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TOPOLOGICAL ENTROPY AND TOPOLOGICAL STRUCTURES

OF CONTINUA

HISAO KATO,
INSTITUTE OF MATHEMATICS, UNIVERSITY OF TSUKUBA

1. INTRODUCTION

During the last thirty years or so, many interesting connections between dy‐
namical systems and continuum theory have been studied by many authors (see
[1,2,6,7,9‐15,17,19,22‐25,27,28]). We are interested in the following fact that chaotic
topological dynamics should imply existence of complicated topological structures
of underlying spaces. In many cases, such continua (=compact connected metric
spaces) are indecomposable continua which are central subjects of continuum theory
in topology. We know that many indecomposable continua often appear as chaotic
attractors of dynamical systems. Also, in many cases, the composants of such in‐
decomposable continua are strongly related to stable or unstable (connected) sets
of the dynamics. For instance, in the theory of dynamical systems and continuum
theory, the Knaster continuum (= Smale’s horse shoe), the pseudo‐arc, solenoids
and Wada’s lakes (= Plykin attractors) etc., are well‐known as such indecomposable
continua.

In [3], by use of ergodic theory method, Blanchard, Glasner, Kolyada and Maass
proved that if a map f : X\rightarrow X of a compact metric space X has positive topolog‐
ical entropy, then there is an uncountable  $\delta$‐scrambled subset of  X for some  $\delta$>0

and hence the dynamics (X, f) is Li‐Yorke chaotic. In [18], Kerr and Li devel‐
oped local entropy theory and gave a new proof of this theorem. Moreover, they
proved that X contains a Cantor set Z which yields more chaotic behaviors (see [18,
Theorem 3.18]). In [2], Barge and Diamond showed that for piecewise monotone
surjections of graphs, the conditions of having positive entropy, containing a horse
shoe and the inverse limit space containing an indecomposable subcontinuum are
all equivalent. In [24], Mouron proved that if X is an arc‐like continuum which
admits a homeomorphism f with positive topological entropy, then X contains an
indecomposable subcontinuum. In [6], as an extension of the Mouron’s theorem,
we proved that if G is any graph and a homeomorphism f on a G‐like continuum
X has positive topological entropy, then X contains an indecomposable subcontin‐
uum. Moreover, if G is a tree, there is a pair of two distinct points x and y of X

such that the pair (x, y) is an IE‐pair of f and the irreducible continuum between
x and y in X is an indecomposable subcontinuum.

In this note, for any graph G we define a new notion of free tracing property by
free chains” on G‐like continua and by use of this notion, we prove that a positive
topological entropy homeomorphism on a G‐like continuum admits a Cantor set
Z such that every tuple of finite points in Z is an IE‐tuple of f and Z has the
free tracing property by free chains. Also, we prove that the Cantor set Z is
related to both the chaotic behaviors of Kerr and Li [18] in dynamical systems and
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composants of indecomposable continua in topology. Our main result is Theorem
3.3 whose proof is also a new proof of [6]. Also, we study dynamical properties of
continuum‐wise expansive homeomorphisms. In this case, we obtain more precise
results concerning continuum‐wise stable sets of chaotic continua and IE‐tuples.

2. DEFINITIONS AND NOTATIONS

In this note, we assume that all spaces are separable metric spaces and all
maps are continuous. Let \mathrm{N} be the set of natural numbers and \mathbb{Z} the set of integers.

Let X be a compact metric space and \mathcal{U}, \mathcal{V} be two covers of X . Put

\mathcal{U}\vee \mathcal{V}=\{U\cap V|U\in \mathcal{U}, V\in \mathcal{V}\}.

The quantity N(\mathcal{U}) denotes minimal cardinality of subcovers of \mathcal{U} . Let f : X\rightarrow X

be a map and let \mathcal{U} be an open cover of X . Put

h(f,\displaystyle \mathcal{U})=\lim_{n\rightarrow\infty}\frac{\log N(\mathcal{U}\vee f^{-1}(\mathcal{U})\vee\ldots\vee f^{-n+1}(\mathcal{U}))}{n}.
The topological entropy of f , denoted by h(f) , is the supremum of h(f,\mathcal{U}) for all
open covers \mathcal{U} of X . The reader may refer to [3,4,5,6,8,18,22‐25,27,28] for important
facts concerning topological entropy. Positive topological entropy of map is one of
generally accepted definitions of chaos.

We say that a set I\subseteq \mathbb{N} has positive density if

\displaystyle \lim_{n\rightarrow}\inf_{\infty}\frac{|I\cap\{1,2,\ldots,n\}|}{n}>0.
Let X be a compact metric space and f : X\rightarrow X a map. Let \mathcal{A} be a collection of
subsets of X . We say that \mathcal{A} has an independence set with positive density if there
exists a set I\subset \mathbb{N} with positive density such that for all finite sets J\subseteq I , and for
all (\displaystyle \mathrm{Y}_{j})\in\prod_{j\in J}A , we have that

\displaystyle \bigcap_{j\in J}f^{-j}(Y_{j})\neq\emptyset.
We observe a simple but important and and useful fact that if I is an independence
set with positive density for \mathcal{A} then for all k \in \mathbb{Z}, k+I is an independence set
with positive density for \mathcal{A} . For convenience, we may assume that I satisfies the
condition (kl); for all (Y_{j})\displaystyle \in\prod_{j\in J}\mathcal{A} and any \mathrm{Y}_{0}\in A

(kl) \displaystyle \mathrm{Y}_{0}\cap\bigcap_{j\in J}f^{-j}(\mathrm{Y}_{j})\neq\emptyset.
We now recall the definition of IE‐tuple. Let (xl, . . . , x_{n} ) be a sequence of

points in X . We say that (xl, . . . , x_{n} ) is an IE‐tuple for f if whenever A_{1} , . . . , A_{n}
are open sets containing x_{1} , . . . , x_{n} , respectively, we have that the collection \mathcal{A}=

\{A_{1}, . . . , A_{n}\} has an independence set with positive density. In the case that n=2,
we use the term IE‐pair. We use IE_{k} to denote the set of all IE‐tuples of length k.

