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Abstract 27 

 28 

In this work, a water-soluble supramolecular complex was synthesized in an aqueous 29 

suspension of betulin diacetate (BDA) and arabinogalactan (AG) upon microwave heating. 30 

Microwave heating allows reducing the time required for the complex formation, compared 31 

with conventional heating in a water bath. The specific effect of microwave irradiation on the 32 

initial reagents and preparation of a supramolecular complex was studied. In contrast to 33 

conventional heating, under microwave heating AG macromolecules may break into roughly 34 

equal fragments when the temperature increases up to 100 oC. A change in the surface 35 

morphology of BDA crystals under microwave heating of the suspension suggests that 36 

microwave irradiation facilitates the dissolution of BDA in water. It has been shown that the 37 

use of dimethylsulfoxide as a reaction medium for microwave heating led to a decrease in 38 

BDA content in the product due to the inclusion of DMSO into AG macromolecules. The 39 

BDA-AG complex was isolated from the microwave-heated aqueous solution, after water 40 

evaporation, as a thin amorphous film, which exhibited antitumor activity against Ehrlich 41 

ascites carcinoma cells and can be a promising material for pharmacological applications.  42 

 43 

Keywords: Betulin diacetate; Arabinogalactan; Complexes; Microwave synthesis; Films; 44 

Antitumor activity. 45 

 46 

Introduction 47 

 48 

Betulin diacetate (BDA), 3β,28-diacetoxylup-20(29)-ene, (Fig. 1), an ester of acetic 49 

acid and betulin, exhibits versatile biological activities (Lu 2013). Nevertheless, the poor 50 

solubility of BDA in water greatly hampers its bioavailability and limits its application.   51 

Previously (Shakhtshneider et al. 2013), we reported on the mechanochemical 52 

preparation of the composites of BDA with water-soluble polysaccharide arabinogalactan 53 

(AG) (Fig. 2) possessing a higher solubility due to complex formation. The BDA-AG 54 

complex was prepared also as a thin film isolated from an aqueous solution by water 55 

evaporation. The BDA-AG composite films exhibited anti-cancer activity against lung 56 

adenocarcinoma A549 cells, which was significantly higher than the activity of both pure 57 

BDA and its physical and ball-milled mixtures with AG (Shakhtshneider et al. 2016). 58 

 59 
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 60 

Fig. 1 Molecular structure of betulin diacetate  61 

 62 

 63 

Fig. 2 Fragment of arabinogalactan molecular structure 64 

 65 

To prepare the BDA-AG complex in solution, heating in a water bath for some hours 66 

was required (Shakhtshneider et al. 2016). The purpose of this work was to improve the 67 

method of BDA-AG complex preparation, by decreasing the process time and enhancing the 68 

yield of the product. 69 

In the recent decades, high-speed synthesis with microwaves has attracted a 70 

considerable amount of attention particularly in organic synthesis, drug discovery, 71 

supramolecular chemistry, and carbohydrate chemistry (Singh et al. 2015; Kappe 2004; 72 

Bandyopadhyay et al. 2015; Alexandre et al. 2003; Doehler et al. 2015; Pistarà et al. 2014). In 73 

contrast to conductive heating, microwave irradiation produces efficient internal heating by 74 

the direct coupling of microwave energy with the molecules in the reaction mixture, leading 75 

to shorter reaction time, higher product yield, cleaner reaction profiles. 76 
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 4 

In this study, the possibility to synthesize the BDA-AG supramolecular complex 77 

through controlled microwave heating was evaluated. Various regimes of the microwave 78 

treatment of reactive mixtures in the presence of a solvent were used to increase the yield of 79 

the complex. 80 

Experimental 81 

 82 

BDA was obtained in a one-step synthesis directly from the birch bark, without a 83 

separate stage of betulin isolation (Kuznetsova et al. 2008). The product was purified, leaving 84 

final impurities below 1.4 wt %. Arabinogalactan (Mw ~16,000) was isolated from larch 85 

