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interface.
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Introduction

In the second part of the review we present application of exact solutions of the classical
convection equations to description of the two-layer flows in three-dimensional case, among other
flows with evaporation. The Ostroumov – Birikh exact solutions of the Oberbeck−Boussinesq
equations allow one to study characteristic features of interaction of various mechanisms of the
evaporative convection in gravitational field and in weightlessness. The solutions consider the
thermodiffusion and diffusive thermal conductivity effects in the gas – vapor phase. In the paper
the trajectories of fluid particle motion, temperature fields in a rectangular channel are presented.
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These examples of the two-layer convective fluid flows with evaporation are obtained on the basis
of new solution of the Navier – Stokes equations in the context of the Oberbeck –Boussinesq
approximation. Influence of various factors on the flow structure are discussed.

1. Three-dimensional flows

The Ostroumov –Birikh solution can be used to describe two-layer convective flows in three-
dimensional channel. Generalization of the Ostroumov – Birikh solution in the case of the motion
in cylindrical channel of an arbitrary cross-section have been presented [1]. Group analysis of the
solution and solvability of corresponding initial boundary value problems have been also studied.

Three-dimensional generalizations of the plane Ostroumov – Birikh solution which describe
convection in a rotating circular pipe induced by the centrifugal force and heat flux acting along
axes of the duct have been analyzed [2] (see also the references there). In the absence of the
transversal gravitational force the stationary solution is expressed in terms of elementary func-
tions. The axisymmetric motion which is unsteady due to variable velocity of the pipe rotation,
and steady state motion with the cylindrical interface have been investigated [2]. The next
generalization took into account combined action of the centrifugal force and the transversal
gravitational force. Non-stationary variants of the Ostroumov – Birikh solution which describe
a plane motion in a horizontal strip, laminar flows of immiscible fluids and unsteady axial con-
vection in a rotating pipe have been presented [3]. Solutions describing the three-dimensional
convective flows in a circular tube with the axial temperature gradient have been studied [3, 4]
and physical interpretation of the obtained solution has been discussed [2,4] (see also [1,3]). The
most interesting case appears under zero liquid flow rate. The specific feature of the considered
class of flows is the possibility to transfer a passive admixture along pipe for long distance under
joint action of the longitudinal thermal gradient and the transversal centrifugal or gravitational
force. The three-dimensional exact solution has been constructed to describe two-layer flow in
an infinite channel without assumption on axial symmetry of the flow [5]. Components of ve-
locity vector depend on two transversal coordinates. Pressure and temperature have analogous
terms. The construction of exact solution of stationary problem is supplemented by numerical
investigations including the reduction to corresponding two-dimensional problems.

A sufficiently complete consideration of the concept of “exact solution” of a special form of
original convection equations has been introduced [6]. In the classical sense an exact solution is
a solution which is expressed in the form of formulae, quadratures, series or special functions.
According to [6], a set of exact solutions can be extended by invariant and partially invariant
solutions of the equations of hydrodynamics of rank of 1 or 2. The most of the reviewed results
in the present paper satisfy the last condition.

Three-dimensional convective flows in a channel of rectangular cross-section with the longitu-
dinal temperature gradient have been investigated numerically [7–9]. The problem in a horizontal
channel of square cross-section with adiabatic lateral walls has been solved with the help of com-
mercial product FLUENT [9]. It has been found that flow pattern depends on the Grashof and
Prandtl numbers and on the channel length. Various types of flow symmetry and two ways of the
transition to oscillatory regimes with possible symmetry-breaking (fork bifurcation) are possible.
Influence of the magnetic field and the effect of geometric sizes of the channel and the Prandtl
number on the stability of the flows has been studied ( [8], [7]).

A generalization of the Ostroumov –Birikh solution for description of mixture flows in a
cylindrical tube has been developed [10]. The results of a study into nonstationary flows of a
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binary mixture with the thermodiffusion effect were presented. The properties of the invariant
solution of the thermodiffusion equations were examined when the surface tension at the interface
between two mixtures linearly depends on temperature and concentration. The a priori estimates
for all unknown fields of corresponding adjoint initial boundary value problems were proved. The
estimations showed exponential convergence of flow characteristics to the stationary values as
time increases.

