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The aim of our work was to investigate thermoelectric figure of merit of n-type Si0.9Ge0.1-Mg2Si 

nanocomposites with a respect of Mg2Si content. It was demonstrated that high ZT values can be 

achieved in high dense composite structures which is maintain high values of the electrical 

conductivity. This study highlights that the nanocomposites with low Ge content could have 

competitive ZT values as well as being cost effective.  
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Abstract 

We report on thermoelectric properties of low Ge content n-type Si0.9Ge0.1–Mg2Si 

nanocomposite. Introduction of the Mg2Si phase into a SiGe matrix resulted in a dramatic drop of 

the lattice thermal conductivity beyond the previously reported lowest limit for SiGe alloys due to 

intensification of phonon scattering on SiGe–Mg2Si grain boundaries. For a sample doped with 1 

at.% of Mg2Si, the peak value of thermoelectric figure of merit ZT reached ~ 0.8 at 800°C. Sintered 

nanocomposites still exhibit high thermoelectric performance while being almost two times cheaper 

than Si0.8Ge0.2. 

 

It is well known that thermoelectric (TE) materials such as silicon germanium alloys have 

been used in radioisotope thermoelectric generators (RTG) for NASA space missions [1]. High 

mechanical strength and resistance to atmospheric oxidation make this material suitable for a 

number of practical applications [1,2]. It has been demonstrated that SiGe alloys can be effectively 

used as a high temperature stage for cascade thermoelectric generators and less effectively in 

segmented generators due to their low compatibility factor [3–5]. Thermoelectric efficiency of any 

material is determined by dimensionless figure of merit,    
    

 
, where   is Seebeck coefficient, 

  is electrical conductivity and   is thermal conductivity [1]. Resent progress in increasing ZT has 

been mainly driven by a reduction of thermal conductivity via nanostructuring approach [6–14]. It 

has been demonstrated that thermal and electrical transport is influenced by crystallite boundary 

scattering. If the crystallite sizes in a nanostructured material are comparable with the phonon mean 

free path but are larger than the charge carrier mean free path, thermal conductivity is reduced more 
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significantly than the electrical conductivity and this finally results in enhancement of ZT value. By 

employing a similar approach, the authors have earlier reported a high value of ZT = 1.05 for n-type 

nanostructured SiGe alloys by using spark plasma sintering of mechanically alloyed fine powders 

[15]. 

Multiphase composite materials have been also considered for thermoelectric applications. 

In 1999 Bergman and Fel have showed that composite material structures can improve the power 

factor over the constituent components [16]. Later Mingo et al. [17] have performed electron and 

phonon transport calculations for nanocomposites consisting of silicide nanoparticles embedded in a 

SiGe matrix. They confirmed the previous studies that the thermal conductivity can be decreased 

beyond the solid solution limit [18] via nanostructuring of the SiGe alloys to enhance ZT. 

Furthermore, they discussed that silicide nanoinclusions can improve TE power factor of 

nanocomposites through preferential scattering of the low energy charge carriers. Experimental 

investigations have been performed for SiGe-based nanocomposites with the addition of FeSi2, 

CrSi2, MoSi2, and WSi2 [19–23]. Previous results have showed that a significant reduction of 

thermal conductivity is possible in silicide–SiGe nanocomposites as compared to polycrystalline or 

nanostructured SiGe. The most significant boost of thermoelectric performance has been reported 

by Ahmad et al. [24] for p-type SiGe–YSi2 with ZT ~ 1.81 at 827 °C, which is ~34% higher as 

compared to reported earlier the best values for p-type nanostructured SiGe. The authors have 

explained such dramatic growth of ZT as due to the formation of a network of the coherent grain 

boundaries at nanoscale in SiGe–YSi2 by engineering at atomic scale. The coherent boundaries 

effectively scatter phonons but allow charge carriers to pass through.  

Recently, Nozariasbmarz et al. have reported on the very promising ZT = 1.3 at 900 °C for 

n-type SiGe–Mg2Si utilizing a smaller amount of germanium as compared to the RTG SiGe [25]. 

