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Abstract—Chronologies of the anatomical and integral parameters of the Scots pine 

(Pinus sylvestris L.) earlywood and latewood were investigated for two sites in the Minusinsk 

depression with different soil moisture conditions. Patterns of statistical characteristics and 

climatic responses of the chronologies were identified. Differences between sites were revealed 

in the cell diameter and wall thickness distributions. These differences are indicators of adapting 

pine wood structure to the moisture deficit. 
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It is known that tree rings are a valuable natural archive for studying 

environmental conditions, including climate, and adaptation of ecosystems to their 

changes [1]. They can be used widely because of their annual temporal resolution 

with a possibility of precise dating, the longevity of trees life span, and the wide 

spread of forest vegetation around the globe [2, 3]. 

Tree ring width is the most frequently used parameter due to the simplicity of 

its measurement [4]. Considering the tree-ring formation, its width sums up the 

results of cell division and extension processes. At the same time, the structure and 

function of wood are also under influence of the result of the third cell 

differentiation stage: thickening of the cell wall [5, 6]. Therefore, given differences 

in the structure and functions of wood layers formed during the season, i.e. 

earlywood and latewood, the parameters of the wood cell structure can contain 

more detailed climatic information in comparison with the integral parameters of 
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the tree ring [7, 8]. For conifers, the cellular structure is characterized by tracheids 

radial diameter and cell wall thickness. It should be taken into account that the 

combination of these parameters defines function of cells, including water 

transport and carbon deposition [6, 9], i.e. the developed ring structure 

subsequently has a long-term effect on the state of the tree as a whole and its 

further growth [10]. 

In connection with the foregoing, the anatomical characteristics of wood cells 

are an important source of data on the adaptation of trees to environmental 

changes, especially in conditions of insufficient moisture, where there is a high risk 

of hydraulic balance disruption in woody plants, leading not only to suppression of 

their growth, but also to an increase in mortality [11, 12]. Studies in this field are 

now particularly important due to the global increase of temperature and of the 

droughts frequency, especially in temperate latitudes [13, 14]. 

Research of the adaptation of trees to a lack of moisture is advisable on the 

lower and southern boundaries of the forest, where the tree growth is typically 

limited by the amount of precipitation. In temperate latitudes of the continental 

climate, including South Siberia, these conditions are represented by forest-steppes 

and isolated forest stands in the steppe zone. We set the following objectives: 1) to 

investigate the structure parameters of Scots pine earlywood and latewood in 

habitats with a deficit of precipitation; 2) to compare the climatic response in 

various tree ring parameters; 3) to identify the features of wood structure, 

characterizing the adaptation of pine to different growth conditions. 

MATERIAL AND METHODS 

Samples were collected from two sites in the Minusinsk depression (Fig. 1): 

Berenzhak (BER, 54°20’ N, 89°44’ E) is situated 32 km to the south-west from 

Shira village (weather station #29756 Shira, 54°30’ N, 89°56’ E); Minusinsk 

(MIN, 53°45’ N, 91°56’ E) is situated 15 km to the east from the Minusinsk town 

(weather station #29866 Minusinsk, 53°41’ N, 91°40’ E). 

The climate of the study area is moderately cold continental [15] with the 

average annual air temperature 1–1.5°C. The transition of daily temperatures 
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through 5°C threshold occurs at the end of April. The average amount of 

precipitation per year is 300-350 mm. Its regime is characterized by a pronounced 

summer maximum: about 90% of precipitation falls during the period from April 

to October, the maximum is in July, the minimum is in February–March (Fig. 1). 

Differences between weather stations are insignificant. Monthly data on the mean 

temperature and the amount of precipitation for 1969-2008 were used in the work.  