Let f : X\rightarrow X be a map of a compact metric space X with metric d and let
 $\delta$>0 . A subset S of X is a  $\delta$‐scrambled set of  f if |S| \geq  2 and for any x,  y\in  S

with x\neq y , then one has

\displaystyle \lim_{n\rightarrow}\inf_{\infty}d(f^{n}(x), f^{n}(y))=0 and \displaystyle \lim_{n\rightarrow}\sup_{\infty}d(f^{n}(x), f^{n}(y))\geq $\delta$.
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We say that f : X\rightarrow X is Li‐ Yorke chaotic if there is an uncountable subset S of
X such that for any x, y\in S with x\neq y , then one has

\displaystyle \lim_{n\rightarrow}\inf_{\infty}d(f^{n}(x), f^{n}(y))=0 and \displaystyle \lim_{n\rightarrow}\sup_{\infty}d(f^{n}(x), f^{n}(y))>0.
Also, f has sensitive dependence on initial conditions if there is a positive number
c>0 such that for any x\in X and any neighborhood U of x , one can find y\in U
and n\in \mathrm{N} such that d(f^{n}(x), f^{n}(y))\geq c.

Let X_{i}(i\in \mathrm{N}) be a sequence of compact metric spaces and let f_{i,i+1} : X_{i+1}\rightarrow X_{i}
be a map for each i\in \mathrm{N} . The inverse limit of the inverse sequence \{X_{l}, f_{ $\iota$,i+1}\}_{ $\iota$=1}^{\infty}
is the space

k\{X_{i}, f_{i,i+1}\}= { (x_{ $\iota$})_{i=1}^{\infty} |x_{ $\iota$}=f_{ $\iota$,i+1}(x_{i+1}) for each i\in \mathbb{N}} \displaystyle \subset\prod_{ $\iota$=1}^{\infty}X_{ $\iota$}
which has the topology inherited as a subspace of the product space \displaystyle \prod_{ $\iota$=1}^{\infty}X_{i}.

If f : X\rightarrow X is a map, then we use Lm(X, f) to denote the inverse limit of X

with f as the bonding maps, i.e.,

L^{\mathrm{m}(X,f)=}\{(x_{i})_{ $\iota$=1}^{\infty}\in X^{\mathrm{N}}|f(x_{i+1})=x_{i} (i\in \mathbb{N})\}.
Let  $\sigma$ f : 1\dot{L}\mathrm{m}(X, f)\rightarrow 1\dot{L}\mathrm{m}(X, f) be the shift homeomorphism defined by

 $\sigma$ f (x_{1}, x_{2},x_{3}, )=(x_{2},x_{3}, ) .

A continuum is a compact connected metric space. We say that a continuum
is nondegenerate if it has more than one point. A continuum is indecomposable
(see [19,20,23,26]) if it is nondegenerate and it is not the union of two proper
subcontinua. For any continuum H , the set c(p) of all points of the continuum H,
which can be joined with the point p by a proper subcontinuum of H , is said to be
the composant of the point p\in H (see [20, p.208]). Note that for an indecomposable
continuum H , the following are equivalent;

(1) the two points p, q belong to same composant of H ;
(2)  c(p)\cap c(q)\neq\emptyset ;
(3)  c(p)=c(q) .

So, we know that if H is an indecomposable continuum, the family

\{c(p)|p\in H\}

of all composants of H is a family of uncountable mutually disjoint sets c(p) which
are connected and dense F_{ $\sigma$}‐sets in H (see [20, p.212, Theorem 6 Note that
\mathrm{a} (nondegenerate) continuum X is indecomposable if and only if there are three
distinct points of X such that any subcontinuum of X containing any two points
of the three points coincides with X , i.e., X is irreducible between any two points
of the three points.

Let H be an indecomposable continuum. We say that a subset Z of H is vertically
embedded to the composants of H if no two of points of Z belong to the same
composant of H , i.e., if x, y are any distinct points of Z and E is any subcontinuum
of H containing x and y , then E=H.

A map g from X onto G is an  $\epsilon$ ‐map ( $\epsilon$>0) if for every y \in G , the diameter
of g^{-1}(y) is less than  $\epsilon$ . A continuum  X is G‐like if for every  $\epsilon$>0 there is an

 $\epsilon$‐map from  X onto G . For any finite polyhedron G, X is G‐like if and only if X

is homeomorphic to an inverse limit of an inverse sequence of G . Arc‐like continua
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are those which are G‐like for G = [0 , 1 ] . Our focus in this article is on G‐like
continua where G is a graph (= connected 1‐dimensional compact polyhedron). \mathrm{A}

graph G is a tree if G contains no simple closed curve. A continuum X is tree‐like if
for any  $\epsilon$>0 there exist a tree G_{ $\epsilon$} and an  $\epsilon$‐map from  X onto G_{ $\epsilon$} . In this case, G_{ $\epsilon$}
depends on  $\epsilon$ . If \mathcal{G} is a collection of subsets of X , then the nerve N(\mathcal{G}) of \mathcal{G} is the
polyhedron whose vertices are elements of \mathcal{G} and there is a simplex <g_{1}, g_{2}, g_{k}>
with distinct vertices g_{1}, g_{2}, g_{k} if

\displaystyle \bigcap_{i}g_{i}\neq\emptyset.
In this paper, we consider the only case that nerves are graphs.

