)g_{\psi}\left(\frac{1}{2-2t}\right) = 2$$

for each $t \in [0, 1/2]$.

Combining the preceding lemma with Proposition 2.5, we have the following improvement.

Theorem 2.7. Let $\psi \in \Psi_2$. Then

$$J(\ell^2_{\psi,\widetilde{\psi}}) = \max\left\{\max_{0 \le t \le 1/2} f_{\psi}(t), \frac{2}{\min_{0 \le t \le 1/2} f_{\psi}(t)}\right\}.$$

Using this formula, we can characterize the $\pi/2$ -rotation invariant norms with James constant $\sqrt{2}$ as follows.

Theorem 2.8. Let $\psi \in \Psi_2$. Then the following are equivalent.

- (i) $J(\ell^2_{\psi,\widetilde{\psi}}) = \sqrt{2}.$
- (ii) $f_{\psi}(t) = \sqrt{2}$ for each $t \in [0, 1/2]$ and $g_{\psi}(t) = \sqrt{2}$ for each $t \in [1/2, 1]$.
- (iii) $f_{\psi}(t) = \sqrt{2}$ for each $t \in [0, 1/2]$.
- (iv) $g_{\psi}(t) = \sqrt{2}$ for each $t \in [1/2, 1]$.
- (v) $\|\cdot\|_{\mathfrak{p},\widetilde{\mathfrak{p}}} \in N_2(\pi/4).$

As a consequence of Theorems 2.4 and 2.8, we have the following partial converse to Proposition 1.1, which is our aim in this section.

Theorem 2.9. Let $\|\cdot\| \in N_2(\pi/2)$. Then $J((\mathbb{R}^2, \|\cdot\|)) = \sqrt{2}$ if and only if $\|\cdot\| \in N_2(\pi/4)$.

3 Construction of $\pi/4$ -rotation invariant norms

As it was shown in the preceding section, the equality $J((\mathbb{R}^2, \|\cdot\|)) = \sqrt{2}$ characterizes the $\pi/4$ -rotation invariant norms among the $\pi/2$ -rotation invariant norms. The aim of this section is to study the structure of $\pi/4$ -rotation invariant norms via some properties of certain convex functions on the unit interval.

Let $DJ = \{ \| \cdot \|_{\varphi,\psi} : \varphi, \psi \in \Psi_2 \}$, and let $DJ(\theta)$ be the set of all elements in DJ which are θ -rotation invariant. Then the set DJ is obviously in a one-to-one correspondence with $\Psi_2 \times \Psi_2$. Moreover, if $\| \cdot \|_{\varphi,\psi} \in DJ(\pi/2)$ then $\psi = \widetilde{\varphi}$. This and Proposition 2.3 together show that the set $DJ(\pi/2)$ is in a one-to-one correspondence with the set $\{(\psi, \widetilde{\psi}) : \psi \in \Psi_2\}$ which can be identified with Ψ_2 . These observations are summarized as follows.

Proposition 3.1. The map $\Psi_2 \ni \psi \mapsto \| \cdot \|_{\psi, \widetilde{\psi}} \in DJ(\pi/2)$ is bijective.

Now let

$$\Gamma = \left\{\psi \in \Psi_2 : \max\left\{1 - \left(1 - \frac{1}{\sqrt{2}}\right)t, \frac{1}{\sqrt{2}} + \left(1 - \frac{1}{\sqrt{2}}\right)t\right\} \le \psi(t)\right\}.$$

Then we have the following.

Proposition 3.2. Let $\psi \in \Psi_2$. If $\|\cdot\|_{\psi,\widetilde{\psi}} \in DJ(\pi/4)$, then

$$\psi^{\flat}(t) = (1 + (\sqrt{2} - 1)t)\psi\left(\frac{t}{\sqrt{2} + (2 - \sqrt{2})t}\right)$$

defines an element of Γ .

