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Abstract 

A nested July-June precipitation reconstruction for the period AD 1777-2012 was 

developed from multi-centurytree-ring records of Pinus sylvestris L. (Scots pine)for the 

Republic of Khakassia in Siberia, Russia. Calibration and verification statistics forthe 

period 1948-2012show a high level of skill, and account for a significant portion of the 

observed variance (>50%)irrespective of which period is used to develop or verify the 

regression model. Split-sample validation supports our useof a reconstruction model based 

on the full period of reliable observational data (1948-2012). Thresholds (25
th

 and 75
th

 

percentiles) based on the empirical cumulative distribution 1948-2012 observed 

precipitation were used to delineate dry years and wet years of the long-term 

reconstruction. The longest reconstructed dry period, defined as consecutive years with less 

than25
th

percentile of observed July-June precipitation, was 3 years (1861-1863). There was 

no significant difference in the number dry and wet periods during the 236 years of the 

reconstructed precipitation. Maps of geopotential height anomalies indicate that dry years 

mailto:rtouchan@ltrr.arizona.edu


2 

 

differ from wet years primarily in the location of an anomalous 500 mb ridge 

approximately over the study area. 
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Introduction 

The Republic of Khakassia is located in the southwestern part of Eastern Siberia on the left 

bank of the Yenisei River, in the territories of the Altai-Sayan regionand Khakass-

Minusinsk Hollow (Figure 1). On a relatively small area are concentrated unique natural 

landscape zones ranging from semi-desert to high mountain alpine meadows and tundra. 

The population of the territory of Khakassia has been slightly higher than that of other 

regions in Siberia throughout history because of thelandscape diversityand the relatively 

mild climate of the Minusink Hollow (Kyzlasov, 1984; Gumilev, 1993), a large depression 

with strong agricultural significance for the Republic of Khakassia. 

Given the agricultural importance of the Minusink Hollow,  it is important to 

understand modern climate variability of this region, such as extreme dry and wet events 

and to evaluate the potential for future spatiotemporal patterns. It is vital to characterize the 

range of potential natural climate variability over the past few centuries and develop an 

improved understanding of the links betweenlarge-scale climate forcing and regional 

extreme events. Most of the high-quality and continuous instrumental climate records in the 

region are short,with most records covering only the latter half of the twentieth century. 

Consequently, tree-ring records are particularly important as a powerful tool for developing 

qualitative and quantitative reconstructions of climate on seasonal to century or longer time 

scales. 
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Relatively few studies using tree rings as records of past climate (dendroclimatology) 

have been done in the Khakassia region when compared with many other regions of the 

world. Vaganov et al. (1985) investigated a wide range of ecological factors and climatic 

factors influencing tree-ring growth and formation. This work was followed by other 

dendroclimatological and ecological studies (Magda et al., 2002, 2004, 2011; Block et al., 

2003;Vaganov et al., 2006; Knorre et al., 2010), culminating in a reconstruction of June 

temperature in the forest-steppe of the Republic of Khakassia by Babushkina et al. (2011). 

Shah et al. (2015) developed a138year August-July Precipitation (P) reconstruction for the 

Abakan region as an outcome of the 4
th

International Summer Course ''Tree Rings, Climate, 

Natural Resources and Human Interaction,'' held in Abakan, Siberia, in 2013. 

The objectives of this study were to develop the first regional nested July-June P 

reconstruction for the Republic of Khakassia,to quantify the drought history of the region 

from the reconstruction, and to diagnose the association between extreme dry and wet years 

and anomalies in atmospheric circulation using anomaly patterns of 500 mb geopotential 

height. 

Site Description 

The Republic of Khakassia is part of the Altai-Sayan region, and is characterized by a wide 

variety of physical and geographical structures and high diversity in the composition of 

vegetation. The western part of Khakassia is located on the eastern megaslope of the 

Kuznetsk Plateau (includes Kuznetsky Alatau and Abakan Range), and the southern part of 

the northern West Sayan megaslope: these two megaslopesaccount for more than half of the 

megaslopes throughout the republic. These mountainsystems are clearly distinguished high 

mountain-forest belts. 
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The study area is characterized byPinus sylvestrisL. (PISY) and larchforests (Larix 

sibirica Ledeb.).The lower part of the belt is steppe characterized by forb-grass-sedge 

meadows: Festuca pratensisHuds., Alopecurus pratensisL., Bromus inermisLeyss., 

Agropyron repens(L.) P. Beauv., Agrostis albaauct., Poa pratensisL., Deschampsia 

cespitosa(L.) P. Beauv., Sanguisorba officinalisL., Filipendula ulmaria(L.) Maxim., Carex 

sp., Vaccinium vitis-idaea L., Pyrola rotundifoliaL., Calamagrostis arundinacea(L.) Roth., 

Poa sibiricaRoshev., Aquilegia sibiricaLam., Anemone crinite Juz. 