Solution describing liquid flow under the action of co-current or counter-current gas flux and
constant longitudinal thermal gradient directed along the cylinder axes has been derived [11].
It was assumed that the considered system is in zero-gravity conditions, free surface is non-
deformed, and liquid flow rate is equal to zero. The obtained basic solution is the analogue of
the solution that has been constructed beforen [12]. The thermocapillary flows in systems of
liquid layers with deformable interface have been also studied [13]. Characteristics of the flows
subject to the action of the longitudinal temperature gradient and arising interface deformations
under microgravity have been investigated.

2. Three-dimensional flows with evaporation/condensation

2.1. Governing equations and exact solution

Let us assume that two immiscible fluids (liquid and gas or gas – vapor mixture) fill infinite
domains

Ω1 = {(x, y, z) : −x0 < x < 0, 0 < y < 1, −∞ < z <∞},
Ω2 = (x, y, z) : 0 < x < x0, 0 < y < 1, −∞ < z <∞}.

Boundaries of the domains Ω1, Ω2 are the impermeable immovable rigid walls defined by equa-
tions x = −x0, x = x0, y = 0, y = 1. The gravitational force vector is g = (−g, 0, 0). The size
of the channel in the direction of Oy (width of the channel) is chosen as characteristic length.
Let u∗ be the characteristic velocity. It is equal to the velocity of viscous stress relaxation rate,
T∗ is the characteristic temperature drop, p∗ = ρ1u

2
∗ is the characteristic pressure. Liquid from

domain Ω1 can evaporate through the thermocapillary interface Γ. The thermodiffusion and
diffusive thermal conductivity effects are taken into account in domain Ω2.

Equations of convection (the Boussinesq approximation of the Navier – Stokes equations) in
the non-dimensional form are

div vi = 0, (vi · ∇)vi = −ηpi ∇pi +
ηvi
Re

∆vi +Gi, (2.1)

vi · ∇Ti =
ηTi

RePr
(∆Ti + δ̄∆Cs), i = 1, 2, (2.2)

v2 · ∇Cs =
1

Pe
(∆Cs + ᾱ∆T2). (2.3)

Parameters and functions with the indices i = 1 and i = 2 are related to domains Ω1 (liquid)
and Ω2 (gas-vapor mixture), respectively. As before, underlined term in (2.2) and equation (2.3)
are used to describe the motion in the upper layer Ω2. The following notations are used: ηp1 = 1,
ηp2 = 1/ρ̄, ηv1 = 1, ηv2 = ν̄, G1 = −i(Gr/Re2)T1, G2 = −i

(
β̄(Gr/Re2)T2 + γ(Ga/Re2)Cs

)
, i is

the unit vector of the Ox axis, ηT1 = 1, ηT2 = χ̄. Here Re = u∗h/ν1 is the Reynolds number,
Pr = ν1/χ1 is the Prandtl number, Gr = β1T∗gh

3/ν21 is the Grashof number, Ga = gh3/ν21 is
the Galilei number, Pe = u∗h/D is the Peclet number (the Peclet diffusion number), g = |g|;
ρ̄ = ρ2/ρ1, ν̄ = ν2/ν1, χ̄ = χ2/χ1, β̄ = β2/β1 are the ratios of the densities, coefficients of
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kinematic viscosity, heat conductivity, thermal expansion, respectively; γ is the concentration
coefficient of the gas density, D is the coefficient of vapour diffusion in the gas; ᾱ = αT∗, δ̄ = δ/T∗,
dimensional coefficients α and δ characterize the Soret and Dufour effects in the gas phase.

We suppose that velocity vector components v1 = (u1, v1, w1) and v2 = (u2, v2, w2) depend
only on the transversal coordinates (x, y) . Temperatures T1, T2, pressure (deviation from the
hydrostatic pressure) p1, p2 and the vapour concentration C include terms Θ1, Θ2, q1, q2, Φ.
These terms are also dependent on the transversal coordinates (x, y):

ui = ui(x, y), vi = vi(x, y), wi = wi(x, y),

p1 =−A
Gr

Re2
xz + q1(x, y), p2 = −Aρ̄β̄ Gr

Re2
xz +Bρ̄γ

Ga

Re2
xz + q2(x, y),

Ti = −Az +Θi(x, y), Cs = Bz +Φ(x, y).

