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Development of theory describing the convection under conditions of "liquid – gas" phase transition,
is caused by the active experimental study of the convective phenomena accompanied by evapora-
tion/condensation at interphase. Results of the analytical and numerical investigation of new nonstan-
dard problems of heat and mass transfer in domains with free surfaces or interfaces allow one to evaluate
the adequacy of new mathematical models and to derive new characteristic criteria. The obtained funda-
mental knowledge on physical mechanisms of the studied processes provides the basis of modification and
improvement of the fluidic technologies using the evaporating liquids and gas-vapor mixtures as working
media. In the paper the analysis of the exact solution of the convection equations, which gives a possibility
to model the two-layer convective fluid flows with evaporation, is presented.
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Introduction

For many years the problems of gravitational and thermocapillary convection of fluids un-
der conditions of terrestrial gravitation and in the weak force fields are very actual. These
problems are studied theoretically, numerically and experimentally [1–8]. In this broad area of
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hydrodynamics the convective motions in the domains with interfaces and free boundaries arouse
particular interest. If the system of the Oberbeck – Boussinesq equations (or the Navier – Stokes
equations in the Oberbeck – Boussinesq approximation) is used for description of the convection
of the fluids then the mathematical model is called the classical one. The Oberbeck –Boussinesq
system, that describes the convective flows, is a rather complicated not only for its nonlinearity
and high order but also because it is not related to any classical type (see, for example, [9]).

Among all results of theoretical investigations of the convective processes with respect to
evaporation on the basis of the mathematical models in the complete statements, such results
are emphasized, which are related to finding of the exact solutions of the governing equations.
Sometimes an obtaining of a solution of special type allows one to get to a problem of a smaller
dimension. The exact solutions allow one to model effectively and rapidly the real fluid flows
including the flows under conditions of phase transfer in the domains with free boundaries and
interfaces. The importance of the exact solutions is that their use gives a possibility to specify
on the qualitative level the physical factors defining the basic flow mechanisms. In the case of
a multiparameter problem the exact solution, as a solution of special type, allows one to study
degrees and character of influence of particular physical factors and their mutual combinations,
to clarify a mathematical model in order to describe the investigated flows properly. Let us
note that the systematic analysis of the exact solutions of the convection equations, including
determination of the solution form, pertains to problems, which are solved using the group
analytical methods of the differential equations [4, 10–12].

In the paper we present analysis of exact solution of the classical convection equations that
describes the two-layer flows with evaporation on the thermocapillary interface in the two-
dimensional case. The constructed exact solution is the analog of the Ostroumov – Birikh so-
lution of the system of the Oberbeck – Boussinesq differential equations. The obtained velocity
and temperature profiles enabled one to study the impact of the boundary conditions and the
characteristics of interaction of the different effects and mechanisms of the evaporative convection
in the gravitational field and in weightlessness.

1. Modeling of flows with mass transfer on the interfaces on
the basis of the exact solutions

The convection of fluids in a horizontal layer with free boundary is studied theoretically. In a
common statement the problem is to investigate the combined influence of the gravitational and
thermocapillary mechanisms on the dynamics and heat exchange in a liquid and also to find the
effects caused by action of a laminar gas flux moving over liquid layer and thermal load imposed
on the external boundaries of the flow domain.

For the first time the problems, connected with construction of the exact solutions for descrip-
tion of the convective flows under action of the arbitrary oriented temperature gradient, have
been solved in [13]. In the cited monograph [13] the solutions of the Oberbeck−Boussinesq
equations have been studied, when the temperature could linearly depend on one of the spatial
coordinates. In [14] the exact solutions describing the dynamics of the fluid flows with the con-
stant tangential stresses on the free surface have been presented. It turns out, that the exact
solution of the Oberbeck−Boussinesq convection equations obtained in [15] is applicable for
description of a wide class of the stationary convective fluid flows in an infinite strip having
non-deformable free boundary and being under action of a constant longitudinal temperature
gradient. It was generalized to the cases of the thermocapillary convection in a two-layer system
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with the mass transfer through the interface [16], of the flows with evaporation/condensation on
the interphase boundary [17] and of the three-dimensional flows [18,19] (also see [20–22]).