The BER site is located on the border of the forest-steppe zone and the 

southern taiga in the Kuznetsk Alatau foothills. It is represented by slope of the 

southern exposition (inclination 15-20°) covered with pine-larch with birch 

motley-grass forest on mountain gray soil with rocks. The foothills are 

characterized by higher average amount of precipitation than it is recorded at the 

Shira weather station, located in flatlands. However, the combination of 

precipitation water flowing down and filtering to the slope base, and the increased 

influence of solar radiation leads to a pronounced deficiency of soil moisture on 

the site. The lack of moisture is also evidenced by prevailing such species of 

undergrowth as Caragana arborescens, Spiraea chamaedryfolia, Spiraea trilobata 

and the absence of moss cover. 

The MIN site is located in the Minusinsk insulated forest. It is covered with 

birch-pine motley-grass forest on layered aeolian humus chernozems. The 

Minusinsk forest is situated in the steppe zone, where most of the summer 

precipitation is pulled to the Yenisei River. Therefore, the amount of precipitation 

is steadily lower in the investigated area than at the Minusinsk weather station. 

Nevertheless, the location of the site in a weakly expressed relief depression 

provides accumulation of precipitation and additional moistening from the nearest 

hydrological objects. As a result, the site has a pronounced moss cover (covering 

up to 50%), predominate species of undergrowth are Rosa acicularis and 

Cotoneaster melanocarpus. Thus, in spite of the smaller amount of precipitation, 

moisture conditions at the MIN site are generally less extreme. 

At each site, the cores of 5 living trees of Scots pine (Pinus sylvestris L.) with 

age of 80–120 years were selected for measurement. The age restriction, especially 

Fig. 1 
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given the relatively weak expression of the age trend in the radial cell diameter and 

wall thickness, made it possible to exclude the possibility of a significant effect of 

the biological tree age on the study results [16–18]. Collection and transportation 

of cores were carried out according to standard techniques of dendrochronology 

[2]. To study the cell structure of tree rings, the cores were softened by boiling in 

water, and thin sections (20 μm) were obtained with a sledge microtome. On the 

microphotographs of these stained sections, the following anatomical parameters 

of the rings were measured: cell number (CN), radial diameter (D) and wall 

thickness (CWT) of each cell [19] for 5 radial files in each ring, followed by 

averaging between files. To make averaging over series with different CN possible, 

the initial measurements were normalized to the mean CN over all radial files [20]. 

The tree ring width (TRW) was calculated as a sum of D for all cells. The dating of 

the samples (determination of the calendar year of each ring) was carried out by 

comparing these TRW series with the chronologies available for the considered 

sites, which include cores of the same trees (see [21, 22]). 

The Mork’s empirical rule was used to separate zones of earlywood and 

latewood (Fig. 2a). This rule makes it possible to distinguish cells of early and late 

wood on the basis of a simple criterion: latewood includes cells for which the 

CWT is more than 0.25 of the lumen size [23]. Since the radial cell diameter is 

composed of a lumen and two walls, the CWT/D > 1/6 ≈ 0.17 ratio should be 

fulfilled for latewood. However, taking into account later studies of the conifer 

wood anatomy and physiology [24, 25, etc.], it was decided to use a boundary 

criterion calculated from actual data. We plotted the density functions of cell 

distribution by the CWT/D ratio over all measured annual rings for each site, then 

modeled these distribution density functions in form of the sum of two normal 

distributions [26], representing the earlywood and latewood zones (Fig. 2a,b). 

The values of the normal distribution numerical parameters (mean – μ, 

standard deviation – σ) were calculated by the least squares method (Table 1). As 

threshold values (k) of the CWT/D ratio we used the mean value between local 

minima on the empirical and modeled distribution density curves [27]. The k 

Fig. 2 
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values were calculated separately for each site. To confirm the obtained threshold 

values, scatter plots of cell distribution in the CWT and D axes were developed 

(Fig. 2d,e). In these graphs, the k values of CWT/D are showed as straight lines 

with an angular coefficient k. Obviously, for both sites these straight lines are at an 

approximately equal distance between earlywood and latewood cell clusters. 