Three PISY tree-ring sites were sampled in the forest-steppe zones in Khakassia (Figure 

1 and Table 1). They are Berenzhak (BER) (Babushkina et al., 2011), Bidzha (BID), 

Kazanovka (KAZ).  

The soil is similar at all three sites and is sandy with 15-20 cm deep humus layer.The 

KAZ site is characterized by protruding rocks and heterogeneous relief. The Minusinsk 

(MIN) tree-ring site is located in the southern part of Krasnoyarsk Territory in a belt of 

conifer forests.  

The climate is continental, characterized by short summers and long cold winters. The 

average annual temperature (T) is +0.8° C (Figure 2). The coldest month is January with a 

mean average of -18.6° C. The warmest month is July with a mean average of +18.7° C. 

Most of the annual precipitation (75-90%) falls in the summer. The highest annual P is 

observed in the mountains (up to 2000 mm), with only 250 mm of P on the leeward slopes 

and interior hollows. The precipitation pattern is due to the westerlies, the dominant 

circulation feature, transporting water from the Atlantic into the Siberian interior. 
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Methods and data processing 

Chronology Development 

Samples were taken from four sites including cores taken from living trees using increment 

borers and full cross sections taken from stumps (Table 1). Samples were sanded to a high 

polish and crossdated using standard dendrochronological techniques (e.g. Stokes and 

Smiley, 1968; Swetnam, 1985). The width of each annual ring was measured to the nearest 

0.01 mm using TSAP-LINTAB (Rinntech, 2012). Crossdating and measurement accuracy 

were verified using COFECHA (Holmes, 1983; Grissino-Mayer, 2001). 

Each series of measured ring width was fit with a cubic smoothing spline with a 

frequency response of 0.50 at 67% of the series length to remove biological trends,trends 

potentially caused by age, size, or stand dynamics (Cook and Kairiukstis, 1990). The 

detrended series were then prewhitened with low-order autoregressive models to remove 

persistence, which was observed to be higher in the tree-ring series than in seasonal and 

annual precipitation. The resulting series is called a “residual” index, consisting of only the 

interannual changes in each time series. The individual indices were combined into single 

averaged chronologies for each combination of site and species using a bi-weight robust 

estimate of the mean (Cook and Holmes 1999; Cook and Krusic 2005). The expressed 

population signal, or EPS (Wigley et al., 1984; Cook and Kairiukstis, 1990) was used to 

identify the period over which the available data from the tree-ring time series have a signal 

that is strong enough to capture a large percentage of the common population tree-ring 

signal at a site (Table 2). 
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Climate Data Analysis 

Monthly P and T data from four stations were obtained from the Russian Institute for 

Hydrometeorological Information – World Data Center (Bulygina et al., 2017a, Bulygina et 

al., 2017b) (Figure 1). They are Shira (N 54.50° E 89.93°, 477 m a.s.l.), Abakan (N 53.77°, 

E 91.32°, 254 m a.s.l.), Minusinsk (N 53.70°, E 91.70°, 254 m a.s.l.), and Tashtyp (N 

52.72°, E 89.88°, 449 m a.s.l.) (Figure 1).A regional monthly P and T series, 1948-2012, 

for use in calibration of tree-ring reconstruction models, was computed from the four 

stations by the method of averaged standardized anomalies (Jones and Hulme, 1996). 

Precipitation Reconstruction 

The relationships between the tree-ring chronologies and the regional monthly P and T 

were investigated with the program Seascorr, which computes correlations and partial 

correlations between tree-ring data and monthly precipitation and temperature data 

integrated over seasons of variable length (Meko et al., 2011). 