If \{C_{1}, . . . , C_{n}\} is a subcollection of \mathcal{G} we call it a chain if C_{i}\cap C_{i+1} \neq \emptyset for

 1\leq i<n and \overline{C_{i}}\cap\overline{C_{J}}\neq\emptyset implies that |i-j| \leq 1 . We say that \{C_{1}, . . . , C_{n}\} is a
free chain in \mathcal{G} if it is a chain and, moreover, for all 1<i<n we have that C\in \mathcal{G}

with \overline{C}\cap\overline{C_{l}}\neq\emptyset implies that  C=C_{i}, C=C_{ $\iota$-1} or C=C_{ $\iota$+1} . By the mesh of a
finite collection \mathcal{G} of sets, we means the largest of diameters of elements of \mathcal{G} . Note
that for a graph G , a continuum X is a G‐like if and only if for any  $\epsilon$>0 , there
is a finite open cover \mathcal{G} of X such that N(\mathcal{G}) =G (which means that N(\mathcal{G}) and G

are homeomorphic) and the mesh of \mathcal{G} is less than  $\epsilon$ . The Knaster continuum (=
Smale’s horse shoe) and the pseudo‐arc are arc‐like continua, solenoids are circle‐
like continua and Plykin attractors are (S_{1}\vee S_{2}\vee\cdots\vee S_{m})‐like continua, where
S_{1}\vee S_{2}\vee\cdots\vee S_{m} (m \geq 3) denotes the one point union of m circles S_{i} . Such
spaces are typical indecomposable continua. The reader may refer to [20] and [26]
for standard facts concerning continuum theory.

Let X be a continuum and m \in N. Suppose that  A_{i} (1 \leq i \leq m) are m

(nonempty) open sets in X and x_{i} (1 \leq i \leq m) are m distinct points of X . We
identify the order A_{1} \rightarrow A_{2} \rightarrow. . . \rightarrow A_{m} and the converse order A_{m}\rightarrow A_{m-1} \rightarrow

. . . \rightarrow A_{1} . Then we consider the equivalence class

[A_{1}\rightarrow A_{2}\rightarrow\cdots\rightarrow A_{m}]=\{A_{1}\rightarrow A_{2}\rightarrow\cdots\rightarrow A_{m};A_{m}\rightarrow A_{m-1}\rightarrow\cdots\rightarrow A_{1}\}.

Suppose that \mathcal{G} is a finite open cover of X . We say that a chain \{C_{1}, \cdots , C_{n}\}\subseteq \mathcal{G}
follows from the pattern [A_{1}\rightarrow A_{2}\rightarrow\cdots\rightarrow A_{m}] if there exist

1\leq k_{1}<k_{2}<\cdots<k_{m}\leq n or 1\leq k_{m}<k_{m-1}<\cdots<k_{1}\leq n

such that C_{k}. \subset  A_{ $\iota$} for each i = 1 , 2, m . In this case, more precisely we say
that the chain [C_{k_{1}} \rightarrow C_{k_{2}} \rightarrow. . . \rightarrow C_{k_{m}}] follows ffom the pattern [A_{1} \rightarrow  A_{2} \rightarrow

. . . \rightarrow A_{m}] . Similarly, we say that a chain \{C_{1}, . . . , C_{n}\}\subseteq \mathcal{G} follows from the pattern
[x_{1}\rightarrow x_{2}\rightarrow\cdots\rightarrow x_{m}] if there exist

1\leq k_{1}<k_{2}<\cdots<k_{m}\leq n or 1\leq k_{m}<k_{m-1}<\cdots<k_{1}\leq n

such that x_{i}\in C_{k}. for each i=1 , 2, m , where

[x_{1}\rightarrow x_{2}\rightarrow\cdots\rightarrow x_{m}]=\{x_{1}\rightarrow x_{2}\rightarrow\cdots\rightarrow x_{m}; x_{7n}\rightarrow x_{m-1}\rightarrow\cdots\rightarrow x_{1}\}.

More precisely, we say that the chain [C_{k_{1}} \rightarrow C_{k_{2}} \rightarrow\cdots \rightarrow C_{k_{m}}] follows from the
pattern [x_{1}\rightarrow x_{2}\rightarrow\cdots\rightarrow x_{m}].

Let Z be a subset of a G‐like continuum X . We say that Z has the free tracing
property by (resp. free) chains if for any  $\epsilon$>0 , any m\in \mathrm{N} and any order  x_{1}\rightarrow x_{2}\rightarrow

. . . \rightarrow x_{m} of any m distinct points x_{i} (i=1,2, \ldots, m) of Z , there is an open cover
\mathcal{U} of X such that the mesh of \mathcal{U} is less than  $\epsilon$ , the nerve  N(\mathcal{U}) of \mathcal{U} is G and there
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is \mathrm{a} (resp. free) chain in \mathcal{U} which follows from the pattern [x_{1}\rightarrow x_{2}\rightarrow\cdots\rightarrow x_{m}].

Example 1. (1) Let X = [0 , 1] be the unit interval and D a subset of X . If
|D|\geq 3, D does not have the free tracing property by chains.
(2) Let X=S^{1} be the unit circle and D a subset of X . If |D| \leq  3 , then D has
the free tracing property by free chains. If |D| \geq 4 , then D does not have the free
tracing property by chains.

For the case that X is a tree‐like, we obtain the following proposition.

Proposition 2.1. Let X be a tree‐like continuum and let D be a subset of X with
|D|\geq 3 . Then the following are equivalent.

(1) For any order x_{1} \rightarrow x_{2} \rightarrow x_{3} of three distinct points x_{i} (i= 1,2,3) of D

and any  $\epsilon$>0 , there is an open cover \mathcal{U} of X such that the mesh of \mathcal{U} is
less than  $\epsilon$ , the nerve  N(\mathcal{U}) of \mathcal{U} is a tree and there is a chain in \mathcal{U} which
follows from the pattern [x_{1}\rightarrow x_{2}\rightarrow x_{3}].

(2) D has the free tracing property by chains; for any  $\epsilon$>0 , any m\in \mathrm{N} and
any order x_{1}\rightarrow x_{2}\rightarrow\cdots\rightarrow x_{m} of any m distinct points x_{i} (i=1,2, m)
of D , there is an open cover \mathcal{U} of X such that the mesh of \mathcal{U} is less than  $\epsilon$,

the nerve N(\mathcal{U}) of \mathcal{U} is a tree and there is a chain in \mathcal{U} which follows from
the pattern [x_{1}\rightarrow x_{2}\rightarrow\cdots\rightarrow x_{m}].

