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Within the framework of a realistic multi-band p− d- model, we derived an effective Hamiltonian
to describe the exchange interaction effects near the spin crossover in magnetic Mott-Hubbard
insulators under pressure. It is shown that single-ion mechanism of spin crossover under change of the
crystal field does not lead to a thermodynamic phase transition, however, at T = 0 a quantum phase
transition appears. It has been found that the cooperativity leads to a modification of the quantum
phase transition to a first-order phase transition and the appearance of metastable states of the
system. The pressure - temperature phase diagram has been obtained to describe the magnetization
and high-spin population near the spin crossover of the Mott’s insulators with d6- ions.
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I. INTRODUCTION

A spin crossover (SCO) was discovered by
Combi almost 80 years ago1, but so far it at-
tracts the attention of researchers. Primarily,
the interest to SCO- systems was connected
with the hope to design free-inertial molecu-
lar two-state switches which can be used to
store and process information in fast compu-
tational devices. Development of nanotechno-
logy prompts the study of this phenomenon in
order to use certain properties of the SCO in the
quantum transport and creation of a new gene-
ration of sensors and displays2. Spin systems
with crossover include extensive class of ma-
terials: organometallic complexes, organic radi-
cals, inorganic salts and transition metal oxides.
The SCO phenomenon is associated with the
energy level crossing of two different spin mul-
tiplets of magnetic ion under changing of some
external parameters, i.e. temperature, pressu-
re, light irradiation, etc. Due to its cooperati-
ve nature, the SCO connects the micro- and
macroscopic properties of the system. Someti-
mes the SCO is considered as a phase transi-
tion of a special type, the so-called supercriti-
cal transitions3. A nice example of a planetary
scale of a spin state transition is the SCO in
ferropericlase at high pressure4, that probably
takes place in the Earth’s mantle4–8. To da-
te, the effect of pressure and temperature on
the spin transition was described in terms of

various approaches and approximations. One
of the most common approaches is based on
the Landau theory of phase transitions9. The
second successful approach is based on the
Ising model2,10–34. A third approach is the mi-
croscopic one35. Each of these approaches has
strengths and weaknesses (for discussion see
Refs.36,37).

In general, SCO results from a competition
of the Hund intra-atomic exchange interaction
and the crystal field value determined by su-
rroundings ions. At first glimpse it is a problem
of individual ion in a given crystal field. The ex-
ternal or chemical pressure changes the crystal
field and induces the SCO as well as all other
external effects changing the interatomic dis-
tance. Cooperative effects in such systems re-
sult in different hysteresis phenomena and play
an important role in the practical applications
and understanding of their nature. One can sin-
gle out several essential types of interaction bet-
ween metal ions, namely, electron-phonon, qua-
drupole and exchange interaction.

Cooperativeness in magnetic insulators is
usually caused by interatomic exchange in-
teraction. However, this mechanism does not
work in SCO- systems with the ground sta-
te being low-spin (LS) singlet ion level. The
magnetic cations of organometallic complexes
are connected to each other by chemical brid-
ges, and cooperative effects are realized th-
rough elastic interaction. In the literature, we
have found a few works that discuss coope-
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rative magnetic effects through the exchan-
ge interaction between the excited high-spin
(HS) states (see., i.e.,38,39). In all these stu-
dies the form of the exchange interaction is pos-
tulated phenomenologically, as Heisenberg ex-
change interaction with empirical parameters.
In the last decade a lot of works based on
the density functional theory have appeared to
describe the SCO phenomenon. For example,
the SCO properties and phase diagram have
been obtained for [Fe(PM − BIA)2(NCS)2]
compound40. Recently, various models with
elastic constant depending on the distance bet-
ween the structural elements have been stu-
died by methods of molecular dynamics41,42

and Monte Carlo simulations43,44. Along with
the use of static pressure there are also some
studies on the effect of impact pressure on the
spin state of coordination complexes, such as
[Fe(phen)2(NCS)2]

45. It was shown that a re-
latively low pressure pulse of 0.02 GPa is ca-
pable to induce an almost complete conversion
of the spin on the hysteresis branches. Such ef-
fects may be applied to a spin state switching
devices by using SCO- materials.
Since the direct overlap of d- orbitals of

neighboring ions in the transition metal oxides
is small, the main mechanism of the exchange
interaction in these compounds is the Kramers-
Anderson indirect exchange (superexchange).
Besides, the interplay of electronic hopping bet-
ween neighbouring ions with the orbital struc-
ture of different spin multiplets also results in
spin-orbital cooperative effects in strongly co-
rrelated transition metal oxides46. The most
common and versatile approach to the SCO
problem is based on the effective Hamiltonian.
Within this approach, all these materials are
treated from a single point of view. However,
when two different spin multiplets are close,
effective interaction between the magnetic ca-
tions may be far from the Heisenberg interac-
tion, and the effective Hamiltonian should be
obtained from a multielectron microscopic ap-
proach.
The present work is devoted to a neat deriva-

