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Topological phase transitions in tilted optical lattices
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We analyze the energy spectrum and eigenstates of cold atoms in a tilted brick-wall optical lattice. When the
tilt is applied, the system exhibits a sequence of topological phase transitions reflected in an abrupt change of
the eigenstates. It is demonstrated that these topological phase transitions can be easily detected in a laboratory
experiment by observing Bloch oscillations of cold atoms.
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I. INTRODUCTION

The Bloch band theory is a cornerstone of solid state
physics. It gave a simple explanation for the fact that some
crystalline materials are electric insulators while the others
are conductors. However, after discovery of the quantum Hall
effect in 1980 it was gradually recognized that this division
of solid crystals into band insulators and metals is incomplete
and there are materials which are insulating in the bulk but
conducting at the edges. These materials with an unusual Bloch
band structure were named topological insulators and their
study became a blossoming branch of solid state physics and
other fields [1–4].

An excellent playground for studying different models of
topological insulators is provided by cold atoms in optical
lattices. For example, in Ref. [5] the authors realized the
one-dimensional Su-Schrieffer-Heeger (SSH) model [6] and
measured the Zak phases for two different dimerization of
the SSH lattice. In Ref. [7], the two-dimensional lattice with
effective magnetic field was created and the Chern number
of the ground magnetic band was measured by observing the
anomalous velocity of atoms. The cold atom realization of the
Haldane lattice [8] was reported in Ref. [9].

In this work, we discuss a class of topologically nontrivial
systems which should be treated as quasi-one-dimensional.
These are the tilted bipartite lattices. Topological phase tran-
sitions in tilted bipartite lattices were mentioned in Ref. [10],
which studied the biased dice lattice. The dice lattice has a
rather particular geometry that leads to the Bloch spectrum
consisting of three bands, with one band being completely
flat. While the emphasis of Ref. [10] was on flat bands, in
the present work we focus on the topological phase transitions
and their physical manifestations that can be detected in the
present-day laboratory experiments with cold atoms. Putting
laboratory accessibility on the first place, we consider the
brick-wall lattice which was used earlier in the experiment [11]
to study the effect of Dirac cones. The network connectivity
of the brick-wall lattice is shown in Fig. 1 where the solid
and dashed bonds correspond to the strong J1 and weak J2

coupling, respectively. Here we analyze the simplest case
where the brick-wall lattice is tilted in the y direction. In other
words, the atoms are subject to a potential field F aligned

with the y axis. The field breaks translational invariance of the
system in the y direction and causes the atoms to be localized
within the Stark localization length ∼ 1/F . However, in the
x direction translational symmetry is preserved and, hence,
atomic eigenstates are extended Bloch-like states. Localization
in one direction together with translational invariance in the
other relates the system to the SSH model. However, due to
the presence of an extra parameter F , the system is essentially
richer than the celebrated SSH lattice. In particular, the tilted
brick-wall lattice preserves its topological properties even if
the hopping matrix element J2 is strictly zero.

II. WANNIER-STARK ENERGY BANDS

We begin with the energy spectrum of a quantum particle
in the tilted brick-wall lattice. As for any bipartite lattice, it
consists of pairs of one-dimensional energy bands arranged
into the Wannier-Stark ladder [12]; see Fig. 2. Numerically
this spectrum can be found by using at least two different
methods—by diagonalizing the truncated Hamiltonian matrix
or by calculating and diagonalizing the Floquet operator, which
is the system evolution operator over the Bloch period. The
latter approach has certain advantages over the former because
it (i) does not require truncation of the Hilbert space and (ii)
opens prospects for analytical studies of the spectrum [12,13].

In the framework of the Floquet operator approach, the
eigenstates of a quantum particle in a tilted bipartite lattice
are conveniently characterized by the column vector func-
tion Y(θ ; κ) = [YA(θ ; κ),Y B(θ ; κ)]T whose Fourier transform
gives occupation amplitudes of the lattice sites,