(2.4)

Coefficients A and B specify constant longitudinal gradients of the temperature and con-
centration along the interface. If A∗ and B∗ are corresponding non-dimensional gradients, then
A = A∗h/T∗, B = B∗h. Solution (2.4) is considered as an exact solution in an extended sense [6].
This solution is the partially invariant solution of rank 2 and defect 3 [14].

2.2. Boundary conditions

It is assumed that interface is a flat surface.Then equation x = 0 defines Γ in constructing
the solution of equations (2.1)–(2.3) in form (2.4). Then one can completely take into account
dynamic condition on the interface. It means that there is no need for any simplified form of
this condition as it often takes place in hydrodynamic problems. The assumption that interface
is non-deformable leads to another boundary condition (see [15,16]).

Conditions of continuity of the tangential velocities and temperature must be satisfied on the
thermocapillary interface Γ

v1 = v2, w1 = w2, T1 = T2. (2.5)

The kinematic condition
u1 = u2 = 0, (2.6)

and dynamic condition must be satisfied [5]:

(u1y + v1x)− ρ̄ν̄(u2y + v2x) = − Ma

RePr
Θ1y, w3x − ρ̄ν̄w2x = A

Ma

RePr
, (2.7)

−Re(q1 − q2) + 2(u1x − ρ̄ν̄u2x) = 0. (2.8)

Relations (2.7) and (2.8) are projections of the dynamic condition on the tangential and normal
to Γ vectors, respectively.The diffusive mass flux of the evaporating liquid and the mass bal-
ance equation are taken into consideration. Then we have heat transfer condition of the form
(see Part I)

T1x − κ̄T2x − δ̄κ̄Csx = −L̄M, M = −(Csx + ᾱT2x), L̄ = LDρ2/(κ1T∗), (2.9)

where κ̄ = κ2/κ1 is the ratio of the thermal conductivity coefficients, characteristic mass flow
rate of evaporation is chosen equal to M∗ = Dρ2/h. The linearised equation for the saturated
vapour concentration on Γ is written in the dimensionless form as follows:

Cs|x=0 = C∗(1 + ε̄(T2 − T0)), ε̄ = εT∗. (2.10)
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The following notations are introduced: Ma = σTT∗h/(ρ1ν1χ1) is the Marangoni number,
Ca = ρ1ν1u∗/σ0 is the capillary number, H is the surface mean curvature (here H = 0).
Condition (2.8) with zero right-hand side can be considered as the first order approximation to
equation (2.8) in the case of small capillary number Ca. As in the Part I the linear dependence
of the surface tension coefficient on temperature is assumed (σ = σ0 − σT (T − T0)).

When vapour flux on the upper and lateral rigid boundaries is absent we have [17]:

x = x0 : Csx = 0; y = 0, y = y0 : Csy = 0. (2.11)

No-slip conditions for velocity vectors on the channel walls are assumed

x = −x0, x = x0, y = 0, y = y0 : vi = 0. (2.12)

Lateral walls are thermally insulated:

x = −x0 : T1x = 0; x = x0 : T2x = 0;

y = 0 : T1y = 0, T2y = 0; y = y0 : T1y = 0, T2y = 0. (2.13)

Let us note that conditions (2.11), (2.13) mean that full heat flux with respect to the Dufour
effect is equal to zero on the fixed walls

∂T2
∂n

+ δ̄
∂Cs

∂n
= 0 (2.14)

and full mass flux with respect to the Soret effect is also equal to zero on the fixed walls

∂Cs

∂n
+ ᾱ

∂T2
∂n

= 0. (2.15)

In the case of zero vapour concentration on the upper and lateral rigid boundaries of the
channel

x = x0 : Cs = 0; y = 0, y = y0 : Cs = 0 (2.16)

and condition of type (2.14) should be set on the same walls.

3. Numerical study

The analytical technique to model stationary three-dimensional convection of the im-
miscible fluids with evaporation at the interface is supplemented by the numerical studies
[5,17]. Derivation of the stationary solutions of type (2.4) for the two-layer convective fluid flows
is reduced to the two-dimensional problems for the functions w1(x, y) and w2(x, y), Θ1(x, y),
Θ2(x, y) and Φ(x, y), and for the stream functions ψ1(x, y), ψ2(x, y) and vorticity ω1(x, y),
ω2(x, y) instead of the transverse components ui, vi of the velocity vectors. As usual we put
ui = (ψi)y, vi = −(ψi)x, ωi = vix − uiy (i = 1, 2). Functions ψi, ωi are found as the solutions of
the following systems of equations

∆ψi = −ωi, ui ωix + vi ωiy =
ηωi
Re

∆ωi + G̃i, i = 1, 2. (3.1)

All two-dimensional problems are solved in the domains Ω̃i which are the cross-sections of the
domains Ωi by the plane z = z0 (z0 is an arbitrary constant), i.e.

