

Title	On the finite space with a finite group action II (Algebraic Topology focused on Transformation Groups)
Author(s)	Fujita, Ryousuke
Citation	数理解析研究所講究録 = RIMS Kokyuroku (2018), 2060: 44-48
Issue Date	2018-04
URL	http://hdl.handle.net/2433/241829
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

On the finite space with a finite group action II

福井大学医学部 藤田亮介 (Ryousuke Fujita) School of Medical Sciences, University of Fukui

1 Introduction

The purpose of our presentation was to apply the finite topology theory to the subgroup complex theory. A finite T_0 -space is a topological space having finitely many points with the T_0 -separation axioms, that is, for each pair of distinct two points, there exists an open set containing one but not the other. Many well-known properties about finite T_0 -spaces may be found in [1], [2] and [5]. Moreover we consider the finite space with a finite group G-action, called a finite T_0 -G-space.

On the other hand, we are interested in homotopy properties on subgroup complexes of a finite group. Let G be a finite group and p a prime factor of the order of G. Let $O_p(G)$ be the maximal normal p-subgroup of G. The Bouc poset(= partially ordered set) $B_p(G)$ of a finite group G is the subposet of $S_p(G)$ with $O_p(N_G(P)) = P$, where $N_G(P)$ is the normalizer of P and $S_p(G)$ is the poset of the non-trivial p-subgroups of G ordered by inclusion. We remark that the Bouc poset $B_p(G)$ contains all Sylow p-subgroups of G. Let $\Delta(B_p(G))$ denote the order complex of $B_p(G)$, that is, the vertices are the elements of $B_p(G)$ and the p-subgroups are the chains of p-subgroups of $S_p(G)$ of length $S_p(G)$ of length $S_p(G)$ of length $S_p(G)$ is simplicial complex is called the $S_p(G)$ of $S_p(G)$ and $S_p(G)$ of length $S_p(G)$ of length

Quillen examined the simplicial complex $\Delta(S_p(G))$ associated with the poset $S_p(G)$. In particular, let us take a finite solvable group G. The main theorem of his paper [4] is that $\Delta(S_p(G))$ is contractible if and only if there is a non-trivial normal p-subgroup. Our study is motivated by this result.

McCord's result [3, Theorem 2] provides deep insight into understanding relations between finite T_0 -spaces and finite simplicial complexes. For a finite T_0 -space X, we can define the order complex $\Delta(X)$. Let $|\Delta(X)|$ be the geometric realization of $\Delta(X)$.

Proposition 1.1. There exists a weak homotopy equivalence $\mu_X : |\Delta(X)| \to X$. Moreover, each map $\varphi : X \to Y$ between finite T_0 -spaces defines a simplicial map $\Delta(\varphi) : \Delta(X) \to \Delta(Y)$ by $\Delta(\varphi)(x) = \varphi(x)$, and $\varphi \circ \mu_X = \mu_Y \circ |\Delta(\varphi)|$ where $|\Delta(\varphi)| : |\Delta(X)| \to |\Delta(Y)|$ is a continuous map induced by $\Delta(\varphi)$.

Corollary 1.2. Let $\varphi: X \to Y$ be a map between finite T_0 -spaces. Then φ is a weak homotopy equivalence if and only if $|\Delta(\varphi)|: |\Delta(X)| \to |\Delta(Y)|$ is a homotopy equivalence.

Then we show the following:

Theorem A. Let G be a finite nilpotent group and p any prime factor of the order of G. Then $\Delta(B_p(G))$ is contractible.

We apply McCord's theorem to give a very short, purely topological proof of the above result.

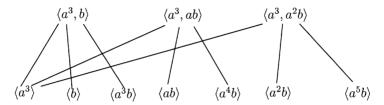
2 Some examples of Bouc posets

For the convenience of the reader, we present some examples of Bouc posets.

Example 2.1. Take $G = D_{12}$, the dihedral group of order 12, and p = 2. We can give the abstract presentation of G by the generators and relations:

$$G = \langle a, b \mid a^6 = b^2 = 1, b^{-1}ab = a^{-1} \rangle;$$

where these represent a rotation and a reflection, when G is regarded concretely as the group of a regular hexagon. We find three Sylow 2-subgroups of order 4: $\langle a^3, b \rangle$, $\langle a^3, ab \rangle$, $\langle a^3, a^2b \rangle$, and the minimal members are generated by 7 involutions: $\langle a^3 \rangle$, $\langle b \rangle$, $\langle ab \rangle$, $\langle a^2b \rangle$, $\langle a^3b \rangle$, $\langle a^4b \rangle$, $\langle a^5b \rangle$. Thus the poset diagram for $S_2(D_{12})$ is given by:

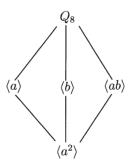


Observe that each of three Sylow 2-subgroups is not the normal subgroup of G and the center Z(G) of G equals $\langle a^3 \rangle$. Therefore $B_2(G) = \{\langle a^3, b \rangle, \langle a^3, ab \rangle, \langle a^3, a^2b \rangle, \langle a^3 \rangle\}$.

