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1. Introduction

Modal logics play an important role in the design of systems that

provide components of reasoning about the knowledge and time. Tem-

poral logics actively develops the �elds of mathematical logic, philos-

ophy, computer science and arti�cial intelligence. The �rst study of

temporal logics as modal systems was proposed by A. Prior [1], for

the next half-century this area has become a complex technical disci-

pline [2].

The idea of non-transitive time, in the aspect of knowledge, proceeds

from the observation that the transfer of knowledge from the past to

the future may not always be successfully performed: the available

information in the past may not be available in the present. A detailed

consideration of di�erent points of view on non-transitive time and its

expression by means of logical systems is considered in [3].

At the stage of its formation, the uni�cation problem consisted in

answering the question: is it possible to transform two terms into syn-

tactically equivalent ones by changing variables to other terms. In the

�eld of nonstandard logics this problem is equivalent to (and more often

considered in the form of) possibility of a formula to become a theo-

rem after replacing variables, preserving the values of the coe�cient-

parameters [4].
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V.V. Rybakov solved this problem for modal S4, Grz and intuition-

istic logics, [5], in [6] he proposed an approach to the de�nition of all

non-uni�able formulas for the extensions of S4 and (K4+ [�⊥ ≡ ⊥]).
Using this technique, the criteria of non-uni�ability in linear tran-

sitive temporal logics of knowledge with multi-modal relations were

found: over the N (LT K, [7]) and over the Z with alternative relations

(LFPK, [8]).
To study the uni�cation S. Ghilardi proposed a new approach based

on the projective formulas [9], which allowed to algorithmize the con-

struction of a �nite complete sets of uni�ers for the series of log-

ics, [10, 11]. Based on this approach, W. Dzik and P. Wojtylak estab-

lished a projective uni�cation in the extensions of the logic S4.3 [12].

In [13�16] it was found that a solution of the admissibility problem fol-

lows from the existence of computable complete sets of uni�ers, which

signi�cantly increased the importance of the approach to uni�cation

through the projective formulas. In [17] V.V. Rybakov found the mod-

i�cation of linear temporal logic LT L with the operator Until, for

which the projective uni�cation was established. From the projec-

tivity of uni�cation follows the existence of the most general uni�er

(mgu), but not vice versa. For example, in [18] the existence of mgu

for each uni�ed formula in LT L with the operators Next and Until is

proved and counterexample is constructed: an uni�ed, but not a pro-

jective formula. In [19] the projective uni�cation is proved for LFPK,
LFPKU+

U−
, LFPKU+,N

U−,P
.

The uni�cation problem is reducible to the admissibility problem:

the formula ϕ is uni�able in the logic L if the inference rule ϕ/⊥ is

not admissible in L. In some cases, when logic has a �nitary type of

uni�cation, the admissibility problem is also reducible to the problem

of uni�cation [20,21].

The approach based on the construction of a ground uni�er (i.e.,

obtained by the substitution of constants) demonstrates wide applica-
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bility: both in a way of proving the uni�ability of an arbitrary for-

mula, and in constructing projective uni�ers [17, 19, 23]. The idea of

constructing a projective uni�er using a ground one, however, is not

universal and all-applicable: in [10] it was shown that not for every

formula in Int a ground uni�er gives a construction of a projective

uni�er, in [12] it was proved that for S4.3 the projective uni�er can't

be simply described on the basis of the ground one. Despite this, the

use of ground uni�ers in solving uni�cation problems is stay appropri-

ate even when logic has nullary (worst) type of uni�cation and mgu

for some formulas do not exist: the construction of the ground uni�er

remains possible.

Simultaneously with intensive studies of uni�cation in transitive

logics, analogous questions remain extremely poorly studied for non-

transitive cases, where they appear to carry much greater complexity,

and many methods and even de�nitions turns out to be inapplicable

or require considerable modi�cation. However, it would be unfair ig-

nore the existence of works for logics with non-standard relations. For

example, E. Jerabek proved the nullary type of uni�cation in minimal

normal logic K [22], and W. Dzik � the best � unitary type for S5
and its extensions [23]. F. Wolter and M. Zakharyaschev [24] proved

the unsolvability of uni�cation over the K with additional universal

modality.

In this paper, we investigate linear modal logic based on non-

transitive time with a universal modality. It is proved that uni�ability

of any formula in this logic can be e�ectively detemined and a ground

uni�er can be found, if one exists. The projective uni�cation is estab-

lished, which guarantees its unitary type [9] and (almost) structurally

completeness [25] in this logic.
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2. De�nitions and semantics

We give some de�nitions and formulations, and also semantic con-

struction of linear bimodal logic of non-transitive time with universal

modality (in our notation ULIT L).
The alphabet of the language LULIT L includes a countable set of

propositional variables P = {p1, . . . , pn, . . . }, brackets (, ), standard

Boolean operations and two modal operators: non-transitive ♦ and

universal �U modalities.