tion of the effective Hamiltonian for transition
metal oxides with SCO and study influence of
arising cooperative effects on formation of the
physical features of these materials as well. By
using the effective Hamiltonian approach, we
study effect of the exchange interaction on the
SCO. In this way the orbital HS- and LS- states
of the 3d- ion are described in terms of one-half
pseudospin. To obtain all parameters of the ef-
fective Hamiltonian, we applied the hybrid mul-
tielectron LDA+GTB approach47, where GTB

means a generalized tight binding method. The
use of projection Hubbard operators, as part
of the LDA+GTB method, yield new terms in
the effective Hamiltonian, previously not consi-
dered. They are responsible for the exciton type
interaction. This opens up interesting possibili-
ties for further research of both equilibrium and
nonequilibrium phenomena in the SCO- sys-
tems, for instance, interaction with radiation.
The paper is organized as follows. In Sec. 2

we derive the effective Hamiltonian for the
multi-band model of strongly correlated 3d-
oxides. In Sec. 3 the SCO phenomena is studied
in the mean field approximation. In Sec. 4 the
results of numerical simulations are presented.
In Conclusion we discuss the obtained results.

II. EFFECTIVE HAMILTONIAN
APPROACH TO THE SPIN CROSSOVER

IN MAGNETIC INSULATORS

For the transition metal (TM) compounds
with the predominant type of ionic bonding
(i.e. oxides, halides, etc.), strong electron co-
rrelations determine the insulator and magne-
tic properties. The commonly accepted mini-
mal model for description of such compounds
is a multi-band p − d- model48–50. This model
explicitly takes into account the Coulomb in-
teraction of d- electrons of the TM- ion. The
Hamiltonian of the model can be written as,

H = Hd +Hp +Hpd. (1)

Here the first term,Hd =
∑

i,λ,σ ε
λ
dd

†
i,λ,σdi,λ,σ+

HCoulomb
d , describes the d-electrons in the

crystal field: (λ = xy, yz, zx, x2 − y2, z2)
and their Coulomb interaction. The se-
cond term, Hp =

∑
j,α,σ

εαp p
+
jασpjασ +∑

⟨j,j′⟩

∑
α,β,σ

tαβpp
(
p+jασpj′βσ + h.c.

)
, with the

hopping integral being tαβpp , describes p-
electrons of oxygen or other ligands involved
in σ- and π-coupling (α, β = x, y, z). The third

term, Hpd =
∑

⟨i,j⟩,σ(t
λα
pd d

†
iλσpjασ + h.c), cha-

racterizes the hybridization of the cation-anion
states.
In this approach the Coulomb energy of p-

electrons is usually neglected. However, if ne-
cessary, it can be easily taken into account wit-
hin the framework of our LDA+GTB- approach
(see below). Multi-band p − d- model, with all
Coulomb interactions: d − d, p − p, and p − d
being included, was discussed in51.
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An important advantage of this multi-orbital
model is the ability to form different many-
electron states (terms) of the transition metal’s
ion. These terms are characterized by different
values of the spin, 0 ≤ S ≤ 5/2 , and the orbital
angular momentum. For dn- ion in the crystal
field, the ground state depends on the relations-
hip between the Hund exchange constant, JH ,
and the crystal field, 10Dq. In some cases, the
amount of cation-anion hybridization makes its
contribution to the stability of HS/LS terms52.

The magnitude of the crystal field depends
on the interatomic distance and it is changed
when the external pressure or “chemical pres-
sure” is applied. The chemical pressure appears
when isovalent substitution occurs in a series of
solid solutions or stretching. For ionic crystals
energy terms of dn- electron configurations in a
cubic crystal field have been obtained numeri-
cally. The results are presented by the so-called
Tanabe-Sugano diagrams53.

In the framework of the LDA+GTB ap-
proach, parameters of the Hamiltonian (1) are
obtained from the first principles. In order to
adequately account electron correlations, the
cluster approach of GTB method is applied51.

In the GTB approach the crystal lattice is
divided into clusters (“elementary cells”), and
the total Hamiltonian can be written as, H =
H0 + H1, where H0 =

∑
f Hc(f) is related to

the contribution of all noninteracting clusters,
and H1 =

∑
fg Hcc(f, g) describes hopping and

interaction between clusters.

The Hamiltonian, Hc(f), can be diagonali-
zed exactly. We denote by |p⟩ its eigenstates
with the energy Ep. Next step is to introdu-
ce the Hubbard X-operators. They are defined
in a standard way54: Xpq

f = |p⟩⟨q|. Algebra of
X- operators is determined by the multiplying
rule, Xpq

f Xrs
g = δfgδqrX

ps
f , and the comple-

teness condition,
∑

Xpp
f = 1. The indices p

and q, being collective indices, contain a set
of the following quantum numbers: the num-
ber of electrons np per unit cell, an irreducible
representation Γ , that describes the transfor-
mation of the orbital part of the wave function
under action of the point symmetry group of
the given crystal, the magnitude of the spin,
S, and its projection, mS . Thus, one can write,
|p⟩ = |np; Γ;mΓ;S;mS⟩.
It is assumed that for the neighbor cells the

eigenstates are orthogonal. If not, for instance,
as in the case when two adjacent clusters share
a common oxygen, one needs to use the ortho-
gonalization procedure, employing the Wannier
functions instead of the group of oxygen orbi-