This would definitely be a significant achievement in the development of high temperature 

thermoelectric converters with a lower cost and a higher efficiency. However, it must be noted that 

dependence of ZT on sintering parameters as well as on the Mg2Si content in SiGe–Mg2Si 

nanocomposites has not been studied in Ref. [25]. Moreover, reported by Nozariasbmarz et al. 

sintering temperature T = 1250 °C of the studied SiGe–Mg2Si nanocomposite is very peculiar in the 

sense that it is almost 150 °C higher than the melting temperature of Mg2Si. Generally, the liquid 

phase sintering technique is very complicated, especially in the case of nanocomposites, because the 

high internal stresses which can be generated by the melting of one of the nanocomposites’ 

component usually lead to the wrecking of the molding tools. The mentioned above concerns and a 

high demand for the development of low cost – high efficiency thermoelectric materials motivated 

us to an extended investigation of SiGe–Mg2Si nanocomposites. 
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In this paper, n-type Si0.9Ge0.1–Mg2Si nanocomposites were investigated with respect to the 

Mg2Si doping level and the results obtained were compared with the previously studied 

nanostructured n-type Si0.8Ge0.2 alloys [6]. The Ge content was decreased compared to conventional 

Si0.8Ge0.2 alloys in order to reduce the materials cost, since it was expected the lattice thermal 

conductivity of nanocomposite kL would be rather low despite the fact that kL of crystalline 

Si0.9Ge0.1 is almost two times higher [18,26]. 

The raw chemical element Si, Ge, P of at least 99.99% purity and Mg2Si powder (Alfa 

Aesar) of 99.5% purity were used for preparation of the samples. First, Si, Ge and P were mixed in 

desired proportions and ball milled in Fritsch 5 Pulverisette ball mill by using reference parameters 

[7]. Then nanopowders of SiGe solid solution and Mg2Si (~20 mesh) powder were mixed in desired 

proportions and then ball milled in Frisch 7 Pulverisette ball mill. The vial of the ball mill and the 

milling media were made of zirconium oxide. The ball-to-powder weight ratio was 20:1 and the 

process was carried out in an argon atmosphere at a speed of 700 rpm. 1 wt. % of anti-friction and 

re-welding control agent (alcohol) was added to the vials. The samples were sintered from the 

powder using spark plasma sintering (SPS) technique (Labox 650, Sinter Land, Japan). The 

powders were put into a cylindrical graphite die which was placed in a camera evacuated to a high 

vacuum. Uniaxial pressure was then applied through top and bottom plungers. Each plunger has a 

diameter of 12.7 mm and a length of 23 mm. The composite samples were prepared using the 

following sintering conditions: the samples were compressed at room temperature for 1 minute, 

then the pressure was risen up to 60 MPa; temperature of the samples was gradually raised to 1045 

– 1100 °C depending on Mg2Si content in the samples with a heating rate of 75°C/min; after the 

soaking time of 5 minutes, the pressure was reduced to 10 MPa and the samples were cooled. 

Experimental parameters of temperature, applied pressure, current, voltage, and sample 

displacement were recorded simultaneously. Temperature was recorded by a thermocouple (Type 

R) inserted in a hole drilled into the die surface to a depth of 3.5 mm. The compacted disc samples 

have a dimension of 12.7 mm (diameter) × 2 mm (height). The samples were annealed at 900 °C 

during one week. Microstructure of the samples was examined by scanning electron microscopy. 

Elemental composition was analyzed by Energy Dispersive Spectroscopy (EDS). Studies of the 

phase composition were carried out by Dron-2 X-ray diffractometer (Russia) at room temperature 

using Co-Kα radiation (λ = 1.79026 Å). Density of the samples was determined by the Archimedes 

technique. Thermal conductivity measurements were carried out using a laser flash analysis system 

(Netzsch LFA 457) from room temperature up to 900 °C. Specific heat was measured by a 

differential scanning calorimeter (DSC) Netzsch 204 F1. Electrical conductivity and Seebeck 

coefficient were measured simultaneously on bars measuring 1×3×12 mm
3
 using a homemade 
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transport measuring system (Cryotel Ltd.) up to 800 °C. The accuracy of these measurements was 

checked against a silver sample of 99.99% purity. 