The reconstruction model was developed by principal component analysis (PCA), using 

linear regression of the climate variable on the principal components (PCs) of three tree-

ring chronologies (MIN, BID, and KAZ). Scores of the three PCs were retained for use as 

predictors in the first reconstruction (AD 1849-2012) and two residual chronologies (KAZ 

and BER) were used for the second reconstruction (AD 1777-2008). Regression equations 

were calibrated on the period 1948-2012. Nested reconstruction models (Touchan et al., 

2008, 2011, 2016) were estimated to generate a long-term reconstruction. Such nested 

models allow use of long chronologies for early parts of the reconstruction, while taking 

advantage of dense chronology coverage for later parts. While the earliest part of the 
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reconstruction may have lower accuracy because of low site coverage, the procedure allows 

for a maximum length reconstruction. Predictors for models were selected by stepwise 

regression. The predictor pool for stepwise comprised the full pool of available PCs. 

Adjusted R
2
 and Mallows’s Cp statistic (Mallows, 1973) statistics were used as guides to 

guard against overfitting.Models for the two reconstructions were validated with a split-

sample procedure (Snee, 1977; Meko and Graybill, 1995; Touchan, 2014) that divides the 

full period (1948–2012) into two subsets to verify the stability of the model. Calibration 

accuracy was measured by the adjusted R
2
, and validation skill by the Pearson correlation 

coefficient (r), the reduction of error (RE) and the coefficient of efficiency (CE) (Cook et 

al., 1994). The strength of the model for the final reconstructions was calibrated on the full 

period (1948-2012) and further validated using the PRESS procedure (Weisberg, 1985; 

Fritts et al., 1990; Meko, 1997; Touchan et al., 2011, 2014, 2016). 

Analysis of Extreme Events 

Runs analysis (Dracup et al., 1980), was used on the reconstructions to study extreme dry 

and wet events. Empirical thresholds for the dry and wet events were defined as 25
th

 and 

75
th

 percentiles of instrumental measurements of precipitation for the period 1932-2012. 

Low-frequency time series variations in reconstructed precipitation were summarized with 

moving averages (5-year).Composites of April–July 500 hPa geopotential height anomalies 

from the 1948-2012 mean were created using National Centers for Environmental 

Prediction–National Center for Atmospheric Research reanalysis data (Kalnay et al., 1996) 

to illustrate atmospheric circulation contrasts between extremely dry years and extremely 

wet years in the period 1948-2012. 
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Results and Discussion 

Chronology Development 

The length of the four chronologies ranges from 257 (BER) to 164 years (BID) (Table 1). 

Statistical analyses ofeach chronology are summarized in Table 2. The mean correlation 

among individual radii at each site representsthe strength of their common signal and 

ranges from 0.48 (MIN) to 0.60 (BID). The mean sample segment length (MSSL) of the 

four chronologies ranges from 117 to 193 years and is adequate to investigate multidecadal 

climate variability (Cook and Peters 1997). 

Principal component analysis (PCA) appliedto the three chronologies showed a strong 

common statistical growth signal for their overlapping years. Principal component 1 for the 

three chronologies accounts for 65% of the tree-ring variance. 

Precipitation Reconstruction 

Seascorr identified July to June total P as the most appropriate seasonal predictand for 

reconstruction (Figure 3). T influence, summarized by partial correlations in Seascorr, is 

significant for the single month of July. The negative sign of partial correlations for this 

month indicates that high T during the growing season has a negative effect on the radial 

growth. High T is associated with increased evapotranspiration from the soil surface, and 

drought stress on the trees (Babushkina et al., 2011; Shah et al., 2015). 

Two nested reconstruction models, with total P as a predictand, were estimated. Time 

coverage by these models is 1849-2012 and 1777-2012. The 1777-2012  model relies on 

just two chronologies. The year 1777 was identified by the EPS statistic (Wigley et al. 
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1984). The stepwise regression process, with adjusted R
2
 and Mallow’s Cp (Mallow, 1973) 

as selection cutoff criteria, resulted in selection of a simple model with just PC1 as a 

predictor for the 1849-2012 model. The same statistics applied to the earliest model (1777-

2012) allowed both available chronologies to enter as predictors. Nested models calibrated 

on 1948-2012 explain 54-67 percent of the calibration-period variance, according to the 

regression adjusted R
2 

(Figure 3). 

Time plots of reconstructed and observed P for the calibration periods of the two 

models are included in the Figure 4. The split-sample validation supports use of the 

reconstructions based on the full period of reliable observational data (1948-2012). The 

nested reconstruction utilized the two models to take advantage of the robustness derived 

from the models that incorporated a greater number of chronologies. The beginning years 

of the nested reconstructions are 1777 and 1849; the number of chronologies contributing 

to those models is 2 and 3 respectively. For brevity, we refer to the models by beginning  

year: M1777, and M1849. Cross-validation using the PRESS procedure (Weisberg, 1985) 

indicated that the two models can adequately estimate P data not used to fit the model 

(Figure4 and Table 3). Split-sample validation likewise supported temporal stability of the 

relationship between P and the tree-ring data, and application of reconstruction models 

calibrated over the full climate-overlap 1948-2012. 