(Larix sibirica Ledeb.) wood using an established method (Kuznetsova et al. 2006). High-86 

purity dimethylsulfoxide (Soyuzkhimprom Ltd, Russia) was dried with calcined Na2SO4. 87 

Microwave irradiation experiments were performed using a dedicated single-mode 88 

microwave reactor (Discover-S-Class, CEM, USA) with 300 W maximum magnetron output 89 

power allowing sealed vessel processing up to 300 oC and 20 bar of pressure in combination 90 

with an efficient magnetic stirring system. The temperature and the excess pressure in the 91 

microwave vessel were monitored during the experiment. Sealed-vessel microwave 92 

technology was employed; water and dimethylsulfoxide (DMSO) were used as the solvents. 93 

The following parameters of the microwave-assisted reaction were varied: input power, 94 

reaction temperature, and time of microwave treatment. Each experiment was repeated 95 

triplicate.  96 

For BDA-AG complex preparation, a mixture (0.5 g) of dry initial substances with 97 

BDA : AG ratio of 1 : 9 (w/w) was put into a microwave vessel, and then 4 mL of distilled 98 

water (or DMSO) was added. The suspension was subjected to microwave irradiation with 99 

simultaneous stirring by the magnetic stirring system. After cooling, the suspension was 100 

filtered through a 0.22 μm filter to remove undissolved BDA precipitate, and the filtrates were 101 

evaporated under reduced pressure at 35-40 oC. A thin flexible film remained at the bottom of 102 

the flask after evaporation.  103 

To compare with the microwave-assisted synthesis, a mixture (0.5 g) of BDA and AG 104 

(1 : 9, w/w) was placed into the microwave vessel with water (4 mL) and stirred at 70 oC 105 

using a glycerin bath. Stirring time was 20 minutes. After that, the solution was filtered, and 106 

the filtrate was subjected to solvent evaporation under vacuum to obtain the film.  107 

The content of BDA in the films was determined by means of high-performance liquid 108 

chromatography (HPLC). Firstly, BDA was extracted by chloroform; then the CHСl3 extracts 109 

were evaporated, and the solid residuals were dissolved in ethanol. The HPLC analysis of 110 
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ethanol solutions was performed using a Millichrom A-02 chromatograph (Econova, Russia) 111 

(35 оС, ProntoSIL 120-5-C18 AQ, 2.0 х 75 mm, Н2О (А) – СН3СN (В), 80-100-100 % В, 112 

100 μL/min).  113 

Molecular weight distribution of the polymer was determined by gel-permeation 114 

chromatography (GPC) on an Agilent 1200 chromatograph with a 1260 Infinity refractive-115 

index detector (30 oC, PL aquagel-OH 40, 300 x 7.5 mm, 0.1 M LiNO3, 1 mL/min).  116 

To prepare the water suspension containing BDA crystals of rather good quality, a 117 

saturated solution of BDA in ethanol was added dropwise into water. After BDA 118 

crystallization, ethanol was removed by evaporation under low pressure at a temperature of 119 

35 оС. The particle size distribution in the suspension was measured with a Microsizer 201А 120 

(VA Instalt Company Ltd, Russia) laser particle analyzer.  121 

Atomic force microscopy (AFM) studies were carried out in the tapping mode using 122 

an INTEGRA scanning probe nanolaboratory (NT-MDT, Russia). To study the particle 123 

surface morphology by means of AFM, the suspension diluted with water was deposited on a 124 

freshly cleaved mica surface (3 × 3 mm). The measurements were carried out in a semi-125 

contact regime using NSG01_DLC cantilevers. The scanning area was 20 × 20 μm.  126 

The 13C{H} NMR spectra were recorded with a Bruker Avance III 500 spectrometer 127 

(working frequencies 500.13 (1Н) and 125.76 MHz (13С)). The samples were dissolved in 128 

deuterated water. An external sample of acetone/D2O was used as a standard for 13C{H} data.  129 

Ball-milling was carried out in a SPEX 8000 mixer mill (CertiPrep Inc., USA) in a 130 

stainless steel vial (60 mL) with steel balls (6 mm in diameter, total 30 g) for 15 min. 131 