Kripke frame (or scale) F is a pair 〈W,R〉, where W is a nonempty

set of elements, and R is a binary relation on W . If for a, b ∈ W is

ful�lled aRb, then say a ¾sees¿ b. A frame F is said to be re�exive

and transitive if its binary relation R is such kind. Let {p1, . . . , pn}
be the set of propositional variables. Valuation V on the frame F

is a mapping associating with each variable pi subset V (pi) ⊆ W .

Kripke model M (or shortly model) is a triple 〈W,R, V 〉, where 〈W,R〉
is a frame, and V is a valuation of propositional variables from the

set Dom(V ) = {p1, . . . , pn} called sign domain V . Let the model

M = 〈F, V 〉 be given. Then ∀w ∈ F :
a. 〈F,w〉 
V p⇔ w ∈ V (p);

b. 〈F,w〉 
V ϕ ∨ ψ ⇔ [(〈F,w〉 
V ϕ) ∨ (〈F,w〉 
V ψ)];

c. 〈F,w〉 
V ϕ ∧ ψ ⇔ [(〈F,w〉 
V ϕ) ∧ (〈F,w〉 
V ψ)];

d. 〈F,w〉 
V ¬ϕ ⇔ [¬ (〈F,w〉 
V ϕ)];

e. 〈F,w〉 
V ♦ϕ ⇔ [∃v ∈ F : (wRv)⇒ (〈F, v〉 
V ϕ)];

f. 〈F,w〉 
V �ϕ ⇔ [∀v ∈ F : (wRv)⇒ (〈F, v〉 
V ϕ)].

For the logic L a frame F is called a L-frame or a frame that is

adequate to the logic L, if for any formula α ∈ L for any valuation V

we have F 
V L. The logic L de�ned by the frame F will be written

as L(F ).
In this paper we consider the Kripke frame F = 〈N, Nextinf〉, where

N is the set of integers, andNextinf is the binary relation ¾next natural

4



number¿: ∀a, b ∈ N : aNextinfb ⇔ b = a + 1. The model on the

in�nite frame F = 〈N, Nextinf〉 will be denoted as M = 〈F, V 〉.
In accordance with the de�nition, the frame F is linear non-

transitive with irre�exive points, therefore the truth values of the

modality � on any such model M coincides with ♦.

In addition to the non-transitive modality ♦, the language of logic

ULIT L contains the model operator �U , the truth values of formulas

containing �U on M = 〈F, V 〉 is given as follows:

∀x ∈ F, 〈F, x〉 
V �Uϕ↔ [∀y ∈ F, 〈F, y〉 
V ϕ] .

The modal operator ♦U is expressed in terms of the pairwise �U by

the ordinary way: ♦Uϕ := ¬�U¬ϕ.
In other words, �Uϕ means that the formula ϕ always and every-

where valid. In this case, �U is called a universal modality, and logic

ULIT L containing �U is called the linear bimodal logic based on

non-transitive time with universal modality.

De�nition 1. Logic ULIT L is the set of all formulas of the language

LULIT L valid on the frame F :

ULIT L := {A ∈ Fma(LULIT L) | F ∈ ULIT L(F 
V A)}.

3. Uni�cation

The length l(α) of the formula α is de�ned as follows: l(p) = 0,

where p is a proposition variable; l(α ◦ β) = l(α) + l(β) + 1, where

◦ ∈ {∨,∧}; l(©α) = l(α) + 1, where ◦ ∈ {¬,♦,�U}.
Before proceeding to the main results, we prove an auxiliary, almost

obvious, fact.

Proposition 1. For all c1, . . . , cr ∈ {>,⊥} and any formula

δ(p1, . . . , pr) there is c ∈ {>,⊥}, s.t. ∀x ∈ F , 〈F, x〉 
 δ(c1, . . . , cr) ≡
c.
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Proof. We carry out the proof by induction on the length of the formula

δ. Let δ = p, then as a result of the substitution we get δ = >, so
V (>) = F , or δ = ⊥, which means V (⊥) = ∅.

If δ = c1 ∨ c2, where c1, c2 ∈ {>,⊥}, then δ = max(c1, c2), if

δ = c1 ∧ c2, then δ = min(c1, c2) and, by the inductive hypothesis,

V (δ) = F or V (δ) = ∅.