The idea about an applicability of the exact solutions of the Ostroumov−Birikh type to
modeling of the joint liquid− gas flows and evaporation processes at interface occurred due
to the analysis of the experimental results [23]. Note that in [24, 25] the liquid evaporation
through the interface was not taken into account explicitly, but its modeling was carried out with
the help of an appropriate temperature condition at interface. In the condition the agreement
of the gas flux direction with a choice of the thermal boundary regime and first of all with
the value of the longitudinal temperature gradient corresponded qualitatively to the physical
experiment [23, 26–29]. In [22, 24, 25] the isothermal gas flow was modeled with the help of the
Poiseuille solution of the Navier− Stokes equations. Upon that the requirement of the closed flow
is not imposed as in the experiments. The principal opportunity to control the thermocapillary
convection with help of gas flux was also demonstrated. Velocity can possess both the positive
and negative values on the interface. The latter case corresponds to regimes of the reverse flows.
The parameter relations ensuring the realization of each of the two regimes and fulfillment of
the flow closure condition were found. That solution is one more confirmation of the physical
plausibility of the Birikh solution analogs and their possible interpretation. In [30] the solution
was applied for description of the two – layer thermocapillary fluid flows with the interface in a
channel with fixed walls in the frame of the Oberbeck –Boussinesq approximation. The exact
expressions of the unknown functions were found under additional condition of zero total flow
rate of the liquid mass. A generalization of the Ostroumov–Birikh solution for a problem of the
thermodiffusion, presented in [8], was studied in [31] with regard to motion of binary mixtures
in cases of different boundary thermal regimes.

The stationary two-layer gas-liquid flows were studied in [17,32] in the case, when the liquid
evaporation at the interface should be taken into account. As the mathematical model the
Navier− Stokes equations in the Oberbeck−Boussinesq approximation are used. In the upper
layer, that is a mixture of the gas and liquid vapor, the diffusion process occurs and the effect
of diffusive thermal conductivity is taken into consideration. In the later papers [33, 34] the
investigations were performed with simultaneous consideration of the effects of thermodiffusion
and diffusive thermal conductivity (of the Soret and Dufour effects).

1.1. Problem statement and exact solution form

In [17, 32–38] it is supposed that a liquid and gas-vapor mixture fill the infinite layers of the
thickness l and h, Ω1 = {(x, y) : −∞ < x < ∞, −l < y < 0}, Ω2 = (x, y) : −∞ < x < ∞, 0 <

< y < h}, respectively. The coordinate system is chosen so that the gravitational force vector is
g = (0,−g).

As the mathematical model the Navier – Stokes equations in the Oberbeck –Boussinesq ap-
proximation are used:

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p′

∂x
+ ν

(
∂2u

∂x2
+

∂2u
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, (1.1)
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u
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∂y2

)]
. (1.5)

The underlined terms and equation (1.5) are taken into account by modeling flows of the vapor-
gas mixture in the upper layer1. Equation (1.5) describes a vapor transfer (vapor diffusion)
as a passive admixture. This equation is a consequence of the Fick’s laws and more common
Maxwell – Stefan equation, which describes a diffusion in the multicomponent systems. Actually
the Fick’s laws found a strict experimental confirmation in [39] by the study of the solutions of
low concentrations (see, for instance, [40]). It is also valid for interdiffusion of various gases [41].
In the system (1.1) – (1.5) u, v are the projections of the velocity vector on the Ox and Oy

axes, respectively, p′ is the modified pressure (deviation from the hydrostatic one), T is the
temperature, C is the vapor concentration. Physical characteristics of the media ρ, ν, χ, D,
β, γ (density, coefficients of kinematic viscosity, thermal diffusivity, vapor diffusion in the gas,
heat and concentration expansion, respectively) are assumed to be given. The coefficients δ

and α characterize the Dufour and Soret effects, respectively, which are considered taking into
account the fraction concentration values of the evaporated substance.

The exact solutions of the equations (1.1)–(1.5) (a generalization of the Ostroumov – Birikh
solution) take the form

uj = uj(y), vj = 0, p′j = p′j(x, y),

Tj = (aj1 + aj2y)x+ ϑj(y), C = (b1 + b2y)x+ φ(y).
(1.6)

Here (and everywhere below) the indices j = 1, j = 2 are used to identify the medium
characteristics in the lower and upper layers (evaporating liquid and gas – vapor mixture, respec-
tively). One can see that only the longitudinal component of the velocity is not equal to zero and
depends on the transverse coordinate. The temperature distributions in the layers and vapor
concentration have the linear terms with respect to the longitudinal coordinate.