After dividing rings into earlywood and latewood zones, for each year 

summing the radial cell diameters in each zone was performed to obtain the 

integral parameters values: earlywood width (EWW) and latewood width (LWW). 

Then the average D and CWT values in each zone were calculated. After averaging 

over all five trees within the site, local chronologies of the six anatomical and three 

integral parameters of tree rings were obtained. Significant long-term trends in the 

chronologies are not observed. 

We used the following chronology statistical characteristics: arithmetic mean, 

standard deviation, variation coefficient (the ratio of standard deviation to 

arithmetic mean), sensitivity coefficient (the ratio of difference between two 

adjacent values of the variable to their arithmetic mean, averaged over the entire 

series) and first-order autocorrelation coefficient [4, 28]. In this case, the variation 

coefficient is a measure of the parameters variability in general, and the sensitivity 

coefficient is a measure of its part caused by rapidly changing external factors, 

primarily climatic ones. To analyze the climatic factors influence on the 

anatomical structure of wood, paired correlation coefficients of chronologies with 

temperatures and precipitation were calculated on base of monthly weather station 

data. The number of considered dendroclimatic relationships is comparable with 

the duration of the analysis period, so the significance level of the correlation 

coefficients was adjusted by the Benjamin-Hochberg procedure to account for the 

multiplicity of comparisons [29]. 

For analyzing pine tree rings structure under different local conditions of 

growth, the distribution density of cells by D and CWT were simulated in form of 

the sum of two normal distributions (earlywood and latewood), separately at each 

site. 

Table 1 
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RESULTS AND DISCUSSION 

During the process of dividing pine tree rings into earlywood and latewood 

zones, it was found that the ratio CWT/D is characterized by larger values and 

higher variability at the BER site than at the MIN site. Thus, at the BER site the 

threshold CWT/D value is higher by 45%, the calculated average CWT/D values 

are higher by 48 and 24% for earlywood and latewood respectively, and the 

calculated standard deviations are higher by 36 and 49% respectively (see Fig. 2c, 

Table 1). 

The statistical characteristics of local chronologies at each site are given in 

Table 2. The growth of wood at the BER site is less intensive on average, which is 

reflected in production of a much lesser number of smaller cells in both zones and 

decrease in the integral parameters values. In contrast, the average CWT and 

variability of all parameters are lower at the MIN site. Among the anatomical 

parameters, the greatest differences between sites and variability within the site are 

observed for CN, especially in latewood. D and CWT are more stable, because 

their values are limited by functional requirements. Integral parameters accumulate 

these differences during the season, which leads to a higher variation compared to 

anatomical ones. 

Differences in the statistical characteristics of all parameters are indicators of 

more extreme conditions at the first site due to an unfavorable landscape-soil 

combination. In the absence of additional sources of soil moisture, the relative 

moisture deficit leads to adaptation – the soil moisture saving by a more 

pronounced restriction of water transport and subsequent transpiration. It is 

manifested as a lumen size decrease due to the formation of smaller cells with 

thicker walls [30, 31]. In addition, the formation of a thicker wall reduces the 

vulnerability of earlywood tracheids to cavitation by increasing their strength, 

which is important in dry conditions [32]. In latewood, the increase in CWT is an 

indicator of a higher intensity of nutrient storage in a plant at the end of the 

growing season, because it is caused by the same physiological processes. Since 

the stored nutrients are used by the plant at the beginning of the next growth 

Table 2 
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season, including the processes of wood formation, this is reflected in the presence 

of autocorrelational dependence in the chronologies at both sites. 

Most of the chronologies have significant positive correlations between each 

other (Table 3). In earlywood, the correlation between CN and D is expressed, 

CWT for this zone is relatively constant (see the lower cluster of cells on Fig. 

