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The influence of magnetic field on the rate of cathode erosion at 

vacuum arc spraying 
 

 

I V Karpov
1,2

, A V Ushakov
1,2

, A A Lepeshev
1.2

, L Yu Fedorov
1,2

, 

E A Dorozhkina
3
, O N Karpova

3
, A A Shaikhadinov

1,2
, V G Demin

1,2
, 

E P Bachurina
1,2

, D V Lichargin
1
, A K Abkaryan

2
, G M Zeer

2
, S M Zharkov

2,4
 

1
Federal Research Center “Krasnoyarsk Scientific Center” of the Russian 

Academy of Sciences, Krasnoyarsk, 660036, Russia  
2
Siberian Federal University, Krasnoyarsk, 660041, Russia 

3
Reshetnev Siberian State University of Science and Technology, Krasnoyarsk, 

660037, Russia 
4
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Russia  

 

E-mail: sfu-unesco@mail.ru 

 

Annotation. The influence of the magnetic field in the cathode space on the 

synthesis of metal oxide nanopowders by vacuum-arc spraying was studied. It 

was found that, depending on the geometry of the magnetic field and the 

pressure of gaseous medium in plasma-chemical reactor, particular conditions 

which enhance the efficiency of CuO synthesis, appear. 

 

 

One of the basic investigation tasks in the development of nanoparticles synthesis method 

[1-23] is to study the dependence of the average size and morphology of nanoparticles on 

process parameters. It is necessary to determine and optimize the physical variables that 

influence on the nucleation and growth of particles in the vapor phase in order to understand 

the synthesis process. 

Within the presented work, we carried out the experimental study of nanoparticles 

synthesis processes in order to identify the influence of the magnetic field in the cathode 

space on the efficiency of the vacuum-arc spraying method. 

Although vacuum arc of cathodic shape with cold cathode is one of the most efficient 

sources of metal ions in respect of power consumption, however, there are opportunities to 

further enhance the degree of ionization of the plasma flow through the ionization of vapor 

components. The principal way of increasing the degree of ionization of the plasma flow is to 

use a special configuration of electric and magnetic fields in the volume of the plasma 

generator. 

In the end generators of metals plasma various types of solenoids are used to create an 

external magnetic field. Solenoids create a field B in the system, which possesses a cylindrical 

symmetry [24]. This field is intended to stabilize the cathode spot (CS) on the end face of the 

cathode. However, it can be used for additional ionization and acceleration of plasma flow in 

the case of a correct choice of its size and configuration. Vector B


 in this case can be 

resolved into two components: Вr - radial and Вz - axial. An external electric field E between 

the cathode and the special cylindrical anode or metal walls of the generator (playing the role 

of the anode) also possesses a cylindrical symmetry. In general, the field lines of the fields E 

and B intersect so tha7t the angle between E


 a B


 is a function of coordinates z and r. Thus, 
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we have a situation of movement of the plasma flow in crossed inhomogeneous electric and 

magnetic fields. 

In general, the analysis of the plasma flow in the end low-current accelerator can be carried 

out within the MHD approximation. 

To obtain the accelerated metal plasma for coating, the system parameters are selected 

from the following relations: 

 

 Re << L << Ri; ωiτi << 1, ωeτe > 1; N = 1-100 kW  

 

where N is a power of electric arc; L is a characteristic length of the acceleration zone. 

In this case, the plasma acceleration occurs mainly by magnetic forces, plasma electrons 

are strongly magnetized and ions slightly change their trajectory while moving through the 

acceleration zone L. The direction of discharge current around the cathode coincides with the 

direction of the force lines of the magnetic field, which greatly facilitates the emission of 

electrons into the plasma. Near the anode, the electrons must move across the force lines B


, 

which decreases their outflow and creates conditions for further ionization of the vapor 

component. 

Charge separation during the particles move into the azimuth direction causes an azimuth 

current. The physical origin of this current is determined by the presence of the azimuth 

components of the Hall voltage in the corresponding equations of the MHD approximation. 

Thus, the value of azimuth current exceeds the value of radial and axial currents. 

An accelerating force, acting on the plasma in the axial direction, is defined by equations 

(1-3): 
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where S1 and S2 are inlet and outlet cross-sections of the plasma jet acceleration zone; V is a 

volume of acceleration zone; P1 is a pressure at the inlet of the acceleration zone. 

The force F1 is specified by interaction of the discharge current with the external magnetic 

field B and has an opposite force applied to the solenoid and the cathode. The force F2 is of 

gas-dynamic origin and has an opposite force applied to the inner walls of the accelerator. 

