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Abstract

Precise direct measurements of the intensive electrocaloric effect (ECE) in com-

mercial multilayer capacitor based on doped BaTiO3 were performed using an

adiabatic calorimeter. High reversibility of ECE studied under equilibrium ther-

mal conditions was observed. The nonequilibrium thermal conditions caused by

fixing the temperature of one of the ends of the linear EC element lead to the

predominance of ECE when the electric field is turned off. The heat flow through

the EC element appearing under the influence of a periodic electric field and

depending on its frequency makes it possible to create a cooling cycle without

thermal keys.
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Electrocaloric effect (ECE) in ferroelectric materials has a great potential

in realizing solid-state cooling devices with compact size and high efficiency

which are highly desirable for a wide range of applications such as on-chip

cooling and temperature controlling for sensors, electronic devices, and medical

instruments. ECE is associated with the reversible change in the tempera-

ture, ∆TAD, or entropy, ∆SECE , under electric field variation under adiabatic

and isothermal conditions, respectively. According to interrelations between

the extensive and intensive ECE and polarization, ∆SECE =
∫

(∂P/∂T )EdE,

∆TAD = −(T/Cp)∆SECE , the largest values of both effects can be obtained

near the ferroelectric phase transition point, where the derivative (∂P/∂T )E

reaches the maximum magnitude [1]. Recent development in the design of the

electrocaloric (EC) components and cooling systems has indicated that the in-

tensive ECE equal to ∆TAD=3 K would be enough to construct an EC solid–

state refrigeration system with refrigeration costs comparable to todays vapor–

compression systems [2]. Theoretical estimations have shown that in order to

realize ∆TAD ≈6 K in Ba0.5Sr0.5TiO3, rather high electric field E ≈300 kV/cm

is needed [3]. However, the breakdown field for bulk ferroelectric materials does

not usually exceed 60 kV/cm. On the other hand, thin ferroelectric films can

support higher fields E ≈1000–2000 kV/cm which can be obtained at low volt-

age due to small thickness of films. This is the reason why gigantic intensive

ECE (∆TAD ≈14 K) was observed in such kind of ferroelectric materials [4].

Unfortunately, thin films have a small thermal mass which brings about small

EC heat. Multilayer ceramic capacitors (MLCCs) have been suggested [5, 6] as

an alternative design for EC coolers since they combine high breakdown field

due to rather thin layers (<10 µm) as well as large thermal mass and as a result

high cooling power. Investigations of ECE in the multilayer structures based on

BaTiO3 have demonstrated ∆TAD ≤1 K at E=300 kV/cm [5, 7, 8, 9, 10, 11, 12].

However, refrigerators with solid working body operating on the classic ECE

associated with the applying/removal of a constant electric field to/from the

ECE element have a serious disadvantage: heat switches are needed to provide

thermal contact of solid refrigerant in turn with cooled object and environ-
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ment [11, 13, 14].

Recently, an original way was suggested to avoid such a serious problem [15,

16, 17, 18]. The idea was to create a heat flux through the EC element. Theo-

retical modelling has shown that such an effect can be obtained realizing ECE

under the periodic E in the bulk EC element under nonequilibrium thermal

conditions. The top of the linear element was thermally isolated and the bot-

tom was kept at Tbot=const. As a result, in a certain temperature range,

applying and removal of the electric field will be accompanied by the differ-

ent values of ∆TAD (|∆T |ON
AD < |∆T |OFF

AD ). Periodic variations in the field,

E = 0 → E 6= 0 → E = 0, will lead to fluctuations in the temperature of the

top of the EC element, Ttop. The gradual decrease of its average value down to

Ttop < Tbot will appear due to the nonequivalence of the heat fluxes when the

field is turned on and off.