tals. For the first time such a procedure has
been proposed for the three-band p − d- mo-
del in55 and generalized to a multi-band model
in56.
Since the Hubbard operators form a linearly

independent basis, any local operator can be
expressed as a linear combination of X- ope-
rators. For instance, a single-electron annihi-
lation operator, afνσ , in a f -cell with the
band index ν, can be written as, afνσ =∑

pq |p⟩⟨p|afνσ|q⟩⟨q| =
∑

pq γνσpqX
pq
f . In the

X-operators representation the Hamiltonian
(1) takes the form,

H =
∑
f,p

(Ep − µnp)X
pq
f +

∑
f ̸=g

∑
mn

tmn
fg X†m

f Xn
g ,

(2)

where µ is the chemical potential and tmn
fg =∑

σνν′ T νν′

fg γ∗
νσ(m)γν′σ(n). Here T νν′

fg are the
hopping matrix elements in the basis of the ort-
hogonalized Wannier functions. The SCO oc-
curs in the case of the energy level crossing of
the two different spin states under the influence
of external factors.
In what follows, we generalize the method

of projection operators, developed for the Hub-
bard model57, to obtain the effective Hamilto-
nian from (2), by excluding the interband hop-
ping integral through the dielectric gap. We de-
fine for two nearest neighbor sites i and j the
projection operator P1 as,

P1 =
∑
p

(Xpp
i +Xpp

j ) +
∑
p.p′

Xpp
i Xp′p′

j . (3)

In the r.h.s. of the Eq. (3) only those states |p⟩
and |p′⟩ are taken into consideration, for which
the number of electrons per unit cell, np, is mo-
re (or less) than it follows from the electrical
neutrality condition. As one can see, the ope-
rators P1 and P2 = 1− P1 satisfy the following
identity: PaPb = δabPa, where a, b = 1, 2.
Let us consider the auxiliar Hamiltonian,

Hη = H′ + ηH′′, where H′ = P1HP1 + P2HP2

and H′′ = P1HP2+P2HP1, with η being a for-
mal parameter. At the end of computation we
set η = 1. Using the identity H =

∑
a,b PaHPb,

one can show that Hη|η=1 = H. Here H′ con-
tains interatomic electron hopping inside the
individual Hubbard subbands, while H′′ des-
cribes the interband electron hopping via the
large Mott-Hubbard band.
We employ the method of operator perturba-

tion theory to eliminate the processes with the
interband hopping. The essence of the operator
perturbation theory is that, using a canonical
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transformation, H̃η = exp(−iηU)Hη exp(iηU),
one can choose the operator U so that the terms
of the Hamiltonian linear in η, H̃η, i. e. contri-
butions of the interband hopping, vanish. As
one can show, this condition results in the fo-
llowing equation for the operator U :

H′′ + [H′, U ] = 0. (4)

One can see that the condition H̃ = H̃η|η=1 can
be recast as,

H̃ = H′ +
i

2
[H′′, U ]. (5)

Using the results obtained in57, we found

H̃ = P1HP1 + P2HP2 −
1

Ect
[P1HP2, P2HP1],

(6)

where Ect = ⟨P2HP2⟩ − ⟨P1HP1⟩ is the char-
ge transfer energy that determines the insulator
gap Eg. The first two terms in (6) describe the
electron hopping in the conductivity and valen-
ce band. The last term results in the effective
exchange Hamiltonian given by superexchange
interaction. This approach has been developed
for the Hubbard model57 and has been used
with X- operators for La2CuO4 and FeBO3

58.
Gathering all results together, one can show

that the effective Hamiltonian in the represen-
tation of spin operators, Si, and pseudospin
operators, τ i, becomes

Heff =
∑

α,β=1,2

∑
⟨i,j⟩

Jαβ
(
Sα
i · Sβ

j +
ξ

4
nα
i n

β
j

)
pαi p

β
j

+
(
f(P )− ε0

)∑
i

τzi +Hexiton. (7)

The summation is performed over neighboring
sites on a lattice with coordination number

z. The first term describes the exchange con-
tribution to the Heisenberg Hamiltonian, nα

i

stands for operators of the particles on the
i-site, the parameter ξ = −1, 3 corresponds
to the antiferromagnetic and ferromagnetic or-
dering, respectively. The projection operators,
pαi = (1/2)(1 + λατ

z
i ), are defined in the subs-

pace of eigenstates of the pseudospin opera-
tor, τzi |α⟩ = λα|α⟩, with the eigenvalues being
λ1 = 1 and λ2 = −1. The index α takes the
value 1 for the HS- state and 2 for the LS- sta-
te of the system thus p1 |1⟩ = |1⟩, p1 |2⟩ = 0,
p2 |1⟩ = 0, p2 |2⟩ = |2⟩. The second term in
Eq.(7) describes variation in the relative energy
of electronic configurations for LS- and HS- sta-
tes under the influence of the applied pressu-
re P . In Eq. (7) we set ε0 = ∆s/2, where
∆s = ELS−EHS is the energy gap between the
LS- and HS- states at zero pressure. Here f(P )
denotes a pressure contribution to the spin gap
ε0. We consider situation when at P = 0 HS is
stable (ε0 > 0).