1.2. Boundary conditions

The kinematic and dynamic conditions are fulfilled on the thermocapillary interface Γ defined
here by the equation y = 0. The interface remains non-deformed and plane. The first condition
is fulfilled identically due to equality v = 0. The dynamic conditions have the form

ρ1ν1u1y = ρ2ν2u2y − σT
∂T

∂x

∣∣∣∣
y=0

, p1 = p2. (1.7)

The first relation (projection on the tangential vector to the interface y = 0) is written under
the assumption that the surface tension coefficient linearly depends on temperature (σ = σ0−
−σT (T −T0), where σ0 is the representative value of the surface tension, σT > 0 for the majority
of liquids).

1Problem statement about two-layer flows with evaporation and with respect to the Dufour effect in the vapor-
gas medium and subsequent construction of an exact solution in the two-dimensional case [32] were a result of
the fruitful discussions with Professor M.Hennenberg (M. Hennenberg, Microgravity Research Center, Brussels,
Belgium).
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The condition for heat fluxes with respect to the mass transfer is the following:

k1
∂T1

∂y
− k2

∂T2

∂y
− δk2

∂C

∂y

∣∣∣∣
y=0

= −LM. (1.8)

Here L is the latent heat of evaporation, M is the mass flow rate of the evaporating liquid, k1, k2
are the coefficients of thermal conductivity. Value of M is determined from the mass balance
equation on the interface:

M = −Dρ2

(∂C
∂y

+ α
∂T

∂y

)∣∣∣∣
y=0

. (1.9)

The saturated vapor concentration can be found with the help of the relation

C
∣∣
y=0

= C∗

[
1 + ε

(
T2

∣∣
y=0

− T0

)]
. (1.10)

Here ε = Lµ/(RT 2
0 ), µ is the molar mass of the evaporating liquid, R is the universal gas

constant, C∗ is the saturated vapor concentration at T2 = T0 (in [16] the value T0 is considered
to be equal to 20 ◦C). The relation (1.10) is a result of the Clapeyron−Clausius equation [42] for
the saturation vapor pressure P = P0 exp[Lµ(T−T0)/(RT0T )] and of the Mendeleev−Clapeyron
for the ideal gas ρvRT = µP . Here (P0, T0) is some initial state, ρv = Cρ2. Let us assume that
the non-dimensional parameter εT∗ (T∗ is characteristic value of the temperature drop) is quite
small and linearize the relation C = C̃∗ exp[−Lµ/(RT )]/T , where C̃∗ = const. Then, the
linear dependence of the vapor concentration at interface (1.10) takes place for the moderate
temperature drops. Note that the similar approach, when the Clapeyron−Calusius equation is
used for formulation of the condition at interface, was referenced in [16] (see also [43]).

In the presented statement of the convection problem under phase transfer conditions the
evaporation effects (heat consumption on vaporization) are taken into consideration only in the
heat balance condition (1.8) on the interface. At the same time only the diffusive mass flux is
supposed (1.9); the convective mass transport is not taken into account (see also [16]). If we use
the exact condition of the vapor mass balance (1.9), then the mass flow rate value M will be
calculated according to one of the formulae:

M = − Dρ2
1− C

∂C

∂n
, M = − Dρ2

1− C

(∂C
∂n

+ α
∂T

∂n

)
.

The first relation is used in the absence of the Soret effects in the gas− vapor layer, the second
one is employed in cases when the thermodiffusion effect is taken into account. Negative values
of M correspond to situation when the condensation occurs in the system, positive values of M
relate to the evaporation process. Under conditions of smallness of the parameter εT∗, that is
ensured by moderate values of temperature and temperature drops in the system, the interface
value of C can be set equal to C∗. In this case the coefficient D in (1.9) should be called the
modified diffusion coefficient equal to the diffusion coefficient divided by (1−C∗). The influence
of the Soret and Dufour effects on the evaporation rate is studied in [44,45].