Example 2.2. Take $G = Q_8$, the quaternion group of order 8, and p = 2. We can give the abstract presentation of G by the generators and relations:

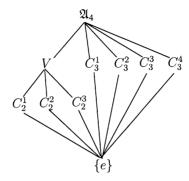
$$G = \langle a, b \, | \, a^4 = 1, \ b^2 = a^2, \ b^{-1}ab = a^{-1} \rangle.$$

We find three Sylow 2-subgroups of order 4: $\langle a \rangle$, $\langle b \rangle$, $\langle ab \rangle$, and each of these three Sylow 2-subgroups contains the unique cyclic subgroup $\langle a^2 \rangle$. Thus the poset diagram for $S_2(Q_8)$ is given by:



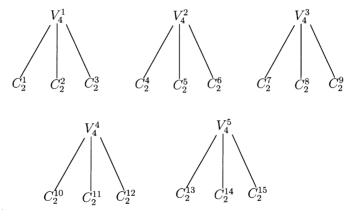
Since any subgroup of G is normal, so that $B_2(G) = \{Q_8\}.$

Example 2.3. Take $G = \mathfrak{A}_4$, the alternative group of letter 4. We find one Sylow 2-subgroup of order 4 and four Sylow 3-subgroups of order 3. The subgroups diagram for \mathfrak{A}_4 is given by:



Here V is a Klein group, each C_3^i (i=1,2,3,4) is a distinct cyclic group of order 3, and each C_2^j (j=1,2,3) is a distinct cyclic group of order 2. Then $B_2(G)=\{V\}$ and $B_3(G)=\{C_3^1, C_3^2, C_3^3, C_3^4\}$.

Example 2.4. Take $G = \mathfrak{A}_5$, the alternative group of letter 5, and p = 2. By easy observation, we find five Sylow 2-subgroups of order 4, and each Sylow 2-subgroup contains three cyclic groups of order 2. Thus the poset diagram for $S_2(\mathfrak{A}_5)$ is given by:



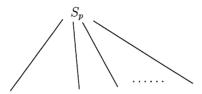
Here each V_4^i $(1 \le i \le 5)$ is a distinct Klein group, each C_2^j $(1 \le j \le 15)$ is a distinct cyclic group of order 2. Then $B_2(\mathfrak{A}_5) = \{V_4^1, V_4^2, V_4^3, V_4^4, V_4^5\}$.

3 Proof of Theorem A

We address to the article written by Barmak and cited in Bibliography. Stong studied equivariant homotopy theory for finite T_0 -spaces [6]. Let G be a finite group. A finite T_0 -space with a G-action is called a *finite* T_0 -G-space. Any finite T_0 -G-space X has a core which is G-invariant and an equivariant strong deformation retract of X. Such a core is

called a G-core. See our general reference Barmak [1, p106] for details. Note that a finite T_0 -G-space is contractible if and only if its G-core consists of a point. We remark that $B_p(G)$ is a finite T_0 -G-space by conjugation.

Proof of Theorem A If G is a finite nilpotent group, then G has a unique Sylow p-subgroup S_p . The poset diagram for $B_p(G)$ is given by:



By this diagram, the G-core of $B_p(G)$ is $\{S_p\}$, and so $B_p(G)$ is contractible. By McCord's theorem (Proposition 1.1), there exists the following commutative diagram:

$$|\Delta(B_p(G))| \xrightarrow{|\Delta(f)|} |\Delta(\{S_p\})|$$

$$\mu_{B_p(G)} \downarrow \qquad \qquad \downarrow \mu_{\{S_p\}}$$

$$B_p(G) \xrightarrow{f} \{S_p\}$$

where $f: B_p(G) \to \{S_p\}$ is homotopy equivalent. By Corollary 1.2, map $|\Delta(f)|: |\Delta(B_p(G))| \to |\Delta(\{S_p\})|$ is also homotopy equivalent. Therefore $|\Delta(B_p(G))|$ is contractible, that is, $\Delta(B_p(G))$ is contractible.

Corollary B. Let pq be the order of G such that p and q are distinct primes with p > q. Then $\Delta(B_p(G))$ is contractible.

Proof. The number of Sylow p-subgroups of G is equivalent to 1 mudulo p. Moreover it is also the devisor of pq. Therefore the number of Sylow p-subgroups of G is 1, and so the Sylow p-subgroup is normal.

For example, take $G = \mathfrak{S}_3$, the symmetric group of letter 3. Then $\Delta(B_3(\mathfrak{S}_3))$ is contractible.

4 Concluding remarks

Lemma 4.1. A contractible finite T_0 -G-space has a point which is fixed by the action of G.

Proof. A contractible finite T_0 -G-space has a G-core, i.e. a point, which is G-invariant. \square We showed the following result in [2].

Lemma 4.2. Let X be a finite T_0 -G-space. Then $|\Delta(X)|/G$ is homotopy equivalent to $|\Delta(X)/G|$.

Suppose that $B_p(G)$ is contractible. Then lemma 4.1 claims that G has a normal p-subgroup. Moreover the orbit space $B_p(G)/G$ of $B_p(G)$ is a finite T_0 -space and also contractible.

Proposition 4.3. Let $|\Delta(B_p(G))/G|$ be the geometric realization of $\Delta(B_p(G))/G$. If $B_p(G)$ is contractible, $|\Delta(B_p(G))/G|$ is also contractible.

References

- [1] Barmak, J.A., Algebraic Topology of Finite Topological Spaces and Applications, Lecture Notes in Math, 2032, Springer-Verlag, 2011.
- [2] Fujita, R. and Kono, S., Some aspects of a finite T_0 -G-space, RIMS Koukyuroku. **1876** (2014), 89–100.
- [3] McCord, M.C., Singular homotopy groups and homotopy groups of finite topological spaces, Duke. Math. J. **33** (1966), 465-474.
- [4] Quillen D., Homotopy properties of the poset of nontrivial p-subgroups of a group, Advances in Math. 28(1978), 101–128.
- [5] Stong, R.E., Finite topological spaces, Trans.Amer.Math.Soc. 123 (1966), 325-340.
- [6] Stong, R.E., Group actions on finite spaces, Discrete Math. 49 (1984), 95-100.