Antitumor activity of the BDA-AG composite films was determined by estimating the 132 

viability of Ehrlich carcinoma cells after 24 hours of incubation at 37 oC, 5% CO2 with BDA-133 

AG complex at the final concentration of 0.5 mg·mL-1. Viability was estimated using trypan 134 

blue in accordance with the standard manufactures protocol. Each sample was examined in 5 135 

experiments, and statistical processing was performed. 136 

 137 

Results and discussion 138 

 139 

Initially we studied the effect of microwave irradiation on the structure and properties 140 

of AG alone. GPC investigations of AG after microwave heating revealed that under 141 

microwave irradiation at 70 oC (AG1 sample), the chains of AG were practically unbroken, 142 

and the molecular weights, Mw and Mn, as well as polydispersity were approximately equal 143 

(Fig. 3 and Online Resource 1). Nevertheless, microwave heating at 100 oC, with the total 144 
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energy being more than 7 KJ (AG2 sample), led to a slight shift of the lg M 4.2 (Mw ~16,000) 145 

peak and to the appearance of a new peak corresponding to a lower molecular mass 146 

(Mw ~8,000). It can be suggested that under these conditions, partial destruction of the 147 

polysaccharide macromolecules occurs. It should be noted that under heating AG aqueous 148 

solution at 100 oC in an oil bath, there were no changes in the molecular weight of the 149 

polymer. The breaking of AG macromolecules into roughly equal fragments was observed 150 

earlier during the mechanical treatment of AG in a planetary mill (Dushkin et al. 2012) and is 151 

probably connected with the structure of polymer molecules and chain breakdown mechanism 152 

(Grassie et al. 1985). In this case, it can be concluded that the microwave heating experiments 153 

should be conducted at temperatures below 100 oC to avoid the destruction of the AG 154 

macromolecules. 155 

 156 

Fig. 3 Gel-permeation chromatograms of the starting AG sample (1) and after microwave 157 

heating: AG1 (2) and AG2 (3) samples. At the inset, the decomposition of the curve 3 into the 158 

components is presented. 159 

 160 
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Suppl. Table 1 Molecular weights of AG before and after microwave (MW) heating (input 161 

MW power, 200 W) AG aqueous solution. 162 

Sample 

Number 
average 

molecular 
weight, 

Mn 

Weight 
average 

molecular 
weight, 

Mw 

Mw/ Mn 

MW irradiation conditions 

Tinitial, oC Tmax, oC Time, s 
Total 

energy, 
J 

Starting AG 13397 16006 1,19     

MW heated АG 

(Sample AG1) 
13311 15883 1,19 70 89 600 3610 

MW heated АG 

(Sample AG2) 
12189 14528 1,19 100 102 1200 7881 

 163 

As for the microwave heating of BDA alone, the HPLC study did not show any 164 

changes in BDA structure after microwave heating.  165 

In Table 1, BDA content in the obtained BDA-AG composite films is presented. One 166 

can see that an increase in the duration of MW treatment did not lead to an increase in the 167 

product yield (samples Nos. 1 and 2, and Nos. 3 and 4). At the same time, as the input 168 

microwave power increased up to 200 W (sample No. 3), BDA content has increased. 169 

Nevertheless, an increase in the temperature up to 100 oC (sample No. 5) resulted in a 170 

decrease in BDA content.  171 

 172 

Table 1 BDA content in the films prepared from the microwave heated BDA-AG (1 : 9, w/w) 173 

suspensions depending on the microwave irradiation conditions 174 

Sample No.  
Microwave power, 

W 

Reaction 

temperature, oC 

Time of treatment, 

min 

BDA content,  

wt % 

1 70 70 10 1.9 ± 0.1 

2 70 70 30 2.1 ± 0.1 

3 200 70 10 2.6 ± 0.1 

4 200 70 20 2.2 ± 0.1 

5 200 100 20 1.9 ± 0.2 

6 200 70 10 1.6 ± 0.2 

 175 

 176 

 177 
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 178 

Suppl. Fig. 1 Power profile (1) and temperature (2) of the microwave-assisted synthesis of 179 