(3) The minimal continuum H in X containing D is indecomposable and no
two of points of D belong to the same composant of H , i. e., D is vertically
embedded to the composants of H.

3. TOPOLOGICAL ENTROPY ON G‐LIKE CONTINUA AND CANTOR SETS WHICH

HAVE THE FREE TRACING PROPERTY BY FREE CHAINS

In [3], by use of ergodic theory method, Blanchard, Glasner, Kolyada and Maass
proved that if a map f : X\rightarrow X of a compact metric space X has positive topolog‐
ical entropy, then there is an uncountable  $\delta$‐scrambled set of  f for some  $\delta$>0 and
hence the dynamics (X, f) is Li‐Yorke chaotic. In [8], Huang and Ye studied local
entropy theory and they gave a characterization of positive topological entropy by
use of entropy tuples. Moreover, in [18], by use of local entropy theory (IE‐tuples),
Kerr and Li proved the following more precise theorem.

Theorem 3.1. ([18, Theorem 3.18]) Suppose that f : X\rightarrow X is a positive topo‐
logical entropy map on a compact metric space X , and x_{1}, x_{2}, x_{m} (m\geq 2) are
finite dutinct points of X such that the tuple (x_{1}, x_{2}, x_{m}) is an IE ‐tuple of f.
If A_{i} (i=1,2, \ldots,m) \dot{u} any neighborhood of x_{i} , then there are Cantor sets Z_{i}\subset A_{i}
such that the following conditions hold;
(1) every tuple of finite points in the Cantor set Z=\displaystyle \bigcup_{i}Z_{i} is an IE ‐tuple;
(2) for all k\in \mathrm{N}, k distinct points y_{1}, y_{2}, y_{k}\in Z and any points z_{1}, z_{2}, z_{k}\in Z,
one has

\displaystyle \lim_{n\rightarrow}\inf_{\infty}\max\{d (f^{n}(yi), z_{i})| 1\leq i\leq k\}=0.
In particular, Z is a  $\delta$ ‐scrambled set of  f for some  $\delta$>0.

In [6], by use of local entropy theory (IEtuples), we proved the following theo‐
rem.
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Theorem 3.2. ([6]) Suppose that G is any graph and f : X\rightarrow X is a homeomor‐
phism on a G‐like continuum X with positive topological entropy. Then X contains
an indecomposable subcontinuum. Moreover, if G is a tree, there is a pair of two
distinct points x and y of X such that the pair (x, y) is an IE‐pair of f and the
irreducible continuum between x and y in X is an indecomposable subcontinuum.

The next theorem is the main theorem in this note which is a structure theorem

for positive topological entropy homeomorphisms on G‐like continua. The theorem
implies that for any graph G , a positive topological entropy homeomorphism on
a G‐like continuum X admits Cantor set Z which yields both some complicated
structures in topology and the chaotic behaviors of Kerr and Li [18] in dynamical
systems. Especially, the Cantor set Z has the free tracing property by free chains.

Theorem 3.3. Let G be any graph, X a G‐like continuum and f : X\rightarrow X a home‐
omorphtsm on X with positive topological entropy. Suppose that x_{1}, x_{2}, x_{m} (m\geq
2) are finite distinct points of  X such that the tuple (x_{1}, x_{2}, x_{m}) \dot{u} an IE ‐tuple
of f and A_{ $\iota$} (i=1,2, m) is any neighborhood of x_{i} . Then there are Cantor sets
Z_{l} \subset  A_{i} (i = 1,2, m) and an indecomposable subcontinuum H of X such that
the following conditions hold;
(1) H is the unique minimal subcontinuum in X containing Z=\displaystyle \bigcup_{i=1}^{m}Z_{i} and the
Cantor set Z is vertically embedded to the composants of H ; i. e., if x, y are distinct
points of Z , then the irreducible continuum Ir(x, y;H) between x and y in H is H,
(2) Z has the free tracing property by free chains; for any k \in \mathbb{N} and any order
x_{1} \rightarrow x_{2} \rightarrow. . . \rightarrow x_{k} of k distinct points x_{i} (i = 1,2, k) of Z and any  $\epsilon$ > 0,
there is an open cover \mathcal{U} of X such that the mesh of \mathcal{U} is less than  $\epsilon$ , the nerve
 N(\mathcal{U}) of \mathcal{U} is G and there is a free chain in \mathcal{U} which follows from the pattern
[x_{1}\rightarrow x_{2}\rightarrow\cdots\rightarrow x_{k}],
(3) every tuple of finite points in the Cantor set Z is an IE ‐tuple of f , and
(4) for all k\in \mathbb{N} , any distinct k points y_{1}, y_{2}, y_{k}\in Z and any points z_{1}, z_{2},  z_{k}\in
 Z , the following condition holds

\displaystyle \lim_{n\rightarrow}\inf_{\infty}\max\{d (f^{n}(yi), z_{i})| 1\leq i\leq k\}=0.
In particular, Z \dot{u} a  $\delta$ ‐scrambled set of  f for some  $\delta$>0.

In the statement of Theorem 3.3, we need the condition that X is a G‐like
continuum for a graph G.

Example 2. Let g : Z\rightarrow Z be a homeomorphism on a Cantor set Z which has
positive topological entropy. Let X=\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{e}(Z) be the cone of Z and let f : X\rightarrow X

be a homeomorphism which is the natural extension of g . Then h(f) > 0 and
X is tree‐like, but X is not G‐like for any graph G . Note that X contains no
indecomposable subcontinuum. Also, if D is a subset with |D| \geq 3 , then D does
not have the free tracing property by chains.

Example 3 (Boronski and Oprocha [29]). There is a map f : I=[0, 1]\rightarrow I such
that the shift homeomorphism

 $\sigma$:1\mathrm{m}(I, f)\rightarrow \mathrm{L}^{\mathrm{m}(I,f)}
of f is Li‐Yorke chaotic for some  $\delta$>0 and the inverse limit \mathrm{r}(I, f) is Suslinean.