Ω̃1 = {(x, y) : −x0 < x < 0, 0 < y < 1}, Ω̃2 = {(x, y) : 0 < x < x0, 0 < y < 1}.
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The full boundary ∂Ω̃1 of the cross-section Ω̃1 is defined by relations x = −x0, x = 0, y = 0,
y = 1; the full boundary ∂Ω̃2 of the cross-section Ω̃2 is defined by relations x = x0, x = 0, y = 0,
y = 1. The interface Γ̃ is the intersection of the interface Γ and cross-sections Ω̃i and defined by
relation x = 0. In the second equation (3.1) coefficient ηω1 = 1 and ηω2 = ν̄; G̃1 = −(Gr/Re2)Θ1y,
G̃2 = −(β̄(Gr/Re2)Θ2y + γ(Ga/Re2)Φy).

The free boundary conditions are reformulated in terms of ψI − ωi (for the case of curved
free boundary see [18–20]). The kinematic condition (2.6) has the form

ψ1y = ψ2y = 0. (3.2)

Then ψ1 = ψ2 = const on the interface Γ̃ (or at x = 0). Without loss of generality we can set

ψ1 = ψ2 = 0. (3.3)

Condition of equality of the tangential velocities (2.5) at the interface Γ̃ leads to the relation

ψ1x = ψ2x. (3.4)

The first dynamic boundary condition (2.7) can be written in the form:

ω1 − ρ̄ν̄ω2 = − Ma

RePr
Θ1y. (3.5)

Normal component of dynamic condition (2.8) written with the help of (3.2) is differentiated
along the interface Γ̃ (with respect to y in the present consideration). Then, using equations
(2.1) for qiy and assuming that we can change the order of differentiation only to get the terms
with ωix, condition (2.8) is rewritten as

2(ψ1yx − ρ̄ν̄ψ2yx)y = (ρ̄− 1)Reψ1xψ1xy + ω1x − ρ̄ν̄ω2x. (3.6)

The dynamic conditions (3.5), (3.6) are valid on Γ̃. For a curved free boundary similar results
have been obtained [18,19].

Taking into account (3.3), no-slip conditions (2.12) can be written in terms of stream function
for each part of the boundary Ω̃i (i.e. at x = −x0, x = x0, y = 0, y = 1)/ Then we have the
following boundary conditions:

ψi

∣∣
∂Ω̃i

= 0, ψ1x

∣∣
x=−x0

= 0, ψ2x

∣∣
x=x0 = 0, ψiy

∣∣
y=0, y=1

= 0. (3.7)

Numerical algorithm for solving two-dimensional problems is based on a finite-difference
scheme known as the alternating direction method [21, 22]. The general scheme of solving the
stationary problem is an iterative process with consistent realization of the following stages:
(I). Let the velocity components ui, vi be found. With given ui, vi the problems for the third
components of the velocity vectors wi are solved numerically.
(II). To obtain the unknown components Θi and Φ of temperature and vapor concentration dis-
tributions the systems of corresponding equations and boundary conditions at the interface and
rigid walls are solved.
(III). When Θi and Φ are known we solve numerically the systems of the equations for the stream
functions and vorticity ψi, ωi (i = 1, 2).
(IV). The transverse components ui, vi of the velocity vectors are determined from the stream
functions and then we return to stage (I).
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4. Pattern of the three-dimensional flows with evaporation