2d,e). In latewood, all three anatomical parameters are closely interrelated, which 

is explained by the tendency to form cells with a minimum lumen, i.e. relatively 

constant ratio CWT/D (see the upper cluster of cells on Fig. 2d,e), and by the 

dependence of all three cell differentiation stages intensity on external conditions 

[33]. Given the partial overlap in the time of earlywood and latewood 

development, the presence of positive correlations between the parameters of 

different zones is also evident. The close relationship between TRW, EWW and 

CN of earlywood has been repeatedly noted for Scotch pine and other conifer 

species, for example in [34] and the sources mentioned in it, while the parameters 

of latewood are weaker associated with TRW, since they contribute less to it. 

Correlation dendroclimatic analysis (Fig. 3) showed that the climatic response 

of the wood anatomical parameters in the study area has the same basic patterns as 

ones of the TRW due to moisture limitation [33]. Precipitation as a source of 

moisture affects the tree rings development positively in the second half of the 

previous growing season and in the first half of the current one. The temperature of 

these periods is an indirect negative factor, because its growth leads to 

evapotranspiration increase too and subsequent soil draining. The influence of the 

temperature and precipitation of the previous year can be explained, on the one 

hand, by the accumulation of reserve nutrients at the end of the growing season, 

and on the other hand by the general effect of favorable or unfavorable conditions 

on the tree vital state and its growth, leading to the appearance of first-order 

autocorrelation in all parameters. Since the soil moisture conditions are more 

favorable at the MIN site, there the climatic response is also significantly 

weakened during the warm period in comparison with the BER site. Comparison of 

the climatic response of different parameters shows the presence of certain time 

Table 3 
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shift in the transition from CN to D and then to CWT and from earlywood to 

latewood according to the timing of the end of the corresponding cell 

differentiation stages in each zone. The climatic response of EWW and LWW is 

similar to the response of CN of the same zones, but in most cases it is less 

pronounced due to the contribution of D oscillations to these integral parameters. 

The climatic response of the TRW chronologies is more similar to EWW, but 

LWW contribution to the total ring width is also evident. 

The distribution density functions of cells by D and CWT calculated for all 

measured tree rings at each site are close to the sum of two normal distributions for 

the earlywood and latewood zones, despite typical for pine wood smooth transition 

between zones, i.e. the so-called transition zone [20] (Fig. 4, Table 1). Parameters 

of the transition zone cells are determined by the overlap of these two distributions. 

Despite the differences in growing conditions, the unity of the regional climate 

causes a similar earlywood to latewood cell number ratio at both sites. Differences 

between the sites in the distribution shape show that more pronounced moisture 

limitation leads to the adaptation of wood structure, which occurs in the following 

directions: 1) cells become smaller throughout the entire ring, while in earlywood 

the dispersion of D also decreases; 2) CWT increases in both zones, which 

significantly increases the wall strength, while reducing the lumen. 

Thus, the wood anatomical structure reflects the restriction of water transport 

and the increase in the cell wall strength in more extreme moisture conditions. 
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Table 1. Numerical parameters of cells normal distributions in the earlywood and 

latewood zones 

Site 

Earlywood (ew) Latewood (lw) 

Percentage, 

% 

CWT/D D, μm CWT, μm Percentage, 

% 

CWT/D D, μm CWT, μm 

μ σ μ σ μ σ μ σ μ σ μ σ 

MIN 65.6 0.046 0.014 41.4 8.2 1.88 0.34 34.4 0.203 0.049 23.6 5.6 4.46 1.32 

BER 69.3 0.068 0.019 37.5 6.0 2.78 0.60 30.7 0.252 0.073 19.1 6.9 4.88 1.56 

 

Table 2. Statistical characteristics of the wood parameters chronologies 

Characteristic 
CN 

ew 

D 

ew 

CWT 

ew 

CN 

lw 

D 

lw 

CWT 

lw 
EWW LWW TRW 

MIN site (1964–2013) 