Experimental studies of ECE under nonequilibrium thermal conditions were

performed on the multilayer capacitor based on BaTiO3 [11, 5] and the bulk

triglycine sulphate crystal (TGS) [19, 20]. In the former case, in the temperature

range investigated they have found |∆T |ON
AD ≥ |∆T |OFF

AD and as a result the

heating of the sample under periodic E [11]. However, in the latter case, a

decrease in the temperature Ttop compared to Tbot of the TGS element was

detected in accordance with previous predictions [15, 18]. Thus, despite a small

difference Ttop−Tbot=-0.012 K at rather low E=2.8 kV/cm a cooling effect was

observed.

We assume that failure of the cooling observation in MLCC [11, 5] is due to at

least two reasons. First, experiments were performed at high field E=300 kV/cm

which necessarily leads to the release of Joule heat. Second, to avoid the de-

struction of the capacitor under high voltage, the discharge process was carried

out through an additional resistor which led to different rates of switching on/off

the electric field, (dE/dt)OFF < (dE/dt)ON . Both reasons contribute to the ob-

served interrelation |∆T |ON
AD > |∆T |OFF

AD . At the same time, measurements of

the ECE in TGS were carried out at equal rates of switching on/off the electric

field [19, 20].
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In the present paper, we performed precise direct measurements of the in-

tensive ECE in multilayer capacitor based on BaTiO3 (MLCBT) by means of a

homemade adiabatic calorimeter which is characterized by very high sensitivity

to the small temperature change [19, 20, 21]. A commercially available MLCBT

(100 µF) consisting of 200 interdigitated layers of BaTiO3 and Ni electrodes

was used. The nominal thickness of the layers is 6.5 µm for BaTiO3 and 2.0 µm

for Ni (Fig. 1(a)). To obtain correct information on ECE and the temperature

gradient ∆T = Ttop − Tbot, the study was carried out with the equal values of

(dE/dt)OFF and (dE/dt)ON under voltage of 10 V, i.e. E=15.4 kV/cm, which

is close to 15 kV/cm recommended by the manufacturer in order to avoid a

deterioration in the functional properties of the capacitor.

The structural morphology of the cut perpendicular to the BaTiO3 and

Ni layers was examined using a scanning electron microscope (SEM) Hitachi

TM3000 (Hitachi High - Technologies Co., Ltd., Tokyo, Japan) and is presented

in Fig. 1(b). The SEM image clearly demonstrates that the surface consists of

alternating layers of ferroelectric (light broad stripes) and metal (dark narrow

stripes) components contacting closely each other.

Figure 1: (a) MLCBT cross-sectional schematic (1 – doped BaTiO3; 2 – Ni electrodes). (b)

SEM image of the cut perpendicular to the BaTiO3 and Ni layers.

The X-ray powder diffraction data were collected at room temperature with
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a PANalytical X’Pert PRO diffractometer equipped with a PIXcel solid state

detector and a secondary graphite monochromator (Cu-Kα radiation). Rietveld

refinement shows the presence of Ni and BaTiO3 doped with Sn4+ which gives

the following chemical formula: BaTi0.86Sn0.14O3 (BTSO).

Figure 2(a) represents the behavior of the permittivity measured at 1 kHz

using an E7-20 immittance meter. One broad smeared peak with a maximum

at about 302 K was found which is characteristic for relaxors and coincides with

manufacturers information about anomalous behavior of ε of MLCBT in wide

temperature range [22].
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Figure 2: (a) Temperature dependence of the permittivity ε measured at frequency of

f=1 kHz. (b) The time dependence of the temperature of the MLCBT + heater system

under successive electric field variation at S=const: E = 0 → E=15.4 kV/cm → E = 0.

(c) Temperature dependence of the intensive ECE at E=15.4 kV/cm recalculated for pure

dielectric medium BTSO.