Fulfillment of the continuity conditions of velocity and temperature is required additionally

u1

∣∣
y=0

= u2

∣∣
y=0

, T1

∣∣
y=0

= T2

∣∣
y=0

. (1.11)

It is noted, if the condition of temperature continuity is to be valid on the interface then
a11 = a21 = A and the temperature distribution takes the form

Ti = (A+ aj2y)x+ ϑi(y), i = 1, 2. (1.12)
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The temperature is distributed linearly with respect to the longitudinal coordinate and the
no-slip conditions should be satisfied on the rigid impermeable channel boundaries:

T1

∣∣
y=−l

= A1x+ ϑ−, T2

∣∣
y=h

= A2x+ ϑ+, u1

∣∣
y=−l

= 0, u2

∣∣
y=h

= 0. (1.13)

Two types of conditions for vapor concentration on the upper rigid boundary are studied. The
equality to zero of the vapor flux (∂C

∂y
+ α

∂T

∂y

)∣∣∣∣
y=h

= 0 (1.14)

or the condition of a complete absorbtion (zero vapor concentration)

C
∣∣
y=h

= 0 (1.15)

can be set. The condition (1.14) takes into account the impact of the Soret effect. Relative to
the Soret effect it should be noted that its consideration in (1.14) is necessary only in the limited
range of values of the problem parameters. The question of taking into consideration of the Soret
effect in the boundary condition (1.14) requires particular additional analysis. In the condition
(1.14) the temperature effects can be neglected under certain conditions with an error, that does
not exceed 1%. The fulfillment of the following equality can be demanded:

∂C

∂y

∣∣∣∣
y=h

= 0. (1.16)

In [17,33–38] the solution of the stationary problem was obtained at given gas flow rate

Q =

∫ h

0

ρ2u2(y) dy. (1.17)

The exact solutions (1.6) gives an opportunity to analyze the presented mathematical model
in the view of revealing the significant factors, which influence on the characteristics of the two-
layer flows with evaporation, and to evaluate adequacy of the model in the sense of physical
plausibility of the obtained results. It turns out, that the Soret effect enables one to consider
the interface as a thermocapillary surface also in the case, when the upper rigid boundary of the
channel has a property of vapor absorbtion (see condition (1.15)). Without considering the Soret
effect in the case of using condition (1.15) it is necessary to put the longitudinal temperature
gradient A equal to zero on the interface. If thermodiffusion effect is taking into account, one
should predetermine alone value of temperature gradients among A, A1, A2 and the other two
values can be calculated with help of specific relations. If condition (1.14) is used and the Soret
effect is taken into account it is possible to describe two-layer flow with given value of thermal
gradient being the same for channel walls and interface (A = A1 = A2). In general case, value
of one of the three temperature gradients (e.g. A) is defined with help of given the other two
gradients (A1, A2). Then, coefficients b1, b2 are calculated thus defining the longitudinal gradient
of vapor concentration. The analysis of possible flow regimes with the Dufour effect depending
on taking into account the Soret effect is presented in Tab. 1. These results allow one to specify
ways to control the flows by means of boundary conditions.

Thus, the Soret effect leads to significant alteration of qualitative and quantitative pattern of
the flow. Also, it enables one to change mechanism of controlling the flow structure with help of
boundary thermal load on the channel walls under agreement of values of some parameters. Since
α is the regular parameter of the problem, the limiting transition of solution (1.6) constructed
taking into account the Soret effect to solution obtained without taking into consideration the
thermodiffusion effect takes place at α → 0 [35].
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Table 1. Analytical results of investigation of the Soret effect influence on the fluid flow features
through the temperature regime and vapor concentration on boundaries

Flow 1: Condition
(1.15) and taking into
account the Soret effect
(α ̸= 0)

Flow 2: Condition
(1.15) without con-
sidering the Soret ef-
fect (α = 0)

Flow 3: Condition
(1.14) and taking
into account the
Soret effect (α ̸= 0)

Flow 4: Condition
(1.14) without con-
sidering the Soret
effect (α = 0)

A calculated: A =

=
αA1

α+ l
h

k2
k1

C∗ε(αδ − 1)

A = 0(
A =

b1
C∗ε

) given (A,A1, A2 can
be given and equal)

given

A1 given given given (A,A1, A2 can
be given and equal)

given

A2 calculated: A2 =

=
A1(α+ C∗ε)