BDA-AG complex (sample No. 3). 180 

 181 

The temperature and power curves of MW synthesis are depicted in Online 182 

Resource 2. Microwave experiments were carried out in the "dynamic" mode, in which the 183 

microwave energy level varied depending on the achievement and maintenance of the set 184 

temperature. The time necessary to reach the required temperature depends on the dielectric 185 

properties of the substances in the reaction mixture and can be varied, in part, due to the 186 

heterogeneity of the mixture. In our experiments, the temperature was risen quickly (for 20-50 187 

seconds) to the set value. It can be suggested that the synthesis of the BDA-AG complex 188 

appears to occur during relatively short exposure times (maybe even less than 10 min), and 189 

continuous MW heating, especially under severe process conditions, can lead to partial 190 

degradation of the complex.  191 

It could be expected that mechanical activation will cause an increase in the reactivity 192 

of the reactive mixture in the microwave-assisted synthesis. To test this assumption, a ball-193 

milled 1 : 9 (w/w) BDA-AG mixture was subjected to microwave heating (sample No. 6). 194 

Nevertheless, proceeding ball-milling of BDA-AG mixtures had an adverse effect on the 195 

formation of the BDA-AG complex, resulting in a decrease in the product yield. It is likely 196 

that under milling, BDA was dispersed, and it covered the surface of AG particles preventing 197 

their subsequent dissolution. The presence of AG in the precipitate after the filtration of the 198 

microwave-irradiated suspension confirmed this hypothesis. 199 

To elucidate the specific role of microwave irradiation in the preparation of a 200 

supramolecular complex, the BDA-AG complex was obtained by a conventional method, 201 

applying (as far as possible) identical conditions as those for the microwave-assisted 202 
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synthesis. The BDA content in these films was equal to about 0.7 wt %, which is significantly 203 

less than for the samples prepared under microwave heating. 204 

It is known that the size and morphology of particles play an important role in solid-205 

phase synthesis (Butyagin 2000). The same is true for slurry processes when a liquid not 206 

dissolving at least one of the reactants is used. On the other hand, it is known that microwave 207 

heating can affect the dissolution behavior of the substances (Olubambi et al. 2007; Wang et 208 

al. 2013). Therefore, we studied the change of BDA particle size distribution and their 209 

morphology under microwave irradiation conditions. For these experiments, the suspension of 210 

BDA in water containing BDA microcrystals of rather good quality was prepared. In Figure 4, 211 

the size distributions of BDA particles in water suspensions before and after microwave 212 

heating are presented. In the initial suspension, the size distribution is bimodal with the 213 

maximums near ~3 µm and ~20 µm. After microwave irradiation, the intensity of the first 214 

peak decreased, and the second one increased. This suggested that small BDA particles were 215 

dissolved under the conditions of microwave irradiation, and more stable aggregates of the 216 

particles were formed. 217 

 218 

 219 

Fig. 4 Size distributions of BDA particles in water suspensions before (1) and after (2, 3) 220 

microwave irradiation under different conditions: 2 – 70 oC, 10 min, 3 – 100 oC, 20 min (input 221 

MW power, 200 W). Сurves are normalized to the maximal number of particles. 222 

 223 

Figure 5 shows the AFM images of BDA particles in water suspensions before and 224 

after microwave irradiation. In the initial suspension, the particles looked as the rod-shaped 225 

crystals combined in aggregates. One can see the well-defined edges and the steps at the 226 
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surface of the crystals. The surface morphology did not change even after aging the 227 

suspension for one day. Nevertheless, after microwave irradiation for 10 min, the particles 228 

acquired an irregular shape. In contrast to the initial suspension, there were no flat surface 229 

edges and growth steps at the surface of the particles after microwave irradiation. It seems 230 

that under microwave irradiation, BDA particles were dissolved in water rather rapidly, which 231 

led to particle surface smoothing.  232 

  
a b 

 233 

Fig. 5 Tapping-mode AFM images of BDA particles in water suspensions displaying the 234 