Analysis of Extreme Events 

The July-June reconstruction time series is plottedin Figure 5. The long-term reconstruction 

contains 48 drought events with a mean interval of 6 years. The number of events classified 

by duration is as follows: durations of 1, 2, and 3 years have 27, 9, and 1 events, 

respectively. The maximum interval between events is 15 years (1918-1932). The longest 
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drought is a three-year event in 1861-1863. The driest year in the reconstruction is 1974 

(224 mm), while the driest year in the instrumental P data is 1965 (215 mm).The frequency 

of dry years is higher in the 19
th

 century, the same centurywiththe extreme three-year event. 

The July-June reconstruction contained 49 wet events with a mean interval of 5.7 years. 

The number of events classified by duration 1 and 2 years is 31 and 9 events respectively. 

The maximum interval between wet events is 19 years (1799-1817). The wettest year in the 

reconstruction is 1970 (467 mm), while the wettest year in the observed P data is 2003 (544 

mm). The frequency of wet years is similar in the 19
th

 and 20
th

 centuries. 

Our July-June precipitation reconstruction is significantly correlated (r=0.85,n= 138, p 

≤ 0.0001) with the August-June P reconstruction (AD 1875-2012) developed by Santosh et 

al. (2015) for Minusinsk Hollow. The two reconstructions correlate highly in part because 

Santosh et al. (2015) used a subset of the chronologies used in this new reconstruction. Our 

addition of new chronology KAZ, developed in 2013,and chronology BER, developed in 

2008, strengthen the tree-ring signal for P and allow extension of P reconstruction for the 

region to AD 1777. 

A five year moving average of the reconstruction demonstrates multi-annual to decadal 

variation in July-June P and suggests several prolonged wet and dry events (Figure 6). The 

driest five-year reconstructed period is 1942-1946 (303 mm). The wettest five-year 

reconstructed period is 1969-1973 (408 mm), a period of exceptionally high tree-growth. 

Several major historical events coincide with extreme dry periods seen in the July-June 

precipitation reconstruction. Vatin (1916) reported that the dry period from 1836-1837 

reduced the summer crop production. Kostrov (1858) stated that the dry years of 1830 and 

1849 affected crop production,caused a declinein the exportof agricultural products to the 
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Krasnoyarsk districtand caused negative impact on the economy of the region. Butanaev 

(2002) reported that the dry period from 1900-1902 caused shortage in forage production 

and forced the Abakan and Askiz regions to cut in half the size of their herds of horses. 

The composite April-July mean difference (dry-wet) 500 mb anomaly map based on 

three of the driest and wettest years shows a strong anomalous ridge centered at about 90° 

W, at the approximate longitude of the study area (Figure 7). The pattern is consistent with 

increased stability and low storm activity and precipitation. The pattern, with the core of the 

anomalous ridge to the south over western China and southwestern Mongolia, suggests 

strengthening of the westerlies and anticyclonic curvature over the study region as a 

signature during dry years. 

Conclusion 

This is the first July-June P reconstruction for the period AD 1777-2012 developed from 

multi-century tree-ring records for the Republic of Khakassia in Siberia, Russia. This P 

reconstruction provides a baseline for studying past climate variability in the region. 

Calibration and verification of the statistical analyses indicate high accuracy for this tree-

ring reconstruction of P. The longest period of reconstructed drought during the last 

centuryis 3 years, defined in this study as consecutive years below the 25
th

 percentile. There 

was no significant difference in the number of dry and wet periods during the 236 years of 

the reconstructed precipitation. 

The strong association of dry and wet years with distinct patterns of 500 mb 

geopotential height anomaly suggests that expanded tree-ring coverage could yield several 

centuries of reliable information on variations in trough and ridge behavior over southern 

Siberia for the important spring to early summer precipitation season. 
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Figure Captions 

Figure 1. Location of tree-ring sites and climate stations. 