Table 1 summarizes the sintering parameters and volume density of n-type Si0.9Ge0.1 and 

Si0.9Ge0.1–Mg2Si specimens. Sintering temperature of the nanocomposites was chosen with respect 

to Mg2Si melting point –. Samples presented in this work were synthesized at temperatures below 

the melting temperature of Mg2Si Tm = 1102 °C. However there were numerous attempts to 

synthesized nanocomposites by the so called liquid phase sintering technique (LPS) [27] to achieve 

higher values of volume density. These attempts were unsuccessful more likely due to poor wetting 

because of high values of contact angle between sintering components Even, below the melting 

temperature of Mg2Si we faced with a local overheating due to SPS process that induced a local 

liquid phase formation and thereby led to high internal stresses that broke the samples. Thus the 

sintering temperature was decreased from 1100 °C to 1045 °C as the Mg2Si content increased from 

1% to 10% (Table 1). Figure 1 shows XRD patterns of n-type Si0.9Ge0.1–Mg2Si 10% (at.) specimen: 

(a) mechanically alloyed SiGe nanopowder and Mg2Si nanopowder mixture, (b) spark plasma 

sintered, (c) annealed at 900 °C. It is apparent from the figure that Ge completely dissolves in Si 

matrix after 2 hours of ball milling and Mg2Si is maintained after the ball milling. The XRD peaks 

exhibit significant broadening because of the size effect and considerable amount of strains in 

nanopowder due to impact of shear forces of milling media during the high energy ball milling.  

The possibility of retained nanograins for sintering temperature up to 1150 °C was 

previously demonstrated for bulk nanostructured Si0.8Ge0.2 alloys [6,7,15]. Thus the growth of peak 

intensity is mainly attributed to the lattice strain sharp fall after SPS and subsequent annealing [28]. 

The elemental mapping of Si0.9Ge0.1–Mg2Si 10% (at.) presented in Figure 2 confirms overall 

chemical homogeneity of the nanocomposite.  

The main advantage of using SiGe nanostructuring approach for ZT enhancement is 

attributed to the fact that there is a large difference between mean free path of electrons and 

phonons: approximately 5 nm for electrons and 2 – 300 for phonons in highly doped samples at 25 

°C [14]. Thus any nanostructure can reduce the phonon thermal conductivity without significant 

penalty for the electrical conductivity. Introducing Mg2Si phase into SiGe matrix resulted in 

dramatic drop of lattice thermal conductivity that overcome the previous lowest limit for SiGe 

alloys due to intensification of phonon scattering on SiGe–Mg2Si grain boundaries [19]. Figure 3a 

clearly shows that the prepared nanocomposites demonstrated a sharp drop of thermal conductivity 

as compared to the bulk RTG sample [1] and previously studied nanostructured n-type Si0.8Ge0.2 

alloy [6]. The achieved values of thermal conductivity 1.5 – 2.5 Wm
-1

K
-1

 are lower than those 

reported by Wang et al. [14], Bathula et al. [15] and Nozariasbmarz et al. [25]. The drop of thermal 
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conductivity was driven by: 1) intensification of phonon scattering on grain boundaries and 2) a 

decrease of the volume density of the sintered samples with the increase of Mg2Si content.  

For further understanding of behavior of the thermal conductivity, the contributions from the 

lattice thermal conductivity and from the electronic thermal conductivity were separated. The total 

thermal conductivity is given by ktotal = ke +kL where ke and kL are the contributions to the thermal 

conductivity from the carriers and the lattice, respectively. We calculate the electronic thermal 

conductivity using the Wiedemann-Franz law ke/ =LT, where L – Lorenz number. The lattice 

thermal conductivity was defined as the difference between total and electronic thermal 

conductivity. Sintered nanocomposites demonstrated a linear behavior of the electronic thermal 

conductivity (Figure 3b) which somewhat differs from that reported for the reference SiGe samples 

[1,6]. As far as the reference samples are highly doped degenerate semiconductors the curve shape 

demonstrated a non-monotonic behavior which is changed to linear at high temperatures due to an 

increase of the intrinsic carrier concentration. The electronic contribution to the total thermal 

conductivity correlated with the electrical conductivity and its influence on the total thermal 

conductivity is rather weak. Figure 3c shows the significant drop of lattice thermal conductivity 

down to 1.4 Wm
-1

K
-1

 for Si0.9Ge0.1 - Mg2Si 10% (at.) sample which indicates that the effect of grain 

boundaries scattering in nanocomposite can compensate the lack of Ge in the SiGe matrix. The 

lattice thermal conductivity reduced with the temperature due to enhancement of phonon-phonon 

scattering. 