In the representation of spin and pseudospin
operators, the Hamiltonian (7) has the form:

Heff =
∑

α,β=1,2

∑
⟨i,j⟩

Jαβ
(
Sα
i · Sβ

j +
ξ

4
nα
i n

β
j

)
·

(
1 + λατ

z
i + λβτ

z
j + λαλβτ

z
i τ

z
j

)
+
(
f(P )− ε0

)∑
i

τzi +Hexiton. (8)

The third term in Eq. (7) includes the inter-
action of the excitonic type. The most simple
form it takes for two-level system. In this case
orbital and spin singlet, |S⟩, stand for the LS-
state, and the HS- state is described by spin
triplet, |M⟩, with the spin projections being,
M = 0,±1. Thus, Hexiton can be written as,

Hexiton = Jexiton
∑
M

∑
⟨i,j⟩

(
τ+i τ−j XM,S

i XS,M
j + τ−i τ+j XS,M

i XM,S
j − (−1)M (τ+i τ+j XM,S

i XM,S
j + τ−i τ−j XS,M

i XS,M
j )

)
(9)

where on the i-site the Hubbard operators

XM,S
i and XS,M

i describe the excitations in the
spin subspace of the system from the singlet
state to the triplet state with the projection of
the spin M , and vice versa. The operators τ+i

and τ−i have the same meaning for the orbital
part of the wave functions.

Note that the interaction between the spin
and orbital degrees of freedom has long been
studied in the literature in the Kugel-Khomskii
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model59. Our Hamiltonian contains formally si-
milar combination of the pseudospin and spin
operators, but the physical origin of pseudospin
states here is different from the single electron
analogues in the Kugel-Khomskii model.
The Hamiltonian (7) can be generalized by

including the phonon interaction between TM-
ions and spin-orbit interaction. The phonon
contribution is described by59,

He−ph = J1
∑
⟨i,j⟩

τxi τ
x
j + J3

∑
⟨i,j⟩

τzi τ
z
j (10)

where the coupling constants J1 and J3 are de-
termined by the interaction of different phonon
modes of the lattice. The spin-orbit interaction
in the highest order of the perturbation theory
leads to the mixture of the the LS- and HS- sta-
tes caused by tunneling of the system through
a potential barrier between the LS- and HS-
states. The corresponding Hamiltonian can be
written as60,

Hso+tunneling = Jx
∑
i

τxi . (11)

In recent years the unusual properties of su-
pramolecules, containing spin-active coordina-
ted TM- ions of the iron group, have increa-
singly drawn the attention of researchers. These
systems exhibit both, the thermal SCO and the
SCO, arising under the impact of pressure, or
as a result of the light irradiation of the sample
(LIESST- effect). The LIESST spin transition,
HS →LS, being induced by the interaction of
the vibronic levels of different multiplicity, is
often accompanied by hysteresis61.
Irradiation of frozen [Fe(ptz)6](BF4)2 sam-

ple at a wavelength of 514 nm results in spin-
allowed transitions 1A1 → 1T1. The excited sta-
te would relax back to the initial singlet sta-
te, unless the spin-orbit interaction had provi-
ded intersystem transitions in the triplet sta-
tes, 3T2 and 3T1. These states overlap with the
quintet, 5E, which then relaxes into a metasta-
ble state 5T2. The latter can exist indefinitely
at low temperatures, since the potential barrier
separates it from the ground state 1A1. To re-
verse LIESST, the low-lying state 3T1 should
exist. This state is an intermediate in the two
intersystem crossing and can decay into 5T2

and 1A1. Therefore, by irradiating such a sta-
te at a closest infrared wavelength transition:
5T2 → 5E (752,7 nm for [Fe(ptz)6](BF4)2), the
reverse transition in singlet 1A1 can be carried
out.
The terms Hexiton and He−ph (see Eqs. (9)

and (11)) are directly related to the LIESST-

effect and can be used for description and simu-
lation of the SCO in supramolecule systems.

III. MEAN FIELD APPROXIMATION

In what follows we consider an antiferromag-
netic system (ξ = −1, Jαβ > 0) and restrict
ourselves for simplicity by consideration only
these interactions, writing the effective Hamil-
tonian as,

Hsτ
eff =

∑
α,β=1,2

∑
⟨i,j⟩

Jαβ
(
Sα
i · Sβ

j − 1

4
nα
i n

β
j

)
pαi p

β
j

+
(
f(P )− ε0

)∑
i

τzi . (12)

The method can be applied in a straightfor-
ward way also in the ferromagnetic case, ξ = 3
and Jαβ < 0. As concerns possible pseudispin
ordering we restrict ourselves in this paper to
the case of pseudospin ferromagnetisn. It means
that each ion has the same spin state.
In the mean field approximation the effecti-

ve Hamiltonian, HMF , can be written as (for
detail see Appendix A),

HMF = H0 −
∑
i

∑
α,β=1,2

zJαβnαnβSβ⟨mβ⟩Sα
i −∆eff

∑
i

τzi ,

(13)

where mα
i = (0, 0,mα

i ) is a unit vector, so
that one can write the staggered magnetization
⟨Sα

i ⟩ = Sα⟨mα
i ⟩,

H0 =
∑
i

∑
α,β=1,2

(
ναβnαnβ⟨mα⟩⟨mβ⟩ − 1

2
∆αβnα(1− nβ)

)
,

(14)

∆eff =
1

2

∑
α,β=1,2

∆αβλβnα + (ε0 − f(P )).