Thus, at the area of a diverging magnetic field, the Hall plasma acceleration zone appeared. 

The Hall accelerating force (1) can be represented as: 

 

 ede BIF   (4) 

 

where a is a geometric factor. A rate of plasma outflow V under the action of this force is 

defined by the relation: 

 reBmFV  / , (5) 

where m is a mass flow rate of plasma. 
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Interaction of Hall current with a magnetic field component leads to the focusing of plasma 

jet along the axis of the system under the influence of a force
zr BjF  . Wherein, a 

component of ion current j, along the Z axis is changed slightly due to β >> 1. However, 

under certain circumstances, due to the interaction of electrons with neutral atoms and ions, 

the integral spin of the plasma flow can be observed. 

In the end Hall accelerator there is the effect of autoseparation of microdrop phase on the 

periphery of the plasma jet, which is apparently due to a negative charge appearing on the 

electrically insulated microdroplets in plasma. 

The influence of longitudinal magnetic field on the character and rate of cathode erosion 

was studied by means of the installation described in [6, 20]. Copper of M0 grade was used as 

a cathode for spraying. In order to begin plasma chemical reactions, the chamber was 

preliminary evacuated to a pressure of 1.33∙10
-3

 Pa and then it was filled by gas mixture 

composed of 10% O2 + 90% Ar. The synthesis was carried out at a pressure of gas mixture of 

60 Pa. The value of the magnetic field generated by the solenoid at the cathode surface was 

varied from 40 to 80 Oe. A pulse arc with a frequency of 1 kHz, a pulse duration of 250 μs 

and an amplitude of the current in a pulse of 2.3 kA were supported by the power supply 

system. 

Fig. 1 shows the experimental dependence of the magnetic field on the rate of cathode 

erosion and the voltage in the discharge gap. Increasing an intensity of the magnetic field 

causes decreasing an erosion rate by 1.8 times, while increasing a voltage in the discharge 

gap. The magnetic field influences on the character of the cathode spot motion, moving it 

from the center to the edges of the working face of the cathode. [25] Wherein uniform erosion 

of the entire working surface of the cathode is provided, while in the case without a magnetic 

field cathode erodes mainly in the central part, which is explained by the localization of the 

spot in the given area of the cathode under the influence of its own magnetic field of the arc. 

Extension of the area of cathode spot migration, under the influence of the solenoid field, 

increases the time during which the spot traverses the entire eroding surface of the cathode. 

The specific thermal load on the cathode surface decreases, which leads to some decrease in 

the rate of the cathode erosion by reducing the amount of generated droplets. 

 

 
 

Figure 1. Dependence of the cathode specific erosion and the voltage in the discharge gap 

on the intensity of the longitudinal magnetic field 
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Under the condition of oxygen content in the volume, the expansion of spot migration area 

leads to increasing the time interval, during which at the sites of the cathode surface, which 

are not occupied by spot, copper oxide inclusions are formed, and hence the content of CuO 

on the cathode surface increases. When the cathode spot is situated on the copper oxide 

inclusions, the voltage drop at the discharge reduces. As a result, under the condition of 

sufficient density of CuO inclusions on the cathode surface, arcing occurs mainly on this 

material. Wherein, the magnetic field at the cathode does not influence the rate of the cathode 

erosion. The nature influence of the magnetic field in the volume on the rate of cathode 

erosion during the formation of copper oxide inclusions at its surface can be understood by 

assuming that active gas molecules enter into the reaction of CuO synthesis; and a basic 

elementary process, resulting in oxygen activation in these experimental conditions, is 

recharging copper ions on the gas molecules. This assumption is valid because of the presence 

in the vacuum arc plasma of a large number of multiply charged ions, exchange cross sections 

of which at low energies can be substantially higher than the gas-kinetic ones. Oxygen ions, 

appearing as a result of recharge process, have energies close to thermal and change their 

direction of motion under the presence of even weak electric fields in plasma. The paper [26] 

shows that in the presence of an external magnetic field, satisfying the condition: ie 

(where i, e are ion and electron Larmor radius, respectively,  is a characteristic size of the 

system), electric field appears in vacuum arc plasma, and magnetic lines play role of 

equipotential lines of electric field [27]. 

Thus, while using the geometry of magnetic field, in the cathode space of plasma the 

electric field component appears, it directs toward the cathode working surface and 

accelerates oxygen ions into the given direction. At constant gas pressure in the system this 

effect causes increase of activated particles flow onto the working surface of the cathode, 

which causes an increase of efficiency of CuO synthesis, the formation of which determines 

decrease of the cathode erosion in the present case. 
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