Figure 4a shows temperature-dependent electrical conductivity. The electrical conductivity 

values are strongly influenced by the chemical composition and the sintering temperature. The 

behavior of the electrical conductivity is typical for highly doped semiconductors for Si0.9Ge0.1 1150 

sample and Si0.9Ge0.1–Mg2Si 1% (at.). In contrast, Si0.9Ge0.1–Mg2Si 3% (at.) and Si0.9Ge0.1–Mg2Si 

10% (at.) specimens demonstrated nearly monotonic growth of the electrical conductivity that is 

relevant for non-degenerate semiconductors. As it seen from figure 4a and figure 3a the electrical 

conductivity is decreasing faster than the thermal conductivity with the decreasing sintering 

temperature for the samples sintered at 1065 °C and 1045 °C. Thus the electrical conductivity of 

Si0.9Ge0.1–Mg2Si 10% (at.) dropped to 0.6 10
4
 Sm∙m

-1
. The Seebeck coefficient absolute values 

presented in Figure 4b demonstrated significant growth for all nanocomposite samples with the 

increase of Mg2Si content. This is more likely due to lower carrier concentration in nanocomposite 

samples which also explains rather low values if the electrical conductivity. The ZT value of n-type 

Si0.9Ge0.1–Mg2Si nanocomposites follows the similar trend as that of RTG and previously studied 

nanostructured sample (Figure 4c). Although the thermal conductivity of the studied 
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nanocomposites decreased dramatically, ZT remains almost equal to that of the RTG sample due to 

simultaneous decrease of the power factor driven by fall of the electrical conductivity. 

The thermoelectric properties of n-type Si0.9Ge0.1–Mg2Si nanocomposites were studied in 

the temperature range from 25 to 800 °C. Sintered nanocomposites demonstrated significant 

decrease of the thermal conductivity down to 1.5 – 2.5 Wm
-1

K
-1

. The result can be explained by the 

interface scattering mechanism for mid- to long- wavelength phonons, resulting in a further 

reducing thermal conductivity that is lower than the alloy limit. The maximum ZT value reaches 0.8 

at 800 °C for Si0.9Ge0.1–Mg2Si 1% (at.), which is almost equal to RTG sample. This study highlights 

that the nanocomposites with low Ge content could have competitive ZT values as well as being 

cost effective. In order to enhance the ZT of current Si0.9Ge0.1–Mg2Si nanocomposites new sintering 

solution required to achieve higher dense structures to maintain high values of the power factor. 
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 Table 1: Sintering parameters and volume density of n-type Si0.9Ge0.1–Mg2Si nanocomposites 

 

Fig. 1 XRD patterns collected for n-type Si0.9Ge0.1–Mg2Si 10% (at.): a) powder, b) spark plasma 

sintered and c) annealed sample 

 

Fig. 2 SEM image and EDS elemental mapping of Si, Mg and Ge of bulk Si0.9Ge0.1–Mg2Si 10% 

(at.) nanocomposite after annealing 

 

Fig. 3 Total (a), electronic (b) and lattice (c) thermal conductivities of sintered Si0.9Ge0.1–Mg2Si 

nanocomposites, reference RTG sample [1] and bulk nanostructured Si0.8Ge0.2 sample [6] 

 

Fig. 4 Temperature dependence of the electrical conductivity (a), Seebeck coefficient (b) and ZT (c) 

of sintered Si0.9Ge0.1–Mg2Si nanocomposites, reference RTG sample [1] and bulk nanostructured 

Si0.8Ge0.2 sample [6] 

 



Table 1: Sintering parameters and volume density of n-type Si0.9Ge0.1–Mg2Si nanocomposites 

 

Sample 

Sintering 

temperature, 

°C 

Soaking 

time, 

min 

Pressure, 

MPa 

Heating 

rate, 

°C/min 

Density, 

% of 

theoretical 

Si0.9Ge0.1 1150 5 65 75 98.81 

Si0.9Ge0.1 – Mg2Si 1% (at.) 1100 5 65 75 98.53 

Si0.9Ge0.1 – Mg2Si 3% (at.) 1065 5 65 75 95.12 

Si0.9Ge0.1 – Mg2Si 10% (at.) 1045 5 65 75 93.97 
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