The numerical studies are carried out for a liquid – gas system like “ethanol – nitrogen”. Values
of the physical parameters of the liquid – gas system are given in Tab. 1. It is assumed that the
non-dimensional Soret and Dufour parameters are equal to ᾱ = 10−3 and δ̄ = 10−5. Computa-
tions are performed with the the Grashof number Gr = {47000, 470} which correspond to the
conditions of normal (g = g0 = 9.81 m/s2) and low gravity (g = g0 · 10−2 m/s2) and to the
characteristic temperature drop T∗ = 10 K; the characteristic length is equal to h = 10−2 m.
In the numerical experiments the non-dimensional longitudinal temperature gradient A has the
values A = 0.4 and A = 0.1. It corresponds to the dimensional values A∗ = 400 K/m and
A∗ = 100 K/m. The non-dimensional liquid layer thickness x0 has values x0 = 0.1 and x0 = 0.25

that correspond to the dimensional values x∗0 = 1 mm and and x∗0 = 2.5 mm, respectively. Gas
layer thickness x0 is chosen as x0 = 0.5 that is in accord with the dimensional value x0∗ = 5 mm.
The coefficient B is defined with help of (2.10): B = −C∗ε̄A.

Table 1. Values of the physical parameters for the system "ethanol – nitrogen"

Parameter / Medium Ethanol Nitrogen
Density ρ, kg/m3 0.79 · 103 1.2
Kinematic viscosity ν, m2/s 0.15 · 10−5 0.15 · 10−4

Coefficient of thermal expansion β, K−1 0.108 · 10−2 3.67 · 10−3

Coefficient of thermal conductivity κ, W/(m·K) 0.1672 0.02717
Coefficient of thermal diffusivity χ, m2/s 0.89 · 10−7 0.3 · 10−4

Temperature coefficient of surface tension σT , N/(m·K) 0.8 · 10−4

Latent heat of evaporation L, (W·s)/kg 8.55 · 105
Molar mass of evaporating liquid µ, kg/mol 0.046
Coefficient of diffusion D, m2/s 0.135 · 10−4

Coefficient of concentration expansion γ −0.62
Saturated vapor concentration C∗ 0.1

Figs. 1–4 present possible three-dimensional flow patterns in the system with evapora-
tion/condensation at various values of the longitudinal temperature gradient A and liquid layer
thickness x0 under the standard conditions with Gr = 47000. The exact solution (2.4) describes
formation of the longitudinal thermocapillary rolls (see Fig. 1, 3(a)). The structures appear due
to the thermocapillary effect which causes liquid spreading on the surface from the hot pole to
cold one. Upon that in the lower layer the stable temperature stratification with the character-
istic thermal "roll" along the channel axes is formed (Fig. 2(a)) and liquid motion is induced
mainly by the Marangoni effect even under weak thermal load. Near the lateral walls the liquid
moves down due to continuity. It results in formation of vortex "cores" in corners. Unstable
temperature stratification in the upper layer leads to the convective motion of a gas that is more
intensive than in the liquid.

At small temperature gradients the flow pattern has distinct symmetrical two-vortex struc-
ture in each phase (Fig. 1(a), 3(a)). When the longitudinal temperature gradient increases the
thermocapillary effect becomes more intensive, and the thermocapillary rolls fall into smaller
shafts (Fig. 1(b)). The resulting motion has translational-rotational character, and liquid parti-
cles move along the axes of each roll from domain with higher temperature to cold region. Several
thermal "spots" arises on the interface due to condensation (upon that M < 0, Fig. 2(b)). Let us
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(a) (b)

Fig. 1. Streamlines and trajectories in the system with evaporation at Gr = 47000, x0 = 0.1:
(a) — A = 0.1; (b) — A = 0.4

(a) (b)

Fig. 2. Temperature distribution in the system with evaporation at Gr = 47000, x0 = 0.1: (a) —
A = 0.1; (b) — A = 0.4

note that in thin layers the thermocapillary effect dominates over the evaporation/condensation
processes. Heat transfer induced by the Marangoni effect is more intensive than temperature
variations caused by evaporation at small A or condensation at large gradients.

When the liquid layer thickness increases at weak thermal load qualitative picture of the
flows does not changed. Such liquid layer is less sensitive to the thermocapillary effect and
evaporation. Two-vortex patterns in each medium are formed but motion becomes predominantly
translational as liquid is driven by the co-current gas flux (Fig. 3(a)). The thermocapillary shafts
arise and their formation is caused by the liquid spreading from central hot temperature "roll"
to the lateral walls (Fig. 4(a)). Growth of A results in essential alteration of the flow topology
and temperature distribution. At quite large value of A condensation occurs in the system
(M < 0, temperature decreases along Oz axes when A increases, see form of exact solution
(2.4)). It provides an energy inflow in liquid phase. The supply of heat is more significant in
comparison with the cooling induced by the applied temperature gradient. In liquid layer the
thermal "fingers" appear (Fig. 4(b)). Hydrodynamical characteristics are also altered. Basic
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(a) (b)

Fig. 3. Streamlines and trajectories in the system with evaporation at Gr = 47000, x0 = 0.25:
(a) — A = 0.1; (b) — A = 0.4

vortexes are distorted, and deformations are accompanied by appearance of additional cores in
the big vortexes and of additional small swirls near the interface (Fig. 3(b)). At large A the
thermocapillary effect results in more intensive motion on the interface and, hence, within liquid
layer.