In particular, Lm(I, f) contains no indecomposable continua. Of course, h(f)=0.
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We will freely use the following facts from the local entropy theory.

Proposition 3.4. ([18, Propositions, 3.8, 3.9]) Let X be a compact metric space
and let f : X\rightarrow X be a map.

(1) Let (Al, . . . , A_{k} ) be a tuple of closed subsets ofX which has an independent
set of positive density. Then, there is an IE‐tuple (xl, . . . , x_{k} ) with x_{i}\in A_{ $\iota$}
for 1\leq i\leq k.

(2) h(f)>0 if and only if f has an IE‐pair (x_{1}, x_{2}) with x_{1}\neq x_{2}.
(3) IE_{k} is closed and f\times\ldots\times f invariant subset of X^{k}.

(4) If (Al, . . . , A_{k} ) has an independence set with positive density and, for  1\leq
 i \leq  k, \mathcal{A}_{ $\eta$} is a finite collection of sets such that A_{i} \subseteq \cup A_{i} , then there
is  A\'{i}\in \mathcal{A}_{i} such that (Aí, . . . , A_{k}' ) has an independence set with positive
density.

To prove Theorem 3.3, we need the following results.

Proposition 3.5. ([6, Proposition 3.1]) Let I \subseteq \mathrm{N} be a set with positive density
and n\in \mathbb{N} . Then, there is a finite set F \subseteq I with |F| =n and a positive density
set B such that F+B\subseteq I.

Proposition 3.6. ([6, Proposition 3.2]) Let X be a compact metric space and let
f :  X\rightarrow  X be a map. Let \mathcal{A} be a collection which has an independence set with
positive density and n\in \mathbb{N} . Then, there \dot{u} a finite set F with |F|=n such that

\displaystyle \mathcal{A}_{F}=\{\bigcap_{i\in F}f^{-i}(\mathrm{Y}_{i}):Y_{i}\in A\}
hos an is an independence set with positive density.

Let m\geq 2 and let \{ 1, 2, m\}^{n} be the set of all functions from \{ 1, 2, n\} to
\{ 1, 2, m\} . For  $\sigma$ \in \{1, 2, m\}^{n} (m \geq 2) , we write  $\sigma$ = ( $\sigma$(1),  $\sigma$(2), \ldots $\sigma$(n)) ,
where  $\sigma$(i)\in\{1, 2, m\} . Note that |\{1, 2, m\}^{n}|=m^{n}.

Proposition 3.7. (cf. [6, Proposition 3.3]) Let m, n\in \mathrm{N} , and $\sigma$_{1} , . . . ,  $\sigma$[(m-1)n+1][(m-1)^{n}+1]
be any sequence of distinct elements of \{ 1, m\}^{n} . Then there are 1\leq i\leq n and

1\leq k_{1}<k_{2}<k_{3}<\ldots<k_{m}\leq[(m-1)n+1][(m-1)^{n}+1]

such that $\sigma$_{k_{J}} (i)=j for j=1, m.

To check the chaotic behaviors of Kerr and Li ([18, Theorem 3.18]), we need the
following lemma.

Lemma 3.8. Let f : X \rightarrow  X be a map of a compact metric space X. Suppose
that (Al, . . . , A_{k} ) is a tuple of closed subsets of X which has an independent set of
positive density. Then there is a tuple (Aí, . . . , A_{k}' ) of closed subsets of X which
has an independent set with positive density such that A_{j}' \subset  A_{j} (j = 1,2, k) ,
and if h:\{1, 2, k\}\rightarrow\{1, 2, k\} is any function, then there is n_{h}\in \mathrm{N} such that
f^{n_{h}}(A_{j}')\subset A_{h(j)} for each j=1 , 2, k.

Proposition 3.9. Let X be a G‐like continuum for a graph G and let T be a Cantor
set in X.

(1) Suppose that T has the free tracing property by chains. Then any minimal
continuum H in X containing T is indecomposable and there is s\in \mathbb{N} such that for
any composant c of H, |c\cap T| \leq \mathcal{S} . In particular, no infinite points of T belong to
the same composant of H. Also, there is a subset Z of T such that Z is a Cantor
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set and Z is vertically embedded to the composants of H.

(2) Moreover, if T has the free tracing property by free chains, then there is the
unique minimal continuum H in X containing T and T is itself vertically embedded
to the composants of H.

The following lemma is the key lemma to prove the main theorem.

Lemma 3.10. Let G be a graph and let f be a homeomorphism on a G‐like contin‐
uum X with positive topological entropy. Suppose that \mathcal{A} is a finite open collection
of X which has an independence set of f with positive density, any distinct ele‐
ments of \mathcal{A} are disjoint, and |A| = m \geq  2 . Then for any  $\epsilon$ > 0 and any order
A_{1}\rightarrow A_{2}\rightarrow\cdots\rightarrow A_{m} of all elements of \mathcal{A} , there exists a finite open cover V of X

satisfying the following conditions;
(1) the mesh of \mathcal{V} is less than  $\epsilon$,

(2) the nerve N(V) of V is G,
(3) for each A\in A there is a shrink s(A)\in \mathcal{V} with s(A)\subset A such that

s(\mathcal{A})=\{s(A)| A\in \mathcal{A}\}

has an independence set with positive density, and
(4) there is a free chain [s(A_{1})\rightarrow s(A_{2})\rightarrow\cdots\rightarrow s(A_{m})] from s(A_{1}) to s(A_{m}) in
V which follows from the pattern [A_{1}\rightarrow A_{2}\rightarrow\cdots\rightarrow A_{m}].

As a corollary of Theorem 3.3, we have the following results.