Figure 2. Climogram of regional monthly mean P and T for the Khakassia region, 1948-

2012. P and T series of four stations developed by standardized anomaly method. 

Figure 3. Program Seascorr summary of seasonal climatic signal in Pinus sylvestris residual 

chronology data. Climatic variables are regional monthly anomalies for P and temperature 

of four meteorological stations. (Top Figure) Correlations for precipitation. (Bottom 

Figure) Partial correlations for T. Colors indicate Monte-Carlo-derived significance of 

correlation or partial correlation (Meko et al., 2011) for α-levels 0.01 and 0.05. Analysis 

period is years 1948–2012. 

Figure 4. Time plots of reconstructed and instrumentalP for the calibration periods of the 

two models. The start years of the nested reconstructions are 1777 and 1849; the number of 

chronologies contributing to those models is 2 and 3. 

Figure 5. Time series plot of reconstructed July-June precipitation, AD 1777-

2012.Horizontal solid line is the mean of the instrumental P data.  Horizontal short-dashed 

line is the empirical threshold of 75
th

 percentile of the regional July-June P of 1948-2012. 

Horizontal long-dashed line is the empirical threshold of 25
th

 percentile of the regional 

July-June P of 1948-2012.. Uncertainty in reconstructed values is shown by an 80% 

confidence interval (shaded). 

Figure 6.  Five-year moving average. Values are plotted at the center year of each 5 year 

period for the 1777–2017 reconstruction. Uncertainty in reconstructed values is shown by 

an 80% confidence interval (shaded). 
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Figure 7. Composite map of difference in April-July500 mb height anomalies in dry years 

and wet years. Years represented in the composites are among the driest (or wettest) ten 

years in April-July observed precipitation in the Khakassia region. Dry years are 

1965,1974, and 1981. Wet years are 1967, 1972and 2003. Anomalies (color bar) are 

departures (m) from 1981–2010climatology. Circle indicates approximate location of tree-

ring sites. Map drawn with online mapping tool from the NOAA Earth System Research 

Laboratory (http://www.esrl.noaa.gov/psd/cgi-bin/data/getpage.pl).

http://www.esrl.noaa.gov/psd/cgi-bin/data/getpage.pl).Table
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Table 1. Site information for the four tree-ring sites. 

Site Name 

Site 

Code Species Lat. Long. Elev. (m) Time Span 

Total No. 

Of Years 

No. of Trees/ 

Cores 

Berenzhak BER PISY
1 

N54.32° E89.68° 742 1752-2008 257 14/14 

Bidzha BID PISY N54.00° E91.01° 691 1849-2012 164 15/15 

Kazanovka KAZ PISY N53.23° E90.05° 600 1767-2013 247 47/67 

Minusinsk MIN PISY N53.71° E91.84° 380 1847-2013 167 123/198 
1 

Pinus sylvestris L. 

 

Table 2. Summary statistics for the four chronologies from program ARSTAN (Cook and 

Holmes, 1999; Cook and Krusic, 2005). 

Site 

Code 

 Total 

Chronology 

    Common 

Interval 

  

 MSSL
a
 Std

b
 SK

c
 KU

d
 1

st
 Year 

EPS
e
>0.85 

No. of 

Trees 

Time Span MCAR
f
 EV

g
 

PC1(%) 

          

BER 193 0.2439 - 0.1090 0.4202 1836 6 1752-2008 0.527 57.389 

BID 120 0.3007 0.2301 0.9989 1903 4 1849-2012 0.601 63.317 

KAZ 179 0.3144 - 0.0158 - 0.128 1777 5 1767-2013 0.585 59.834 

MIN 117 0.2017 - 0.1360 0.0735 1879 6 1847-2013 0.489 51.322 

          

          
a
MSSL is Mean Sample Segment Length 

b
Std is Standard Deviation 

c
SK is Skewness 

d
KU is Kurtosis 

e
EPS is Expressed Population Statistic (Wigely et al., 1984) 

f
MCAR is Mean Correlation Among Radii 

g
EV is Explained Variance by 1

st
 PС 
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Table 3. Split-sample calibration and validation statistics of the two reconstruction models 

Reconstruction 

Models 

Calibration 

Period 

Verification 

Period 

Adjusted-R
2 

Calibration 

r- Verification Reduction 

of Error, RE 

Coefficient 

of 

Efficiency 

1777-2008 1948-1978 1979-2008 0.55 0.71 0.49 0.41 

1849-2012 1948-1980 1981-2012 0.63 0.72 0.68 0.65 

       

1777-2008 1979-2008 1948-1978 0.57 0.72 0.42 0.33 

1849-2012 1981-2012 1948-1980 0.72 0.80 0.59 0.54 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 

 

 