(15)

Here ναβ = zJαβSαSβ , and

∆αβ =zJαβ

(
⟨Sα⟩⟨Sβ⟩+ 1

4
NαNβ

)
. (16)

We denote by nα = ⟨pαi ⟩ = (1/2)(1 + λα⟨τz⟩)
the HS- state (α = 1) and LS- state (α = 2)
fraction.
Thus, the Hamiltonian, HMF , given by

Eq. (13) can be considered as the effective Ha-
miltonian for description of SCO as pressure,
temperature or both, are changed.
The computation of thermodynamic avera-

ges yields the sublattice magnetization m and
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uniform pseudospin order parameter τ = ⟨τz⟩

mα =BSα(β
∑

α′=1,2

ναα′nαnα′mα′), (17)

⟨τz⟩ =tanh
(
β∆eff + ln

√
g
)

(18)

where mα ≡ ⟨mα
i ⟩, β = 1/kBT , g = gHS/gLS

being ratio of the degeneracy of HS- and LS-
states, and

BS(x) =

(
1 +

1

2S

)
coth

((
1 +

1

2S

)
x

)
− 1

2S
coth

( x

2S

)
(19)

is the Brillouin function.
The population of HS- and LS- state is found

to be

nHS = n1 =
1 + tanh

(
β∆eff + ln

√
g
)

2
, (20)

nLS = n2 =
1− tanh

(
β∆eff + ln

√
g
)

2
. (21)

IV. IMPACT OF COOPERATIVE
EFFECTS ON THE SPIN CROSSOVER

We find that in the mean field approximation
the SCO in the transition metal compounds can
be described by the effective Hamiltonian (13).
The population of HS- and LS- state is descri-
bed by self-consistent system of the transcen-
dental equations: Eqs. (17), (20), (21).
In what follows we restrict ourselves by con-

sideration of the case S2 = 0. It is conve-
nient to introduce a new parameter q, writing
Nα = qSα. Further, we assume q = 2. Let
us denote m = m1, n = n1 and S = S1,
J22 = J12 = J21 = 0, J = J11. Then Eqs.
(17), (20), (21) can be rewritten as,

m =BS(βνmn2), (22)

n =
1 + tanh

(
β∆eff + ln

√
g
)

2
, (23)

where

∆eff =
ν

2
(1 +m2)n+ ε0 − f(P ). (24)

The effective Hamiltonian (13) can be recast as,

HMF = H0 −
∑
i

B · Si −∆eff

∑
i

τzi , (25)

where B = zJSn2⟨m⟩ and

H0 =
Nνm2

2
n(3n− 1)− Nν

2
n(1− n). (26)

Figura 1: Color online) HS-state population vs.
pressure and temperature in absence of the exchan-
ge interaction (J = 0).

The critical pressure, Pc, corresponds to the
energy level crossing of HS- and LS- states and
satisfies the equation, ε0 − f(Pc) = 0. Its mag-
nitude is determined by a competition of the
crystal field and the intraionic Hund exchange.
For TM- ions in the cubic and tetrahedral crys-
tal field, the explicit magnitudes of Pc are ob-
tained in62–65. Further we assume f(P ) = aP ,
so that one can write ε0 = aPc.

Below, in our numerical simulations, the pa-
rameters are chosen as follows: S = 2, z = 6,
g = 15, J = 28K, a = 80K/Gpa and Pc =
55Gpa. The pressure is measured in units of
Pc and the temperature in inits of J .

First we consider the behavior of the system
described by Eqs. (22) - (24) in the absence of
exchange interaction, J = 0. In this case the
magnetization m = 0. The results of numerical
simulations are presented in Fig. 1. Similar figu-
res have been obtained previously in7,66–71. At
T = 0, one can observe a sharp jump in the po-
pulation of the HS-state at the crossover point.
In the thermodynamic limit this is related to
the quantum phase transitions with the order
parameter being the Berry phase72. With in-
creasing of the temperature the quantum phase
transition becomes a smooth crossover.

A. Low temperature limit

In the limit of T → 0, we succeeded to ob-
tain the analytical solution given by the follo-
wing multi-valued function (blue-dashed lines
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Figura 2: (Color online) The HS fraction vs. pres-
sure. Red line (T = 0,m = 1) and blue dashed line
(T = 0,m = 0).

for m = 0 and red lines for m = 1 in Fig. 2):

n =

 1, 0 ≤ P ≤ Pm

αm(P − 1), 1 < P < Pm

0, P ≥ 1
(27)

where Pm = 1 + α−1
m and

αm =
2aPc

ν(1 +m2)
. (28)

The interval of pressure, ∆Pm = α−1
m , co-

rresponds to the region of critical behavior of a
physical system in which hysteresis phenomena
are significant. For the chosen parameters we
find ∆P0 ≈ 4,2GPa and ∆P1 ≈ 8,4GPa. No-
te that in the absence of cooperativity (J = 0)
width of this domain is zero, ∆Pm = 0.
At zero temperature the ground state of the

system is defined by the minimum of its energy,

E = −E0

(
(1 +m2)n2 + α0(1− P )(2n− 1)

)
,

(29)

where E0 = Nν/2.
In Fig. 3 the dimensionless energy of the sys-

tem, ε = E/E0, is depicted at zero tempera-
ture. It is clear from Fig. 3 that SCO at zero
temperature is the first order HS-LS transition
at critical pressure P0 > PC , P0 = 1,076 for the
chosen set of parameters.