α+ l
h

k2
k1

C∗ε(αδ − 1)

calculated:
A2 = −A1

h

l

k1
k2

(consequence of heat
transfer condition)

calculated:
A2 = A + (A −
−A1)

h

l

k1
k2

1

1− αδ
(A,A1, A2 can be
given and equal)

calculated:
A2 = A + (A −
−A1)

h

l

k1
k2

b1 b1 = C∗εA
(b1 = −b2h)

b1 = 0
(b1 = −b2h)

b1 = C∗εA b1 = C∗εA

b2 b2 = −C∗εA

h
b2 = 0

(b2 = −α
A2 −A

h
;

consequence of mass
balance condition)

b2 = −α
A2 −A

h
b2 = 0

2. Classification of flow regimes

In [35] a classification of the flow types which can be described by the exact solution (1.6)
was proposed. Three classes of the flows are specified depending on dominant forces: purely
thermocapillary, mixed and Poiseuille’s flows. In general case, when different thermal load is
applied at channel boundaries (A1 ̸= A2), the classification can be expanded by supplemental
particular subsets (some of them are not distinguished at A1 = A2 = A):

• purely thermocapillary flow; it is characterized by completely reverse flow in the liquid
phase; basic mechanism is the thermocapillary effect (Fig. 1);

• mixed flow; basic mechanisms are the interacting shear stresses, thermocapillary effect,
temperature gradients, viscous forces; three subsets are specified:

– the first type mixed flow (mixed I); it is characterized by the velocity "delamination"
near the interface and occurrence of zones with the reverse flow near the interface;
basic mechanisms are oppositely directed the shear stresses and the thermocapillary
effect (Fig. 2(a – c));

– the second type mixed flow (mixed II); it is characterized by the velocity "delam-
ination" near the interface with the positive longitudinal component of the vector
velocity; basic mechanisms are the shear stresses and the thermocapillary effect which
act unidirectionally (Fig. 2(d – f));

– the third type mixed flow (mixed III); it is characterized by the velocity field struc-
ture close to the Couette’s distribution within one of the phases (Fig. 2(g – i)) or
simultaneously in both media;
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Fig. 1. Distributions of the velocity (a), temperature (b) and concentration (c) for the purely
thermocapillary flows: g = g0 · 10−2, A1 = 0.4 K/m, A2 = 5 K/m, A = 1.4899 K/m,
M = 1.5983 · 10−7 kg/(m2·s)

Fig. 2. Distributions of the velocity (a, d, g), temperature (b, e, h) and concentration (c, f, i)
for the mixed flows: (a – c) — A1 = 7.4 K/m, A2 = 5 K/m, A = 6.8313 K/m, M = 1.1955·
·10−6 kg/(m2·s); (d – f) — l = 3 mm, A1 = A2 = A = −11.5 K/m, M = −1.9276·10−5 kg/(m2·s);
(g – i) — A1 = −18.4 K/m, A2 = 5 K/m, A = −12.8556 K/m, M = −2.433 · 10−6 kg/(m2·s)

• Poiseuille’s flow; it is characterized by the velocity fields close to parabolic one in both
fluids; three subsets are specified:

– purely Poiseuille’s flow (Poiseuille’s flow I); it is characterized by the positive values
of the longitudinal component of the velocity in each phase; basic mechanisms are the
pressure gradients in both fluids (Fig. 3(a – c));

– the first type conditionally Poiseuille’s flow (Poiseuille’s flow II); it is characterized by
formation of zones with the return motion near the channel walls in one of the layers;
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basic mechanisms are the pressure gradients and viscous forces (Fig. 3(d – f));
– the second type conditionally Poiseuille’s flow (Poiseuille’s flow III); it is characterized

by formation of stagnant zones in the liquid (liquid is at rest) and gas velocity profile
close to parabolic one; basic mechanisms are the thermocapillary effect and shear
stresses (Fig. 3(g – i)).