Direct measurements of the intensive ECE were performed on the MLCBT

+ heater system by means of adiabatic calorimeter at the pressure of about

10−5 mm Hg. A dc power homemade supply was used to apply the electric field
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on the sample. To minimize the thermal losses, contact wires with small diame-

ters ∼0.05 mm were used. To obtain information on ∆TAD only in MLCBT, the

heat capacity of the heater was measured in a separate experiment. Since the

real masses of Ni-electrodes, plastic coating, etc, are unknown, the values ∆TAD

relating to BTSO were obtained using the coefficient ∆TBTSO
AD /∆TMLCBT

AD =1.47

evaluated for the similar capacitor [5].
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Figure 3: (a) The profile of electric field variation E(t) and associated intensive EC response,

∆Texp(t) = Ttop−Tbot, at Tbot=300.1 K. (b) Temperature dependences of the intensive ECE

in applying |∆T |ON and removal |∆T |OFF modes at E=15.4 kV/cm.

Experiments were carried out under two different thermal conditions used by

us studying TGS [20]: 1) at S=const under applying/removal of an electric field

with subsequent exposure E=const for 5 – 10 min.; 2) the same procedure under

nonequilibrium thermal conditions at Tbot=const. Hereinafter, these variants

will be labelled as Var 1 and Var 2, respectively.

In Var 1, the temperature drift of the MLCBT + heater system at different

temperatures was chosen within dT/dt ≈ ±(1–5)10−4 K/min. Applying and

removal of a constant electric field to/from electrodes of MLCBT resulted in

a rapid increase/decrease in temperature of the system due to ECE in BTSO

(Fig. 2(b)). It is also seen that the rate of the temperature change, dT/dt, in

the process of E=const is greater than before the applying of the electric field

and becomes equal to it after the field is switched off. This experimental fact
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unequivocally indicates the release of Joule heat in the BTSO component even

under a relatively low electric field, E=15.4 kV/cm, compared to E=300 kV/cm

used in the previous studies [11, 5]. The corresponding additional increase in

the temperature of the MLCBT + heater system under the field was about

10%. Figure 2(c) impacts the temperature dependence of the intensive ECE

in MLCBT at E=15.4 kV/cm which is also demonstrates only one broad peak

similar to ε(T ) (Fig. 2(a)). The maximum of ∆TAD=0.104 K was found at

Tmax=309 K. which is higher than the temperature of εmax. This phenomenon

is associated with rather large coefficient dTmax/dE ≈0.5 Kcm/kV. Due to the

adiabatic conditions of the ECE measurements the error in determining the

value ∆TAD was less than ±2 · 10−4 K The reversibility of ECE was also rather

high. The difference between the magnitudes of ∆TAD realized in the regimes

of applying and removal of E did not exceed the uncertainty above.

To realize Var 2, the bottom of MLCBT was glued to the copper holder

with Tbot=const±10−4 K mounted on an adiabatic screen. When an electric

field is switched on/off, Ttop rapidly increases/decreases due to the ECE and

then, at E=const, relaxed gradually to Tbot, ∆Texp → 0 (Fig. 3(a)). Figure 3(b)

depicts the time dependence of ∆T recalculated for the pure BSTO as it was

done above for ∆TBTSO
AD . Two interesting features were observed. First, the

irreversibility of the intensive ECE, |∆T |OFF > |∆T |ON , was observed in a

temperatures range of 300–370 K. Second, the maximum EC response |∆T |OFF

under nonequilibrium thermal conditions is lower by about 10% compared to

∆Tmax
AD observed in Var 1 at S=const at the same temperature Tmax=320 K

(Fig. 2(c)). This can be due to the occurrence of a heat flux in the EC element

during the process (E = 0) → (E = 15.4 kV/cm). The maximum difference

|∆T |OFF − |∆T |ON=0.005 K was observed also at 320 K. The inequality of the

ECE values under applying/removal E means that the amounts of the released

and absorbed heat are not equal to each other. The temperature gradient

∆T = Ttop − Tbot < 0 occurring on the sample leads to the heat flow directed

from the top to the bottom of MLCBT.