B. Numerical solutions

At fixed temperature and volume, the equi-
librium state of a system is characterized in
terms of the Helmholtz free energy, F = E −

Figura 3: (Color online) Energy of system, ε =
E/E0, at zero temperature vs pressure:m = 0 (blue
dashed curve), m = 1 (red curve).

TS. The computation of the free energy per site
yields

F = H0 − kBT lnZs − kBT lnZτ , (30)

where

H0 =
νm2

2
n(3n− 1)− ν

2
n(1− n). (31)

The partition functions of the spin and pseudos-
pin subsystems being Zs and Zτ , respectively,
are given by

Zs =
sinh

((
1 + 1

2S

)
βνmn2

)
sinh

(
1
2Sβνmn2

) , (32)

Zτ =2
√
g cosh(β∆eff + ln

√
g). (33)

In Fig. 4 P − T phase diagrams of HS- state
population nHS (a) and magnetization m (b),
corresponding to the minimum free energy F
(30), are depicted.
In Fig. 5 all the possible self-consistent so-

lutions of the system Eqs. (22) - (23) for the
above set of parameters, marked with red cir-
cles for the magnetization m and blue crosses
for the populations of HS- state nHS for some
specific values of external pressure (see. below)
as function of temperature are depicted. Tho-
se solutions that correspond to the minimum of
the free energy are connected by solid lines (the
red line for the magnetization m, blue - for the
population of the HS- state nHS). The remai-
ning solutions are metastable. From Fig. 4 it
is clear that due to the exchange interaction J
the ground magnetically ordered state is main-
tained until P0 > PC despite the fact that in
the single-ion picture when P > PC the ground



8

(a)

(b)

Figura 4: (Color online) P − T phase diagram co-
rresponding to the minimum of the free energy: (a)
HS-state population, (b) magnetization. Here T ∗,
P ∗ is the tricritical point, and T ′, P ′ is the reen-
trant transition critical point.

state is a non-magnetic LS- state. The increase
of P0 vs PC is related to the additional energy
gain of the HS state vs LS due to the interato-
mic exchange coupling. At P > P0 the magnetic
ground state is transform to a non-magnetic by
the first-order transition. Crossing of two ener-
gies that are typical for the first-order phase
transitions are clear visible in Fig. 3. In the
range of pressure P ≤ P0 (Fig. 4b, 5a and 5b)
with increasing temperature the system under-
goes the second-order phase transition to the
paramagnetic state. On the P − T diagrams of
a physical system (Fig. 4) the existence of a sin-
gular point, the so-called tri-critical point (T ∗,
P ∗ in Fig. 4b), in which the second-order phase
transition line continuously passes in line of the
first-order phase transitions, is well visible. At
P > P0 the ground state of the system is not

magnetic. With increasing of temperature the
magnetic HS- state is populated, and due to
the phase transition of the first-order the an-
tiferromagnetic phase is restored (Fig. 5c and
5d) as energetically more favorable for P ≤ P ′.
Thus, due to the cooperative interaction, J ,
in systems with spin crossover under pressu-
re the reentrant transition at P0 < P < P ′

may exist. With further increase of temperatu-
re the system goes into the paramagnetic sta-
te by a phase transition of the second-order if
P ≤ P ∗ and of the first-order close to the se-
cond if P ∗ < P ≤ P ′ (Fig. 5d). With increasing
pressure at P > PC an energy interval bet-
ween the ground non-magnetic LS- state and
the nearest excited magnetic HS- state is in-
creased. When P > P ′ (Fig. 4f), the thermal
energy required for the HS- state population to
the desired extent become comparable with the
value of the exchange interaction J and mag-
netic order disappears.

V. CONCLUSION

Previously the effect of interatomic Coulomb
and exchange interaction have been studied in
paper73, where quite similar mean-field solu-
tions have been obtained. We study the effect
of pressure on SCO that has not been discussed
in73.

Cooperative effects in the SCO systems, whe-
re the role of the controlling parameter is ca-
rried out by external pressure, lead to an unu-
sual modification of the system. The magnetic
ordering can be suppressed by external pres-
sure, and near of the quantum critical point a
region of metastable states arises.