Remark 3.3. The preceding proposition is an extension of [5, Lemma 3.4] which states that $\|\cdot\|_{\psi} \in AN_2 \cap N_2(\pi/4)$ implies $\psi^{\flat} \in \Gamma^S = \Gamma \cap \Psi_2^S$.

The following can be viewed as the "converse" of Proposition 3.2.

$$\psi^{\sharp}(t) = \begin{cases} (1 - (2 - \sqrt{2})t)\psi\left(\frac{\sqrt{2}t}{1 - (2 - \sqrt{2})t}\right) & (t \in [0, 1/2]), \\ (\sqrt{2} - 1)(1 + \sqrt{2}t)\psi\left(\frac{2t - 1}{(\sqrt{2} - 1)(1 + \sqrt{2}t)}\right) & (t \in [1/2, 1]) \end{cases}$$

defines an element of Ψ_2 such that $\|\cdot\|_{\psi^{\sharp}} \xrightarrow{}{\psi^{\sharp}} \in DJ(\pi/4)$.

We now present the main theorem in this section which extends [5, Theorem 3.8] to $\pi/4$ -rotation invariant Day-James norms.

Theorem 3.5. The following hold.

- (i) $(\psi^{\flat})^{\sharp} = \psi$ for each $\psi \in \Psi_2$ with $\|\cdot\|_{\psi,\tilde{\psi}} \in DJ(\pi/4)$.
- (ii) $(\psi^{\sharp})^{\flat} = \psi$ for each $\psi \in \Gamma$.
- (iii) The map $\Gamma \ni \psi \mapsto \|\cdot\|_{\psi^{\sharp},\widetilde{\psi^{\sharp}}} \in DJ(\pi/4)$ is bijective.

The preceding theorem, together with Propositions 3.2 and 3.4, provide a specific way to construct all $\pi/4$ -rotation invariant norms on \mathbb{R}^2 .

References

- J. Alonso, Any two-dimensional normed space is a generalized Day-James space, J. Inequal. Appl., 2011, 2011:2, 3 pp.
- [2] F. F. Bonsall and J. Duncan, Numerical ranges II, Cambridge University Press, Cambridge, 1973.
- [3] J. Gao and K.-S. Lau, On the geometry of spheres in normed linear spaces, J. Aust. Math. Soc. Ser. A, 48 (1990), 101–112.
- [4] N. Komuro, K.-S. Saito and K.-I. Mitani, Convex property of James and von Neumann-Jordan constant of absolute norms on ℝ², Proceedings of the 8th International Conference on Nonlinear Analysis and Convex Analysis, 301–308, Yokohama Publ., Yokohama, 2015.
- [5] N. Komuro, K.-S. Saito and R. Tanaka, On the class of Banach spaces with James constant √2, 289 (2016), 1005–1020.
- [6] N. Komuro, K.-S. Saito and R. Tanaka, On the class of Banach spaces with James constant √2: Part II, Mediterr. J. Math., 13 (2016), 4039–4061.
- [7] K.-I. Mitani and K.-S. Saito, The James constant of absolute norms on R², J. Nonlinear Convex Anal., 4 (2003), 399–410.
- [8] W. Nilsrakoo and S. Saejung, The James constant of normalized norms on ℝ², J. Inequal. Appl. 2006, Art. ID 26265, 12 pp.

[9] K.-S. Saito, M, Kato and Y. Takahashi, Von Neumann-Jordan constant of absolute normalized norms on C², J. Math. Anal. Appl., 244 (2000), 515-532.

Kichi-Suke Saito Department of Mathematical Sciences, Institute of Science and Technology, Niigata University, Niigata 950-2181, Japan E-mail: saito@math.sc.niigata-u.ac.jp

Naoto Komuro Department of Mathematics, Hokkaido University of Education, Asahikawa Campus, Asahikawa 070-8621, Japan E-mail: komuro@asa.hokkyodai.ac.jp

Ryotaro Tanaka Faculty of Mathematics, Kyushu University, Fukuoka 819-0395, Japan E-mail: r-tanaka@math.kyushu-u.ac.jp