Taking into account rather large value dTmax/dE, Tbot=310 K was chosen for
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further measurements of ECE under nonequilibrium thermal conditions under

periodic electric field. Figure 4(a) shows that the steady thermal state of the

system was achieved after several pulses of E (f=0.025 Hz). The temperature

Ttop of the EC element oscillates around some average value Tbot − [(∆TON +

∆TOFF )/2].
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Figure 4: The time dependences of the temperature difference ∆T under a periodic electric

field of E=15.4 kV/cm of different frequencies at Tbot=310 K: (a) f=0.025 Hz, (b) f=0.016 Hz.

Solid lines show behavior of the average ∆T values. Insets depict the profile of the electric

field.

The decrease in the E frequency is accompanied by an increase in the cooling

effect. The value [(∆TON + ∆TOFF )/2]max=-0.032 K reached at f=0.016 Hz

exceeds -0.019 K at 0.025 Hz (Fig. 4(a) and 4(b)). Of course, the observed effect

of cooling is not as large as we would like, but it is larger the value found in

TGS [19, 20]. We can confidently assume that an increase in the electric field

strength will also lead to an increase in the temperature gradient accompanied

by an increase of the heat flow through the EC element. However, the resistance

of dielectrics used in the capacitor should be very high to avoid or at least reduce

the release of Joule heat.

In conclusion, EC properties of commercially available multilayer capacitor

based on doped BaTiO3 were studied under the electric field of E=15.4 kV/cm
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using an adiabatic calorimeter. A rather good agreement between the maximum

values of the intensive ECE induced under the equilibrium (dS=const) and

nonequilibrium (Tbot=const) thermal conditions was found. In the latter case,

an inequality between the temperature increase and decrease under applying and

removal of E, |∆T |ON < |∆T |OFF was observed. It was shown that this effect

under the periodic electric field allows one to realize a heat flow through the EC

element and as a result to exclude the thermal switches from the refrigeration

process. One of the ways to increase the cooling capacity is associated with

the use of multilayer structures based on materials with very low electrical

conductivity, which allows the application of fields with a higher strength.
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[10] M. Quintero, P. Gaztañaga, I. Irurzun, Appl. Phys. Lett. 107 (2015) 151901.

[11] R. I. Epstein, K. J. Malloy, J. Appl. Phys. 106 (2009) 064509.

[12] S. Kar-Narayan, N. D. Mathur, Appl. Phys. Lett. 95 (2009) 242903.

[13] Y. D. Wang, S. J. Smullin, M. J. Sheridan, Q. Wang, C. Eldershaw, D. E.

Schwartz, Applied Physics Letters 107 (2015) 134103.

[14] S. J. Smullin, Y. Wang, D. E. Schwartz, Appl. Phys. Lett. 107 (2015)

093903.

[15] S. F. Karmanenko, O. V. Pakhomov, A. M. Prudan, A. S. Starkov, A. Es-

kov, J. Eur. Ceram. Soc. 27 (2007) 3109–3112.

[16] A. Khodayari, S. Mohammadi, IEEE Trans. Ultrason. Ferroelectr. Freq.

Contr. 58 (2011) 503–507.

[17] Y. Bai, G.-P. Zheng, S.-Q. Shi, J. Appl. Phys. 108 (2010) 104102.

[18] A. V. Es’kov, S. F. Karmanenko, O. V. Pakhomov, A. S. Starkov, Phys.

Solid State 51 (2009) 1574–1577.

[19] V. S. Bondarev, E. A. Mikhaleva, M. V. Gorev, I. N. Flerov, Phys. Status

Solidi B 253 (2016) 2073–2078.

[20] V. S. Bondarev, E. A. Mikhaleva, I. N. Flerov, M. Gorev, Phys. Solid State

59 (2017) 1118–1126.

[21] A. V. Kartashev, I. N. Flerov, N. V. Volkov, K. A. Sablina, Phys. Solid

State 50 (2008) 2115–2120.

[22] M. D. Waugh, Electronic Engineering Times Europe August (2010) 34–36.

10