In the absence of exchange interaction and
magnetization at J = 0, there is a sharp chan-
ge in the population of the HS- state at the
crossover point at T = 0, which corresponds to
a quantum phase transition72. With increasing
temperature, the quantum phase transition at
T = 0 smeared into a smooth transition, a cros-
sover. In the presence of cooperativity in the
form of an exchange interaction, the quantum
phase transition with an increase in temperatu-
re is first reconstructed into a thermodynamic
transition of the first and then of the second or-
der. The appearance of phase transitions of the
first-order with discontinuities of the magnitu-
de of the magnetic moment and the population
of ionic terms due to large (up to 10%) diffe-
rense of the HS and LS ionic radii results in
a break of the volume of the crystal as a fun-
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Figura 5: (Color online) Solutions of Eqs. (22) - (23) for different values of external pressure as function
of temperature. Couples of solutions for the magnetization (circles) and the population of the HS- state
(crosses), for which the thermodynamic potential (right panel) has the lowest value, are connected by a
solid line. In the right panel marked in blue those values of the Helmholtz free energy that are correspond
to m = 0, and in red m = 0.
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ction of temperature and pressure. Metastable
states contributes to the appearance of a hys-
teresis loop and a kind of irreversibility of the
process of phase transformation. Features in the
behavior of the volume with increasing pressure
result in anomalies in the modulus of elasticity
and the speed of sound propagation in mate-
rials with a spin crossover. The P − T phase
diagram obtained by us can be used to analyze
and describe the experimental data and mea-
surements of magnetic, structural, and various
thermodynamic quantities in magnetically or-
dered substances with a spin crossover under
pressure. The direct massage to experimenta-
lists from this paper is that at low temperatu-
res spin crossover under high pressure is indeed
the first order phase transition if the sample
temperature is below the tricritical temperatu-
re T ∗ ≈ 0,8TN .
In SCO- compounds, local bistable states,

i.e., HS- and LS- states, have different molecu-
lar sizes, and the elastic interaction is impor-
tant. The elastic interaction, induced by the
lattice distortion due to the difference of the
molecular size, causes an effective long-range
interaction. In realistic compounds the short-
range interaction also plays a role in phase
transitions. For example, if we consider the
usual Lennard-Jones potential between molecu-
les which depends on the spin states, the model
has both elastic and short-range interactions74.
Competition and interplay between the short-
range and long-range interactions are interes-
ting topics in phase transitions75–80,82,83. In the
pure short-range model, clustering of the orde-
red phase takes place near the critical tempe-
rature, leading to the divergence of the corre-
lation length of the order parameter. However,
the long-range interaction suppresses the gene-
ration of domains, and the configuration is uni-
form even at the critical temperature81. This ef-
fect should be experimentally observable as an
absence of critical opalescence81–83. Phase tran-
sitions in such systems belong to the mean-field
universality class.
In84,85 authors showed that short-range in-

teractions favor nearest-neighbor HS-LS pairs
(called antiferromagnetic-like), and a long-
range (elastic) interaction favoring all molecu-
les in the same spin state (all LS or all HS, ca-
lled ferromagnetic-like). In our work we obtai-
ned that short-range exchange interaction could
favor both anti and ferromagnetic HS/LS- sta-
te ordering. It can be seen from expression (8)
that the magnetic ordering determines the or-
bital pseudospin ordering. Thus, an antiparallel
ordered orientation of the spin magnetic mo-

ments of neighboring lattice sites of the crys-
tal (sAFM) at J > 0 contributes to the ferro-
magnetic ordering of the pseudospin moments
(τFM). Conversely, a parallel ordered orienta-
tion of the spin magnetic moments of neighbo-
ring sites (sFM) contributes to the antiferro-
magnetic ordering of the pseudospin moments
(τAFM). In addition, for J < 0, states with
the same orientation of the spin and pseudospin
moments (sFM-τFM, sAFM-τAFM) are favo-
rable from the viewpoint of the energy mini-
mum.

In the experiment the independent variables
are the pressure and temperature. In this pa-
per, analysis of the SCO system was carried
out for the fixed volume, using the Helmholtz
free energy. However, even in this limited ap-
proach, one can determine the main properties
of the SCO. The potential difference with the
general case, that includes the possible change
of the system volume, will be only quantitative.
In order to take into account the latter effect,
one should consider the Gibbs thermodynamic
potential instead of the Helmholtz free energy.
This work is in progress.

X-ray diffraction data indicate that in the re-
gion of critical pressures where magnetic, elec-
tronic and spin transitions are observed the
structural transformations occur, but in diffe-
rent crystals they occur according to different
scenarios86. In the magnetically ordered phase,
at T < TN , a sharp volume jump is observed,
and at T > TN only a smooth change, whi-
le in most cases the symmetry of the crystal
is conserved. So at T = 300K for (MgFe)O
and GdFe3(BO3)4 for which TN < 300K the-
re is a smooth change in volume. For FeBO3

(TN = 348K) there is a jump without hysteresis
within the measurement error. For the orthofe-
rrites (NdFeO3, LaFeO3, PrFeO3) and hema-
tite Fe2O3 with high TN , there is a jump with
hysteresis86.