Arithmetic mean (mean)
*
 24.88 41.47 2.08 13.07 21.39 4.22 1.04 0.30 1.33 

Standard deviation (stdev)
*
 4.36 2.17 0.13 3.54 2.08 0.45 0.20 0.10 0.27 

Variation coefficient (var) 0.18 0.05 0.06 0.27 0.10 0.11 0.20 0.34 0.21 

Sensitivity coefficient (sens) 0.17 0.06 0.05 0.27 0.10 0.10 0.21 0.33 0.19 

First-order autocorrelation 

coefficient (ar-1) 
0.28 -0.06 0.36 0.18 0.09 0.30 0.14 0.16 0.26 

BER site (1969–2008) 

Arithmetic mean (mean)
*
 11.96 36.68 2.86 5.30 17.99 4.52 0.39 0.09 0.48 

Standard deviation (stdev)
*
 2.85 3.47 0.24 1.79 2.00 0.55 0.19 0.05 0.23 

Variation coefficient (var) 0.24 0.09 0.08 0.34 0.11 0.12 0.49 0.57 0.49 

Sensitivity coefficient (sens) 0.26 0.11 0.07 0.31 0.11 0.13 0.36 0.40 0.32 

First-order autocorrelation 

coefficient (ar-1) 
0.19 -0.01 0.37 0.33 0.19 0.20 0.56 0.60 0.63 

*
Mean and stdev values are in [μm] units for D and CWT, in [mm] units for EWW, LWW and TRW, and 

dimensionless for CN parameters. 
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Table 3. Correlation coefficients between the wood parameters chronologies  

Parameter Dew CWTew CNlw Dlw CWTlw EWW LWW TRW 

MIN site 

CNew 0.57 0.25 0.61 0.61 0.54 0.98 0.61 0.95 

Dew  0.01 0.26 0.49 0.47 0.55 0.99 0.78 

CWTew   0.35 0.33 0.47 0.72 0.29 0.64 

CNlw    0.76 0.64 0.17 0.32 0.25 

Dlw     0.80 0.63 0.82 0.77 

CWTlw      0.54 0.67 0.65 

EWW       0.57 0.95 

LWW        0.79 

BER site 

CNew 0.57 0.42 0.56 0.42 0.51 0.97 0.61 0.95 

Dew  0.54 0.23 0.57 0.50 0.54 0.97 0.69 

CWTew   0.58 0.64 0.70 0.67 0.26 0.62 

CNlw    0.34 0.64 0.47 0.59 0.53 

Dlw     0.82 0.48 0.46 0.51 

CWTlw      0.54 0.69 0.62 

EWW       0.78 0.99 

LWW        0.86 
Significant at p < 0.05 coefficients are bold.  
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Fig. 1. Map of the study area (the Republic of Khakassia and South of the Krasnoyarsk  

Territory), and climatic diagrams of mean temperatures (lines) and the amount of precipitation 

(bars) based on data from the Minusinsk and Shira weather stations. Sites of the wood samples 

collecting and state weather stations are marked on the map. 
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Fig. 2. Separation of tree rings into the earlywood and latewood zones. The empirical and 

calculated (the sum of two normal distributions) wood cell distribution density by the value of 

ratio CWT/D at the MIN (a) and BER (b) sites; threshold values CWT/D (local minima on the 

empirical and calculated curves) for the separation of zones are marked. Comparison of the cell 

distribution by CWT/D at two sites (c). The actual dependence of the cell wall thickness on the 

radial cell diameter and the threshold CWT/D value at the MIN (d) and BER (e) sites. 
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Fig. 3. Paired correlation coefficients of the wood parameters chronologies with 

temperatures (T) and precipitation (P) of the individual months and longer periods (1969-2008) 

at the BER (a) and MIN (b) sites. Asterisks (*) mark months of the year preceding the 

development of a tree ring. The coefficients significant at p < 0.05 with the correction for 

multiple comparisons are marked. 
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Fig. 4. Empirical and calculated (normal distribution) density of earlywood and latewood 

cells distributions by D and CWT: distributions of cells by D at the MIN (a) and BER (b) sites; 

distributions of cells by CWT at the MIN (c) and BER (d) sites; comparison of the summary 

distributions of cells by D (e) and CWT (f) between two sites. 