Corollary 3.11. Let G be any graph. If f : \mathrm{Y} \rightarrow \mathrm{Y} is a positive entropy map
on a G ‐like continuum \mathrm{Y} , then there exist an indecomposable subcontinuum H of

X=\underline{\mathrm{b}\mathrm{m}}(\mathrm{Y}, f) and a Cantor set Z in H satisfies the following conditionsJ
(1) Z is vertically embedded to the composants of H,
(2) Z has the free tracing property by free chains,
(3) every tuple of finite points in the Cantor set Z is an IE‐tuple of the shift map

$\sigma$_{f} and

(4) for all k\in \mathrm{N} , any distinct k points y_{1}, y_{2}, y_{k}\in Z and any points z_{1}, z_{2},  z_{k}\in
 Z , the following condition holds

\displaystyle \lim_{n\rightarrow}\inf_{\infty}\max\{d (\mathrm{a}``(yl), z_{i})| 1\leq i\leq k\}=0.
In particular, Z is a  $\delta$ ‐scrambled set of  $\sigma$_{f} for some  $\delta$>0.

For a special case, we have the following.

Corollary 3.12. Let X be one of the Knaster continuum, solenoids or Plykin at‐
tractors. If f \dot{u} any positive topological entropy homeomorphism on X , then there
is a Cantor set Z in X such that the Cantor set Z satisfies the following conditions;
(1) Z is vertically embedded to the composants of X,
(2) Z has the free tracing property by free chains,
(3) every tuple of finite points in the Cantor set Z is an IE ‐tuple of f , and
(4) for all k\in \mathbb{N} , any distinct k points y_{1}, y_{2}, y_{k}\in Z and any points z_{1}, z_{2},  z_{k}\in
 Z , the following condition holds

\displaystyle \lim_{n\rightarrow}\inf_{\infty}\max\{d (f^{n}(yl), z_{i})| 1\leq i\leq k\}=0.
In particular, Z is a  $\delta$ ‐scrambled set of  f for some  $\delta$>0.
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An onto map f :  X\rightarrow \mathrm{Y} of continua is monotone if for any y \in \mathrm{Y}, f^{-1}(y) is
connected. In [16], we proved that if G is a graph and f : X\rightarrow X is a monotone map
on a G‐like continuum X which has positive topological entropy, then X contains
an indecomposable subcontinuum. Here we give the following more precise result.

Theorem 3.13. Suppose that G is a graph and X is a G ‐like continuum. If
f : X\rightarrow X is a monotone map on X with positive topological entropy, then there
exist an indecomposable subcontinuum H of X and a Cantor set Z in H such that
the Cantor set Z satisfies the following conditions;

(1) Z is vertically embedded to the composants of H,
(2) every tuple of finite points in the Cantor set Z is an IE ‐tuple of f,
(3) for all k\in \mathrm{N} , any distinct k points y_{1}, y_{2}, y_{k}\in Z and any points z_{1}, z_{2},  z_{k}\in

 Z , the following condition holds

\displaystyle \lim_{n\rightarrow}\inf_{\infty}\max\{d (f^{n}(yl), z_{ $\iota$})| 1\leq i\leq k\}=0.
In particular, Z is a  $\delta$ ‐scrambled set of  f for some  $\delta$>0.

A continuum E is an n‐od (2\leq n<\infty) if E contains a subcontinuum A such

that the complement of A in E is the union n nonempty mutually separated sets,
i.e.,

E-A=\cup\{E_{i}|i=1, 2, n\}
for some subsets E_{i} satisfying the condition:

\overline{E_{l}}\cap E_{j}=\emptyset(i\neq j) .

For any continuum X , let

 T(X)=\displaystyle \sup{  n| there is an n‐od in X}.

Note that if X is a G‐like continuum for a graph G , then T(X)<\infty.
To prove Theorem 3.13, we need the following lemma.

Lemma 3.14. (cf. [16, Lemma 2.3]) Let X and Y be continua with T(X) < \infty.

Suppose that f : X \rightarrow \mathrm{Y} is an (onto) monotone map, H' is an indecomposable
subcontinuum of X and Z' is a Cantor set which is vertically embedded to the
composants of H' . If H=f(H') is nondegenerate, then H is an indecomposable
subcontinuum of \mathrm{Y} and there is a subset Z of f(Z') such that Z is a Cantor set
and Z is vertically embedded to the composants of H.

4. CHAOTIC CONTINUA OF CONTINUUM‐WISE EXPANSIVE HOMEOMORPHISMS

AND \mathrm{I}\mathrm{E}−TUPLES

In this section, we study dynamical behaviors of continuum‐wise expan‐
sive homeomorphisms related to IE‐tuples and chaotic continua in topology. Any
continuum‐wise expansive homeomorphism f on a continuum X has positive topo‐
logical entropy and hence f has IE‐tuples (see Theorem4.1 below). Also, X contains
a chaotic continuum and chaotic continuum has uncountable mutually disjoint (un‐
stable or) stable dense connected F_{ $\sigma$} ‐sets (see Theorem 4.1). In this section, we
study some precise results of IE‐tuples related to (unstable) stable connected sets
of chaotic continua and composants of indecomposable continua.

A homeomorphism f : X\rightarrow X of a compact metric space X with metric d is
called expansive ([5,13]) if there is c>0 such that for any x, y\in X and x\neq y , then
there is an integer n\in \mathbb{Z} such that
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d(f^{n}(x), f^{n}(y))>c.
A homeomorphism f : X \rightarrow  X of a compact metric space X is continuum‐wise
expansive (resp. positively continuum‐wise expansive) [15] if there is c > 0 such
that if A is a nondegenerate subcontinuum of X , then there is an integer n \in \mathbb{Z}

(resp. a positive integer n\in \mathbb{N}) such that
diam f^{n}(A)>c,

where diam B = \displaystyle \sup\{d(x, y)|x, y \in B\} for a set B . Such a positive number c

is called an expansive constant for f . Note that each expansive homeomorphism
is continuum‐wise expansive, but the converse assertion is not true. There are
many continuum‐wise expansive homeomorphisms which are not expansive (see
[15]). These notions have been extensively studied in the area of topological dy‐
namics, ergodic theory and continuum theory (see [5,10‐15,27]).