Summarizing, the main new results of this
paper are the following: due to interatomic ex-
change interaction spin crossover at T < T ∗ <
TN is the first order phase transition and ac-
companied by a sharp volume change. For T ∗ <
T < TN spin crossover is the second order pha-
se transition. For T > TN spin crossover is not
a phase transition.
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Apéndice A: MEAN FIELD
APPROXIMATION

In this section we deduce the effective Hamiltonian in the mean field approximation. We start
with the Hamiltonian (7)

Heff =
∑

α,β=1,2

∑
⟨i,j⟩

Jαβ
(
Sα
i · Sβ

j +Aαβ
ij

)
pαi p

β
j +

(
f(P )− ε0

)∑
i

τzi +Hexiton, (A1)

where we set Aαβ
ij = (ξ/4)nα

i n
β
j . In what follows we neglect by the contribution of the last term,

Hexiton.
Let us write the spin and pseudospin variables as, Sα

i = ⟨Sα
i ⟩ + δSα

i and τzi = ⟨τzi ⟩ + δτzi .
Here δSα

i = Sα
i − ⟨Sα

i ⟩, δτzi = τzi − ⟨τzi ⟩ and ⟨. . . ⟩ denotes the average value. In the mean field
approximation one neglects by the contribution of the second order terms in the fluctuations, so
that

(⟨Sα
i ⟩+ δSα

i )(⟨S
β
j ⟩+ δSβ

j ) ≈⟨Sα
i ⟩⟨S

β
j ⟩+ δSα

i ⟨S
β
j ⟩+ ⟨Sα

i ⟩δS
β
j , (A2)

(⟨Sα
i ⟩+ δSα

i )(⟨τzj ⟩+ δτzj ) ≈⟨Sα
i ⟩⟨τzj ⟩+ δSα

i ⟨τzj ⟩+ ⟨Sα
i ⟩δτzj , (A3)

(⟨τzi ⟩+ δτzi )(⟨τzj ⟩+ δτzj ) ≈⟨τzi ⟩⟨τzj ⟩+ δτzi ⟨τzj ⟩+ ⟨τzi ⟩δτzj . (A4)

In the mean field approximation the spins and pseudospins are independent of each other, and its
average does not depend on the site. Thus, one can write ⟨τzi ⟩ = ⟨τz⟩ and ⟨Sα

i ⟩ = ⟨Sα⟩.
The antiferromagnetic case can be resolved by introducing two topologically equivalent sub-

lattices, say A and B87,88. Then in the mean field approximation one can show that ⟨SA⟩ = −⟨SB⟩.
Using Eqs. (A2) – (A4) in (A1), we obtain

Hsτ
eff = −

∑
α,β=1,2

∑
⟨i,j⟩

Jαβ
(
Rαβ

ij nαnβ + 2nαnβ⟨Sα⟩δSβ
j + 2Rαβ

ij nαδp
β
j

)
+
(
f(P )− ε0

)∑
i

τzi (A5)

where Rαβ
ij = ⟨Sα⟩⟨Sβ⟩+ Aαβ

ij , and nα = ⟨pαi ⟩ = (1/2)(1 + λα⟨τz⟩) denotes the HS- state (α = 1)

and LS- state (α = 2) fraction. Here and below for Jαβ and ξ we shall mean only their absolute
values.
Substituting δSβ

j = Sβ
j − ⟨Sβ⟩, δpβj = pβj − nβ into (A5), we obtain

Hsτ
eff =

∑
⟨i,j⟩

∑
α,β=1,2

Jαβ
(
2nαnβ⟨Sα⟩⟨Sβ⟩ −Rαβ

ij nα(1− nβ)
)
−

∑
⟨i,j⟩

∑
α,β=1,2

Jαβ
(
2nαnβ⟨Sα⟩Sβ

j +Rαβ
ij λβnατ

z
j

)
+
(
f(P )− ε0

)∑
i

τzi (A6)

Next, we replace the particle number operator by its average: nα
i → ⟨nα

i ⟩ ≡ Nα and replace Rαβ
ij

by Rαβ = ⟨Sα⟩⟨Sβ⟩+ (ξ/4)NαNβ . Then, in the approximation of the nearest neihgbors we obtain

Hsτ
eff =

z

2

∑
i

∑
α,β=1,2

Jαβ
(
2nαnβ⟨Sα⟩⟨Sβ⟩ −Rαβnα(1− nβ)

)
− z

2

∑
i

∑
α,β=1,2

Jαβ
(
2nαnβ⟨Sα⟩Sβ

i +Rαβλβnατ
z
i

)
+
(
f(P )− ε0

)∑
i

τzi (A7)
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Let mα
i = (0, 0,mα

i ) be a unit vector, so that ⟨Sα
i ⟩ = Sα⟨mα

i ⟩. Then one can recast the effective
mean field Hamiltonian (A7) as follows:

HMF =
∑
i

∑
α,β=1,2

(
ναβnαnβ⟨mα⟩⟨mβ⟩ − 1

2
∆αβnα(1− nβ)

)
−
∑
i

∑
α,β=1,2

zJαβnαnβSβ⟨mβ⟩Sα
i −∆eff

∑
i

τzi , (A8)

where ναβ = zJαβSαSβ , ∆αβ = zJαβRαβ and ∆eff = (1/2)
∑

α,β=1,2 ∆αβλβnα + (ε0 − f(P )).
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