Fig. 3. Distributions of the velocity (a, d, g), temperature (b, e, h)and concentration (c, f, i)
for the Poiseuille type flows: (a – c) — l = 5 mm, A1 = 3 K/m, A2 = 5 K/m, A = 3.5592 K/m,
M =5.6295 · 10−7 kg/(m2·s); (d – f) — A1 = −9.8 K/m, A2 = 5 K/m, A = 6.2933 K/m,
M = −1.276 · 10−6 kg/(m2·s); (g – i) — α = 0, l = 1.5 mm, A1 = A2 = 0.4 K/m,
M = 6.7046 · 10−8 kg/(m2·s)

Typical distributions of the basic characteristic of the flows presented in Fig. 1–3 are obtained
for "HFE-7100 – nitrogen" system at Q = 9.6 ·10−6 kg/(m·s), α = 5 ·10−3, l = 4 mm, h = 5 mm,
g = g0 = 9.81 m/s2 (if not specified otherwise). Values of the longitudinal temperature gradients
and mass flow rate are given in figure captions for each configuration. Values of the physical
parameters of the substances are given in Tab. 2.

Complete study of the exact solution properties involves investigation of the solution stability
characteristics and analysis of the perturbation spectrum. In [36] the linearized equations for
the amplitudes of the normal disturbances of the basic solution, long-wave asymptotics of the
eigenvalues and eigenfunctions were obtained. In [37, 38] the spectrum of the characteristic
perturbations of the velocity, temperature and concentration was calculated. Dependence of the
type and structure of the perturbations on the system geometry, disturbance wave-length and
intensity of external actions (temperature gradient on the channel walls and flow rate of the
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Table 2. Values of the physical parameters for the system “HFE-7100 – nitrogen”

Parameter \ Medium HFE-7100 Nitrogen
Density ρ, kg/m3 1.5 · 103 1.2
Kinematic viscosity ν, m2/s 0.38 · 10−6 0.15 · 10−4

Coefficient of temperature expansion β, K−1 1.8 · 10−3 3.67 · 10−3

Coefficient of thermal conductivity k, W/(m·K) 0.07 0.02717
Coefficient of thermal diffusivity χ, m2/s 0.4 · 10−7 0.3 · 10−4

Temperature coefficient of surface tension σT , N/(m·K) 1.14 · 10−4

Latent heat of evaporation L, (W·s)/kg 1.11 · 105
Molar mass of evaporating liquid µ, kg/mol 0.25
Coefficient of diffusion D, m2/s 0.7 · 10−5

Coefficient of concentration expansion γ −0.5
Saturated vapor concentration C∗ 0.45
Dufour coefficient δ, K 10−5

working media) was investigated. It was found that the perturbations can lead to formation
of the vortex, thermocapillary and hybrid structures corresponding to different mechanisms of
instability.

Case of the different thermal load on the channel walls (A1 ̸= A2) does not allow using
the normal mode method [35]. The problem reduces to the solving space-time one in "stream
function – vorticity" terms. Influence of the intensity and character of the thermal load (heat-
ing/cooling), gas flow rate and amplitude of the initial perturbations on a type of arising instabil-
ities was studied. Stability of the basic flow is ensured only under quite small thermal gradients
and gas flow rates. Instability can appear by generation of monotonic and oscillatory regimes.
The first is characterized by formation of the vortex and thermocapillary structures. In another
regime "pulsatory" vortexes can arise.

Further study of the solution (1.6) involves obtaining the critical characteristic of stability
in the space of similarity criteria, taking into account interface deformation and investigation of
influence of the thermophysical properties of working media.

The work was supported by Russian Foundation for Basic Research (project 17-08-00291).
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Россия

Развитие теории, описывающей конвекцию в условиях фазового перехода "жидкость – газ" , во
многом вызвано активным экспериментальным изучением конвективных явлений, сопровождаю-
щихся испарением/конденсацией на межфазных границах. Результаты аналитического и числен-
ного исследования новых нестандартных задач тепло- и массопереноса в областях со свободными
границами или поверхностями раздела позволяют оценить адекватность новых математиче-
ских моделей и вывести новые определяющие критерии. Полученные фундаментальные знания о
физических механизмах изучаемых процессов служат основой модификации и совершенствова-
ния жидкостных технологий, использующих в качестве рабочих сред испаряющиеся жидкости
и парогазовые смеси. В настоящей работе представлен анализ точного решения уравнений кон-
векции, позволяющего моделировать двухслойные конвективные течения с испарением.

Ключевые слова: испарительная конвекция, точное решение, двухслойные течения, термокапил-
лярная граница раздела.
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