ψ
A,B
l,p ∼ eiκdl

∫ 2π

0
YA,B(θ ; κ)eipθdθ. (1)

In Eq. (1), d denotes the lattice period, l = x/d and p = y/d

label the lattice sites, and κ is the transverse quasimomentum
(i.e., the quasimomentum of the Bloch wave in the x direction).
According to Ref. [10], it can be shown that the function
Y(θ ; κ) obeys the ordinary differential equation

idF
dY
dθ

= G(θ ; κ)Y, (2)
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FIG. 1. The brick-wall lattice. The bonds marked by the solid and
dashed lines corresponds to the different hoping matrix elements J1

and J2. Notice that for J2 = 0 the brick-wall lattice transforms into the
deformed honeycomb lattice with A and B sites marked by asterisks
and open circles.

where the matrix G(θ ; κ) is of the form

G(θ ; κ) =
(

0 f

f ∗ 0

)
, (3)

and f (θ ; κ) = J2 + J1(ei2dκ + 2eidκ cos θ ). Using Eq. (2), one
constructs the 2 × 2 unitary (Floquet) matrix

U (κ) = êxp

[
i

dF

∫ 2π

0
G(θ ; κ)dθ

]
, (4)

FIG. 2. Energy spectrum of the tilted brick-wall lattice. Param-
eters are J1 = 0.5, J2 = 0, and dF = 1/1.9 (left panel), dF = 1/2
(middle panel), and dF = 1/2.1 (right panel). Through the paper, we
use arbitrary energy units since only the ratio between the hopping
and Stark energies matters.
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FIG. 3. Upper panel: Winding number of the phase χ vs the
inverse field magnitude. Lower panel: The energy band E

(1)
n=0 as a

color map. The limits of the energy axis are Emin = 0 (dark blue)
and Emax = dF/2 (bright yellow). The values of the hopping matrix
elements are the same as in Fig. 2.

whose eigenvalues λ1 and λ2 = λ∗
1 determine the Wannier-

Stark spectrum through the relation

E(1,2)
n (κ) = dFn + i

dF

2π
ln λ1,2(κ). (5)

In what follows, we take the convention that index 1 always
refers to the upper band (solid blue lines) and index 2 refers to
the lower band (dashed red lines).

We mention in passing the analogy between the Wannier-
Stark spectrum of the brick-wall lattice and the Bloch spectrum
of the SSH lattice. The latter is known to be given by
eigenvalues of the 2 × 2 Hermitian matrix

H (κ) =
(

0 f

f ∗ 0

)
, (6)

where f (κ) = J2 + J1e
idκ [1]. If ratio J2/J1 is varied, the

Bloch bands develop a conical intersection when J1 = J2 and
the SSH model shows a topological phase transition reflected
in a change of the Zak phase. Notice that the existence of
this topological invariant is ensured by the particular structure
of H (κ), which is the same as for the matrix G(θ,κ) in the
definition the Floquet operator (4). Thus we may expect a
similar phenomenon in the tilted brick-wall lattice where the
Wannier-Stark energy bands are sensitive not only to the ratio
J1/J2 but also to variation of F . For future reference, the
lower panel in Fig. 3 shows the upper band with the ladder
index n = 0 as a function of the quasimomentum and inverse
field magnitude. Our particular interest in this figure are points
of conical intersections between energy bands of different
symmetry, seen as the dark and bright spots.

III. TOPOLOGICAL INVARIANT

We proceed with topological phase transitions. The object
to study are eigenvectors Y1,2(κ) = [YA

1,2(κ),Y B
1,2(κ)]T of the

unitary matrix (4). Because of the particular algebraic structure
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of the matrix (3), the eigenvectors can be shown to have the
following simple form:

Y1,2 =
(

1√
2
eiχ

± 1√
2
e−iχ

)
, (7)

where χ is a function of the quasimomentum and without any
loss of generality we can require χ (κ = 0) = 0. Following
Ref. [10] we introduce a topological invariant—the winding
number W [14],

W = 1

2πi

∫ 2π

0
angle

(
YA

j

YB
j

)
dκ = 1

πi

∫ 2π

0
e−iχ d

dκ
eiχdκ,

(8)

which is an integer number because Y1,2(κ) are periodic
functions of the quasimomentum. Notice that W is not affected
by gauge transformations when the eigenvectors are multiplied
by a phase factor exp[i�(κ)] with �(κ) being an arbitrary
periodic function of κ . As F is varied, the winding number
(8) may change its value only at some critical values of the
field, where energy bands of different symmetry touch each
other; see upper panel in Fig. 3. The observed jumps of the
winding number is a formal manifestation of topological phase
transitions.