Figs. 5–8 present possible three dimensional flow patterns in the system with evapora-
tion/condensation at different values of the longitudinal temperature gradient A and liquid layer
thickness x0 under the microgravity conditions with Gr = 470. For system with thin liquid layer
(Fig. 5) the thermocapillary mechanism is the basic one and it defines the structure of the flows.

The influence of the thermal stratification in weak gravitational field becomes less substantial
and intensity of the translational-rotational motion is maintained by the Marangoni effect. If
values of A are small then temperature variations due to thermal load is more significant in
comparison with the changes generated by evaporation. At large A central thermal "shaft" is
split into two "rolls" (Fig. 6(b)). Liquid moves from hot regions to cold zones on the interface and
again the number of the longitudinal thermocapillary structures increases (Fig. 5(b)). We observe
formation of the symmetrical six-vortex cellular pattern with two small "central" thermocapillary
structures.

In the system with weak thermal load increasing the thickness of the lower layer does not lead
to alteration of the flow pattern, and only quantitative variations in the temperature distribution
take place (Fig. 7(a), 8(a)).

At large A two thermoclines arise in the liquid layer (Fig. 8(b)). Condensation provides heat
inflow from gas to liquid phase. Cold zone in the central part of the channel is formed due to
the thermocapillary effect which forces liquid to move from hot near-wall domains to the channel
axes. Upon that in this zone two small swirls with opposite circulation are formed. These
vortices have convective nature. Big deformed symmetrical vortices have two cores. Angled
parts of these vortices are originated by the Marangoni effect, and motion in central parts of
these swirls occurs due to continuity. Close to the bottom of the channel two-core additional
vortices appear (Fig. 7(b)).

Let us note that at large A transformation of two-vortex structures occurs in the gas-vapor
layer. In most considered configurations the unstable temperature stratification is formed in
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(a) (b)

Fig. 4. Temperature distribution in the system with evaporation at Gr = 47000, x0 = 0.25:
(a) — A = 0.1; (b) — A = 0.4

(a) (b)

Fig. 5. Streamlines and trajectories in the system with evaporation at Gr = 470, x0 = 0.1: (a) —
A = 0.1; (b) — A = 0.4

the upper layer. Therefore, observed structures are the convective cells. Alteration of the hy-
drodynamic field is generated by splitting the central thermal "roll" into the several "shafts"
(Fig. 2(b), 4(b), 6(b)) or by appearance cold thermal "fingers" (Fig. 8(b)). Formation of the
latter is induced by intensive condensation.

Thus, considered exact solution (2.4) describes various regimes of convective flows accompa-
nied by evaporation/condensation. Results obtained on the basis of this solution qualitatively
agree with the known experimental data. In particular, it describes appearance of the thermo-
capillary rolls and thermal "fingers" , cellular and thermocapillary structures. In general, with
the help of an exact solution we can evaluate an impact of particular factors and clarify charac-
ter of each mechanism. Therefore, exact solution is the invaluable instrument of studying such
multi-parameter problem as evaporative convection.

The work was supported by Russian Science Foundation (project 15-19-20049).
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(a) (b)

Fig. 6. Temperature distribution in the system with evaporation at Gr = 470, x0 = 0.1: (a) —
A = 0.1; (b) — A = 0.4

(a) (b)

Fig. 7. Streamlines and trajectories in the system with evaporation at Gr = 470, x0 = 0.25:
(a) — A = 0.1; (b) — A = 0.4
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Анализ точного решения задачи испарительной
конвекции (обзор). Часть II. Трехмерные течения
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Россия

В настоящей работе представлен обзор точных решений трехмерных задач конвекции для моде-
лирования двухслойных конвективных течений с испарением на термокапиллярной границе раз-
дела.
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