The hyperspace 2^{X} of X is the set of all nonempty closed subsets of X with the
Hausdorff metric d_{H} . Let

C(X)= {A\in 2^{X}| A is connected}.
Note that 2^{X} and C(X) are compact metric spaces (e.g., see [20] and [26]). For a
homeomorphism f : X\rightarrow X and for each closed subset H of X and x \in H , the
continuum‐wise  $\sigma$ ‐stable sets  V^{ $\sigma$}(x;H) ( $\sigma$=s, u) of f are defined as follows:

V^{s}(x;H)=\{y\in H| there is A\in C(H) such that x,  y\in
 A and \displaystyle \lim_{n\rightarrow\infty} diam f (A)=0},

V^{\mathrm{u}}(x;H)=\{y\in H| there is A\in C(H) such that x,  y\in
 A and \displaystyle \lim_{n\rightarrow\infty} diam f (A)=0}.

Note that

V^{s}(x;H)\displaystyle \subset W^{s}(x)=\{y\in X| \lim_{n\rightarrow\infty}d(f^{n}(y), f^{n}(x))=0\},

V^{\mathrm{u}}(x;H)\displaystyle \subset W^{\mathrm{u}}(x)=\{y\in X| \lim_{n\rightarrow\infty}d(f^{-n}(y), f^{-n}(x))=0\}.
A subcontinuum H of X is called a  $\sigma$ ‐chaotic continuum (see [13]) of  f (where
 $\sigma$=s, u) if

(1) for each x\in H, V^{ $\sigma$}(x;H) is dense in H , and
(2) there is  $\tau$>0 such that for each x\in H and each neighborhood U of x in

X , there is y\in U\cap H such that

\displaystyle \lim\inf_{n\rightarrow\infty}d(f^{n}(x), f^{n}(y))\geq $\tau$ in case  $\sigma$=s , or

\displaystyle \lim\inf_{n\rightarrow\infty}d(f^{-n}(x), f^{-n}(y))\geq $\tau$ in case  $\sigma$=u.

We know that if f : X \rightarrow  X is a continuum‐wise expansive homeomorphism,
then V^{ $\sigma$}(z;H) is a connected F_{ $\sigma$} ‐set containing z . If H is a  $\sigma$‐chaotic continuum
of  f , then the decomposition \{V^{ $\sigma$}(z;H)|z\in H\} of H is an uncountable family of
mutually disjoint, dense connected F_{ $\sigma$}‐sets in H . Note that  $\sigma$‐chaotic continua of
 f have very similar structures of composants of indecomposable continua. In fact,
for the case of 1‐dimensional continua,  $\sigma$‐chaotic continua may be indecomposable
(see [10]).

Example 4. Let  f : T^{2}\rightarrow T^{2} be an Anosov diffeomorphism on the 2‐dimensional
torus T^{2} , say

\left\{\begin{array}{ll}
2 & \mathrm{l}\\
1 & \mathrm{l}
\end{array}\right\}
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Then f is expansive and T^{2} itself is a  $\sigma$‐chaotic continuum of  f for  $\sigma$=u, s . Note
that T^{2} contains no indecomposable  $\sigma$‐chaotic subcontinuum.

For continuum‐wise expansive homeomorphisms, we have obtained the following
results (see [11,13,15

Theorem 4.1. Let  f:X\rightarrow X be a continuum‐wise expansive homeomorphism on
a continuum X. Then the followings hold.

(1) ([15, Theorem 4.1]) f has positive topological entropy and hence there are
IE‐tuples.

(2) ([13, Theorem 3.6 and Theorem 4.1]) There is a  $\sigma$ ‐chaotic continuum  H of
f . Moreover, if H is a u ‐chaotic continuum (resp. s‐chaotic continuum),
then there exists a Cantor set Z in H satisfying the conditions;
(i) no two of points of Z belong to the same V^{\mathrm{u}}(x;H) (x \in X) (resp.
V^{8}(x, H) (x\in X i. e., Z is vertically embedded to V^{ $\sigma$}(x, H) (x\in H) ,
(ii) Z is a  $\delta$ ‐scrambled set of  f^{-1} for some  $\delta$>0 (resp. f).

(3) ([11, Theorem 2.4]) Moreover, if f : X \rightarrow  X is a positively continuum‐
wise expansive homeomorphism, then X contains a u ‐chaotic continuum H

such that H is indecomposable and the set of composants of H coincides to
\{V^{u}(x;H)| x\in H\} . Also, there exists a Cantor set Z in H satisfying the
conditions;
(i) Z is vertically embedded to the composants V^{u}(x, H) (x\in H) ,
(ii) Z is a  $\delta$ ‐scrambled set of  f^{-1} for some  $\delta$>0.

(4) (d) ([11, Corollary 2.7]) Moreover, if G is any graph and X is a G ‐like
continuum, then X contains a  $\sigma$ ‐chaotic continuum  H such that H is inde‐
composable and the set of composants ofH coincides to \{V^{ $\sigma$}(x;H)|x\in H\}.
Moreover if  $\sigma$=u (resp. s), then there exists a Cantor set Z in H satisfy‐
ing the conditions;
(i) Z is vertically embedded to V^{ $\sigma$}(x, H) (x\in H) ,
(ii) Z is a  $\delta$ ‐scrambled set of  f^{-1} for some  $\delta$>0 (resp. f).

(5) ([11, Theorem 2.6]) Moreover, if X is a continuum in the plane \mathbb{R}^{2} , then
X contains a  $\sigma$ ‐chaotic continuum  H of f such that H is indecomposable
and the set of composants of H coincides to \{V^{ $\sigma$}(x, H)|x\in H\} . Moreover
if  $\sigma$ = u (resp. s), then there exists a Cantor set Z in H satisfying the
conditions;
(i) Z is vertically embedded to V^{ $\sigma$}(x, H) (x\in H) ,
(ii) Z is a  $\delta$ ‐scrambled set of  f^{-1} for some  $\delta$>0 (resp. f).