height of AFM signal: a – before MW irradiation, b – after MW irradiation. 235 

 236 

It is known that a reaction medium with a high loss factor (tanδ) is required for 237 

efficient absorption and, consequently, for rapid heating. With its comparatively high tanδ 238 

value of 0.123 (Kappe 2004), water is a very useful solvent for microwave-mediated 239 

synthesis. Besides, water as a readily available, nontoxic, and nonflammable substance has 240 

clear advantages as a solvent for use in organic synthesis. Nevertheless, it was interesting to 241 

test other reaction media for the synthesis. DMSO (tanδ 0.825) is one of the solvents that can 242 

be classified as high microwave absorbing (Kappe 2004). Moreover, both reactants, BDA and 243 

AG, are soluble in this solvent. It can be suggested that the reaction in the solution will 244 

proceed more easily and without overheating. Under the same conditions as those used for 245 

experiments in water (200 W, 70 oC, 10 min), the product was obtained with BDA content 246 

equal to 1.6 %, which was significantly less than in the experiments in water.  247 

Figure 6 shows 13C{H} NMR spectra of the aqueous solutions of initial AG and BDA-248 

AG complex prepared as a film after conventional and microwave heating in water and 249 

DMSO. One can see that in the case of MW heating of DMSO solutions, the obtained 250 

complex contained a lot of DMSO molecules in the structure. Besides, a slight broadening 251 

and shift of the AG C6 signal was observed. The ratio of the areas of DMSO (39 ppm) and C6 252 
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(61.3 ppm) signals was estimated as 1.2. This means that the composite film may contain up 253 

to 20 wt % of DMSO. This can be the possible reason of a decrease in BDA content in the 254 

product.  255 

 256 

 257 

 258 

Fig. 6 Fragments of the 13C{H} NMR spectra of the D2O solutions of initial AG (1) and 259 

BDA-AG complex prepared as a film after conventional heating (2) and microwave heating of 260 

water suspension (3) or DMSO solution (4). 261 

 262 

In the case of the films obtained by evaporation of the microwave heated water 263 

filtrates, in comparison with AG, similar changes in NMR spectra were observed as for 264 

conventional heating (Mikhailenko et al. 2016) suggesting that the same complex was formed 265 

under microwave irradiation conditions. This gave us the reason to believe that the complex 266 

obtained by microwave treatment will also possess pharmacological activity, similarly to the 267 

complex obtained by traditional way.  268 

We studied the antitumor activity of the BDA-AG complex, prepared as the films 269 

using conventional and microwave heating in water, against Ehrlich ascites carcinoma (EAC) 270 

cells. In vitro experiments showed (Fig. 7) that the composite films obtained from 271 

suspensions heated with microwaves exhibited antitumor activity against EAC cells, which 272 

was not less than that of the films obtained by the conventional procedure. 273 

 274 



 12 

 275 

Fig. 7 Antitumor activity (against EAC cells) of the BDA-AG complexes prepared as the 276 

films from the suspensions heated conventionally (1) and heated with microwaves for 10 (2) 277 

and 20 (3) min (input MW power, 200 W) in comparison with control (4). 278 

 279 

Conclusions 280 

 281 

The obtained results demonstrate that microwave heating is a highly efficient 282 

technique to prepare the supramolecular complex of betulin diacetate (isolated from birch 283 

bark) and natural polysaccharide arabinogalactan. Under microwave irradiation conditions, 284 

the reaction time was reduced from several hours to a few minutes in comparison with 285 

traditional procedure. The change in the size and surface morphology of BDA crystals under 286 

microwave heating was observed, suggesting that microwave impact facilitate BDA 287 

dissolution in water, that could contribute to high-speed synthesis of the supramolecular 288 

complex. The BDA-AG complex isolated from the microwave heated aqueous solution as a 289 

thin film exhibited antitumor activity against Ehrlich ascites carcinoma cells, which was not 290 

less than that of the films obtained by the conventional way. 291 

 292 
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