Let us focus on the single topological transition, say atFcr =
1/2, where the bands shown in Fig. 2 touch each other at κ = 0
and κ = π . In vicinity of this critical value, the matrix (4) is
close to the identity matrix,

U (κ = 0) =
( √

1 − ε2 iε

iε
√

1 − ε2

)
, (9)

where ε is proportional to 
F = F − Fcr . It is easy to see that
for ε � 1 eigenvectors of the matrix (9) are given by Eq. (7)
with χ = 0 and eigenvalues by λ1,2 ≈ exp(±iε). The crucial
point is that off-diagonal elements of the matrix (9) change
their sign when F crosses Fcr . Then the symmetric eigenvector
Y1 = [1/

√
2,1/

√
2]T , which has been associated with the

upper band, skips to the lower band [16]. This seemingly simple
result has important consequences, which can be detected
experimentally by inducing Bloch oscillations of atoms in the
x direction. We discuss the general scheme of the proposed
experiment in the next section.

IV. DETECTING PHASE TRANSITIONS

We consider a BEC of noninteracting cold atoms (i.e., a
coherent wave packet with vanishing phase difference between
different sites) and apply an external field F which is slightly
mismatched with the y axis, Fx � Fy ≈ F . In this setup,
the strong component Fy creates the ladder of Wannier-Stark
energy bands and the weak component Fx induces Bloch
oscillations of atoms in these bands. These oscillations can be
conveniently described in terms of the Wannier-Stark states
|�(1,2)

n (κ)〉 as soon as we specify the expansion coefficient
a(1,2)

n (κ) = 〈�(1,2)
n (κ)|ψ(t = 0)〉. Since the occupation ampli-

tudes of A and B sites in the initial state |ψ(t = 0)〉 have
equal phases, we predominantly populate κ = 0 vicinity of
upper bands if Fy < Fcr , and κ = 0 vicinity of lower bands
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FIG. 4. Bloch oscillations of a localized wave packet for F =
1/1.9 (upper panel) and F = 1/2.1 (lower panel). Time is mea-
sured in units of the tunneling period T = h/J1. Shown are the
mean value x(t) = 〈ψ(t)|x̂|ψ(t)〉, blue solid lines, and y(t) =
〈ψ(t)|ŷ|ψ(t)〉, red dotted lines. The ratio of the field components
Fx/Fy = 0.005.

if Fy > Fcr . Thus, the weak component Fx induces Bloch
oscillations either in upper or lower bands depending on
inequality relation between F and Fcr . This is illustrated in
Fig. 4, which shows the results of straightforward numerical
simulations of the wave-packet dynamics for Fx/Fy = 0.005
and F = 1/1.9, upper panel, and F = 1/2.1, lower panel. It
is seen that the wave-packet displacement in the x direction
reproduces the dispersion relation of upper bands (blue solid
lines) in Fig. 2(a) and lower bands (red dashed lines) in
Fig. 2(c), respectively. (Since dFy > J1, the wave-packet
displacement in the y direction can be neglected.) In our
simulations, we intentionally use very small ratio Fx/Fy since
for a larger ratio the Bloch oscillations become complicated
by interband Landau-Zenner transitions. Yet, qualitatively the
effect remains the same—the wave packet moves in opposite
directions for F smaller and larger than Fcr .

V. CONCLUSION

In summary, we analyzed topological phase transitions
in the tilted brick-wall optical lattice which are induced by
variation of the field magnitude. These transitions correspond
to a qualitative change of the two-dimensional Wannier-
Stark states and can be detected by observing atomic Bloch
oscillations, which nowadays is a routine procedure in the
cold-atom physics. We notice, in passing, that one gets similar
results for the more familiar honeycomb lattice. Moreover,
since in our numerical illustrations we used J2 = 0, the
results depicted in Fig. 3 can be directly applied to the
honeycomb lattice after rescaling the abscissa axis by the factor√

3/2.
To conclude the work, we mention that the discussed phase

transitions can be also observed in the curved two-dimensional
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photonic crystals, where the inverse curvature radius plays
the role of the field magnitude [17–19]. The latter system
also admits to study the other manifestation of topological
phase transitions, namely, a rearrangement of the edge states.
The detailed analysis of this rearrangement will be given in a
separate paper.
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