We consider the case that a‐chaotic continua are periodic. By combining Theo‐
rem 3.1 and Theorem 4.1, we have the following results.

Corollary 4.2. Let f : X \rightarrow X be a continuum‐wise expansive homeomorphism
on a continuum X. Suppose that X contains a periodic  $\sigma$ ‐chaotic continuum  H of
f . Then there exists a Cantor set Z in H such that if  $\sigma$=u (resp.  $\sigma$=s ), then
the following conditions hold;
(1) Z is vertically embedded to V^{ $\sigma$}(x, H) (x\in H) ,
(2) every tuple of finite points in the Cantor set Z is an IE ‐tuple of f^{-1} (resp. f),
and

(3) for all k\in \mathrm{N} , any distinct k points y_{1}, y_{2}, y_{k}\in Z and any points z_{1}, z_{2},  z_{k}\in
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 Z , the following condition holds

\displaystyle \lim_{n\rightarrow}\inf_{\infty}\max\{d (f^{-n}(yi), z_{i})| 1\leq i\leq k\}=0

(resp. \displaystyle \lim_{n\rightarrow}\inf_{\infty}\max\{d ( f^{n} (yi), z_{l} ) | 1\leq i\leq k\}=0) .

Similarly, we have the following result.

Corollary 4.3. Suppose that f : X \rightarrow  X is a positively continuum‐wise expan‐
sive homeomorphism on a continuum X such that X has a periodic u‐chaotic con‐
tinuum H which is indecomposable and the set of composants of H coincides to
\{V^{?4}(x;H)| x \in H\} . Then there exists a Cantor set Z in H which is vertically
embedded to the composants of H and satisfies the conditions;
(1) if x, y belong to the same composant of H , then \displaystyle \lim_{n\rightarrow\infty}d(f^{-n}(x), f^{-n}(y))=0,
(2) every tuple of finite points in the Cantor set Z \dot{u} an IE ‐tuple of f^{-1} , and
(3) for all k\in \mathrm{N} , any distinct k points y_{1}, y_{2}, y_{k}\in Z and any points z_{1}, z_{2},  z_{k}\in
 Z , the following condition holds

\displaystyle \lim_{n\rightarrow}\inf_{\infty}\max\{d (f^{-n}(yi), z_{i})| 1\leq i\leq k\}=0.
For special cases, we have the following.

Corollary 4.4. Suppose that X is one of the Knaster continuum, Plykin attrac‐
tors or solenoids. If f : X \rightarrow  X is a continuum‐wise expansive homeomorphism
on X , then f or f^{-1} is positively continuum‐wise expansive. In particular, if f is
positively continuum‐wise expansive, then there eirists a Cantor set Z in X such
that the Cantor set Z is vertically embedded to the composants of X and satisfies
the conditions;
(1) ifx, y belong to the same composant of X , then \displaystyle \lim_{n\rightarrow\infty}d(f^{-n}(x), f^{-n}(y))=0,
(2) every tuple of finite points in the Cantor set Z is an IE‐tuple of f^{-1},
(3) Z has the free tracing property by free chains, and
(4) for all k\in \mathrm{N} , any distinct k points y_{1}, y_{2}, y_{k}\in Z and any points z_{1}, z_{2},  z_{k}\in
 Z , the following condition holds

\displaystyle \lim_{n\rightarrow}\inf_{\infty}\max\{d (f^{-n}(y_{l}), z_{i})| 1\leq i\leq k\}=0.

For the case of the shift map  $\sigma$ f : \mathrm{r}(G, f) \rightarrow \mathrm{k}\mathrm{m}(G, f) of a map f : G\rightarrow G

on a graph G which has sensitive dependence on initial conditions, we can find
a periodic indecomposable s‐chaotic continuum in  $\Psi$(G, f) . Hence we have the
following corollary.

Corollary 4.5. Suppose that f : G\rightarrow G \dot{u} a map on a graph G which has sen‐
sitive dependence on initial conditions and $\sigma$_{f} : X = \mathrm{L}\mathrm{m}(G, f) \rightarrow X is the shift
map of f . Then there exists an indecomposable s ‐chaotic continuum H in X such
that $\sigma$_{f}^{n}(H) = H for some n \in \mathrm{N} and the set of composants of H coincide to
\{V^{S}(x;H)|x\in H\} . Hence there is a Cantor set Z in H such that Z is vertically
embedded to the composants of H and satisfies the conditions;
(1) if x, y belong to the same composant of H , then \displaystyle \lim_{n\rightarrow\infty}d($\sigma$_{f}^{n}(x), ($\sigma$_{f}^{n}(y))=0,
(2) every tuple of finite points in the Cantor set Z is an IE‐tuple of  $\sigma$ f,

(3) Z has the free tracing property by free chains, and
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\displaystyle \int_{lhefollowing}^{4)forallk\in \mathrm{N}}, conditionholsanydistinctkfoints y_{1}, y_{2}, y_{k}\in Z and any points z_{1}, z_{2},  z_{k}\in

\displaystyle \lim_{n\rightarrow}\inf_{\infty}\max\{d($\sigma$_{f}^{n}(y_{l}), z_{l})| 1\leq i\leq k\}=0.
Example 5. Let f : I= [0, 1]\rightarrow I be the map defined by f(t) =4t(1-t) (t\in

 I) . Note that f has sensitive dependence on initial conditions and km(I, f) is
the Knaster continuum. Then 1\dot{L}\mathrm{m}(I, f) is the s‐chaotic continuum of the shift

homeomorphism $\sigma$_{f} : 1\dot{L}\mathrm{m}(I, f) \rightarrow  1\dot{L}\mathrm{m}(I, f) satisfying the conditions of Corollary
4.5, where H=1\dot{\mathrm{L}}\mathrm{m}(I, f) .
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