If δ = ¬c1, where c1 ∈ {>,⊥}, then δ = >, if c1 = ⊥, or δ = ⊥, if
c1 = > and, again accordingly to the inductive hypothesis, V (δ) = F

or V (δ) = ∅.

Let δ = ©c1, where © = {♦,�U} and c1 ∈ {>,⊥}. If c1 = ⊥
then, because of V (⊥) = ∅, we get V (©⊥) = ∅. If c1 = > then,

because of V (>) = F , we also get V (©>) = F .

De�nition 2. A formula α(p1, . . . , ps) is said to be uni�able in a logic

L i� exists a substitution σ : pi 7→ σi for each pi, s.t. α(σ1, . . . , σs) ∈
L. In this case, this substitution σ is called a uni�er of the formula α.

A ground uni�er is a uni�er obtained by the substitution constants

{>,⊥} in place of the variables of the formula.

Earlier, in [26] we proved the criterion of non-uni�ability for arbi-

trary L with expressible universal modality:

Theorem 1. A formula A is non-uni�able in L ⇔
�UA→

[∨
p∈V ar(A) ♦Up ∧ ♦U¬p

]
∈ L.

De�nition 3. A uni�er σ of the formula α(p1, . . . , ps) is called more

general than another σ1 in L, if there exists a substitution σ2, s.t. for

any variable pi: σ
1(pi) ≡ σ2(σ(pi)) ∈ L.

A uni�er σ of the formula α(p1, . . . , ps) is called a most general

uni�er (shortly mgu), if for any other σi uni�er σ is more general

than σi.

A most general uni�er can be interpreted as the best solution to

the uni�cation problem. Logic has a unitary type of uni�cation, if for
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any uni�ed formula there is a mgu; �nitary (in�nitary) type if there

is a �nite (respectively in�nite) number of the best solutions (in this

case, all of them are called a maximal uni�ers). The worst type of

uni�cation is nullary type: some of the uni�able formulas do not have

maximal uni�ers, [22].

De�nition 4. A formula α(p1, . . . , ps) is said to be projective in logic

ULIT L, if there is a uni�er τ (which called projective uni�er) for a

formula α, s.t. �Uα → [pi ≡ τ(pi)] ∈ ULIT L for any variable pi of

the formula α.

For an arbitrary formula in the logic ULIT L it is possible to estab-

lish its uni�ability using only ground uni�ers:

Theorem 2. Uni�ability of an arbitrary formula ϕ(p1, . . . , ps) in

ULIT L can be e�ectively established using the substitution σ(ϕ) of

the following form: ∀pi ∈ V ar(ϕ) σ(pi) ∈ {>,⊥}.

Proof. Lets show that to check uni�ability of any given formula ϕ it

is enough to establish only the existence of the ground uni�er gu :=

{>,⊥}, obtained by substituting variables for constants.

Let a formula ϕ(p1, . . . , ps) be uni�ed in ULIT L and the set

δ1(q1, . . . , qr), . . . , δs(q1, . . . , qr) is its uni�er. Then

δ(ϕ) := ϕ(δ1(q1, . . . , qr), . . . , δs(q1, . . . , qr)) ∈ ULIT L.

We replace the variables q1, . . . , qr by the constants ci ∈ {>,⊥}(i ∈
[1, r]) in an arbitrary way. Because of we are dealing with a valid for-

mula in logic, as a result of substitution we again obtain valid formula:

ϕ(δ1(c1, . . . , cr), . . . , δs(c1, . . . , cr)) ∈ ULIT L.

Let us denote gu(pi) := δi(c1, . . . , cr), then

ϕ(gu(p1), . . . , gu(ps)) ∈ ULIT L,
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where each of gu(pi) ∈ {>,⊥} is a constant. Therefore, gu(ϕ) is a

ground uni�er, which existence for an arbitrary formula can be veri�ed

in ULIT L as follows.

Due to the fact that gu(p1), . . . , gu(ps) in nothing more than a set

of constants for which ϕ is true, for an arbitrary (not necessarily uni-

�ed) formula ψ(p1, . . . , ps) it su�ces to go through no more than 2s

substitution options of {>,⊥} instead of variables. If among them

there is such that ψ(gu(p1), . . . , gu(ps)) ≡ULIT L >, it will mean that

formula ψ is uni�able in ULIT L and gu(ψ) ∈ ULIT L is its ground

uni�er. Otherwise, if for all 2s substitution options gu(p1), . . . , gu(ps),

ψ(gu(p1), . . . , gu(ps)) /∈ ULIT L, then such formula ψ does not have

a ground uni�er, which means that it is non-uni�able in ULIT L.

Now we are ready to prove the main result of the article.

Theorem 3. Any uni�able in ULIT L formula is projective.

Proof. Assuming that ϕ(p1, . . . , ps) is uni�able in ULIT L formula.

For any variable pi ∈ V ar(ϕ) we set the following substitution σ(pi):

σ(pi) := (�Uϕ ∧ pi) ∨ (¬�Uϕ ∧ gu(pi)),

where gu(p1), . . . , gu(ps) is a ground uni�er of the formula

ϕ(p1, . . . , ps), obtained by the algorithm from the previous theorem.

Take any in�nite modelM := 〈F, V 〉 with the arbitrary notation V .

If σ is a uni�er for ϕ, then σ(ϕ) ∈ ULIT L è ∀x ∈ F 〈M,x〉 
V σ(ϕ).

Let us prove that the substitution σ is a uni�er for ϕ in the logic

ULIT L.
1. If ∀x ∈ F : 〈M,x〉 
V ϕ, then 〈M,x〉 
V �Uϕ and hence

the second disjunctive term is refuted at x. If 〈M,x〉 
V pi, then

〈M,x〉 
V �Uϕ ∧ pi, hence 〈M,x〉 
V σ(pi). If 〈M,x〉 
V ¬pi, then
〈M,x〉 1V �Uϕ ∧ pi and therefore 〈M,x〉 
V ¬σ(pi). Consequently,

the truth value of ϕ(p1, . . . , ps) at the point x w.r.t. V coincides with

the value of ϕ(σ(p1), . . . , σ(ps)) at the same point w.r.t. V and hence

in this case 〈M,x〉 
V σ(ϕ).
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2. If ∃x ∈ F : 〈M,x〉 
V ¬ϕ, then 〈M,x〉 1V �Uϕ, which is pos-

sible for the second disjunctive term, but the �rst one is immediately

disproved at x. Then the truth values of all σ(pi) at x coincide with

gu(pi), and because 〈M,x〉 
V gu(ϕ) (by virtue of the selection of

the ground uni�er gu(ϕ) ∈ ULIT L), again 〈M,x〉 
V σ(ϕ). Hence,

σ(ϕ) ∈ ULIT L for the uni�able in ULIT L formula ϕ.

Lets prove that σ(ϕ) is a projective uni�er. If we substitute σ(pi)

into the de�nition of the projective formula, we obtain the following:

∀pi ∈ V ar(ϕ)

�Uϕ→ (pi ↔ [(�Uϕ ∧ pi) ∨ (¬�Uϕ ∧ gu(pi))]) ∈ ULIT L,

if σ is a projective uni�er for ϕ. Assume the converse: let σ be a not

projective substitution. Then ∃x

〈M,x〉 
V �Uϕ, (1)

but

〈M,x〉 1V pi ↔ [(�Uϕ ∧ pi) ∨ (¬�Uϕ ∧ gu(pi))]. (2)

In this case

〈M,x〉 1V pi → [(�Uϕ ∧ pi) ∨ (¬�Uϕ ∧ gu(pi))], (3)

or

〈M,x〉 1V [(�Uϕ ∧ pi) ∨ (¬�Uϕ ∧ gu(pi))]→ pi. (4)

If (3), then 〈M,x〉 
V pi, but in this instance 〈M,x〉 
V �Uϕ ∧ pi,
by virtue of (1) and pi at x, and therefore 〈M,x〉 
V pi → [(�Uϕ ∧
pi) ∨ (¬�Uϕ ∧ gu(pi))].

If (4), consequently 〈M,x〉 
V [(�Uϕ ∧ pi) ∨ (¬�Uϕ ∧ gu(pi))],
but it is possible only with 〈M,x〉 
V pi, because 〈M,x〉 
V �Uϕ

following from (1), hence in the disjunction of σ(pi) only �rst term

can be ful�lled. Therefore the conclusion (4) is true and 〈M,x〉 
V

[(�Uϕ ∧ pi) ∨ (¬�Uϕ ∧ gu(pi))]→ pi. Hence, σ is a projective uni�er

for ϕ in logic ULIT L, and therefore ϕ is a projective formula.
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By the theorem above, for any ϕ uni�able in ULIT L the substi-

tution σ is a projective uni�er, and hence the most general one [9].

Besides, the existence of mgu for every uni�ed formula implies the

�niteness of all complete sets of uni�ers in the logic, and all of them

can be obtained from the given projective substitution σ, and the logic

ULIT L has a unitary type of uni�cation [9].

A remarkable consequence of the projective uni�cation in the logic

ULIT L is also its almost structurally completeness [25]: each admis-

sible rule in ULIT L is derivable.
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