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Abstract―Nanoparticles of antiferromagnetically ordered materials acquire the uncompensated 

magnetic moment caused by defects and surface effects. A bright example of such a nano-

antiferromagnet is nanoferrihydrite consisting of particles 2−5 nm in size, the magnetic moment 

of which amounts to hundreds of Bohr magnetons per particle. We present a brief review of the 

studies on magnetic properties of ferrihydrite produced by bacteria. Special attention is focused 

on the aspects of possible biomedical applications of this material, i.e., the particle elimination, 

toxicity, and possible use for targeted drug delivery. 

 

 

1. Introduction 

 

The materials containing magnetic nanoparticles are interesting both for fundamental 

research concerning the drastic difference of their magnetic properties from those of bulk 

analogs and for application in various fields [1, 2]. It is well-known that as the size of ferro- and 

ferrimagnetic particles decreases, surface atoms start playing a decisive role in the magnetic state 

formation. This often leads to a decrease in the saturation magnetization of a nanostructured 

material due to the break of chemical bonds and spin-glass state of surface atoms [3]. As a result, 

magnetic moment P of ferro- and ferrimagnetic nanoparticles decreases with particle size d 

much faster than the quantity proportional to particle volume V (V ~ d3) [3−5].  

In the antiferromagnetically (AFM) ordered nanoparticles, the surface effects and defects 

in the bulk of particles play a fundamentally different role: these particles acquire 

uncompensated magnetic moment unc, (P = unc), the value of which depends on the particle 

size and defect type. Based on the statistical considerations, Neel proposed the interrelation 

between number of atoms N in a particle (obviously, N ~ V), uncompensated magnetic moment 

unc, and defect type [6] 

unc ~ at N 
b.    (1) 

Here, at is the magnetic moment of a magnetically active atom and b is the exponent that takes 

the values of 1/3, 1/2, or 2/3 for defects on the surface and in the bulk of a particle or the odd 

number of ferromagnetically ordered planes in a particle. Indeed, according to the data reported 

in [2, 7−15], equality (1) is valid for AFM nanoparticles of different compositions. This gives 

grounds for studying the fundamental properties of AFM nanoparticles and opens the 

opportunities for their application, e.g., in medicine, due to the fact that an AFM particle of a few 
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nanometers in size can have a magnetic moment comparable with that of a ferro- or 

ferrimagnetic particle.  

  

Ferrihydrite with the nominal chemical formula 5Fe2O3 · 9H2O (the number of OH bonds 

and water content can change under the action of structural defects) stands out from the diversity 

of AFM-ordered nanoparticle types. This mineral exists in the nanosized form in almost all 

living organisms and works as an iron repository, being a part of the so-called ferritin. Ferritin 

extracted from a horse spleen was thoroughly investigated [7, 10, 14, 15]. It was established that 

the unc value for ferritin with a ferrihydrite core ~ 5 nm in size amounts to several Bohr 

magnetons (B).  

Ferrihydrite nanoparticles can be obtained using chemical methods [16, 17] or by 

extracting the products of bacteria vital activity. One of the techniques for preparing bacterial 

ferrihydrite is based on cultivation of Klebsiella oxytoca bacteria from lake bottom sediments 

[18, 19]. This study presents a brief review of the investigations of the magnetic properties of 

bacterial ferrihydrite nanoparticles, the possibility of targeted particle coarsening by heat 

treatment [20, 21] and, as a consequence, modification of the magnetic properties of this 

material, and the results of the clinical examination of laboratory animals with the use of 

ferrihydrite nanoparticles.  

 

2. Preparation and characterization of biogenic ferrihydrite nanoparticles 

The Klebsiella oxytoca strain used for producing ferrihydrite was extracted from the 

sapropel of the Borovoe lake, Krasnoyarsk territory. Microorganisms were inoculated into an 

agar medium and grown under anaerobic conditions. After multiple ultrasonic processing of 

bacterial sediments, centrifugation, and washing, a stable sol of nanoparticles in an aqueous 

solution was fabricated and dried. The obtained powder of magnetic nanoparticles is hereinafter 

referred to as as-prepared sample. Note that as-prepared samples of different sets demonstrated 

similar characteristics. A part of the powder was kept in air at temperatures within the range of 

150−2000C for different times. 

X-ray diffraction patterns of the prepared samples are characteristic of the amorphous 

state. The ferrihydrite nanoparticles were characterized by Mössbauer spectroscopy. According 

to the Mössbauer spectra, iron atoms in bacterial ferrihydrite can occupy three sites with 

different quadrupole splittings characteristic of ferrihydrite [18, 20, 22]. The results of analysis 

of Mössbauer spectra are mainly identical for as-prepared samples of different sets. The 

formation of new iron oxide phases in bacterial ferrihydrite upon annealing was not observed 

[13, 20].  

Typical transmission electron microscopy (TEM) data for the as-prepared ferrihydrite 

sample are shown in the Fig.1. The average ferrihydrite nanoparticle size <d> estimated from 

several micrographs was found to be ~ 2.7 nm. The low-temperature heat treatment leads to the 

increase in the particle size (the <d> value of the sample treated at 1500C for 24 h is ~ 4 nm). 



 

Fig.1. Typical TEM micrographs obtained using a Hitachi HТ7700 facility. 

 

3. Magnetic properties of bacterial ferrihydrite nanoparticles and their transformation 

upon low-temperature heat treatment  

3.1. Superparamagnetic behavior of bacterial ferrihydrite nanaoparticles, the origin of 

uncompensated magnetic moment and the effect of low temperature heat annealing. 

Figure 2 presents typical temperature dependences of the magnetic moment M(T) obtained 

upon cooling the ferrihydrite samples annealed for different times at temperatures of   150 and 

2000C in the nonzero (FC) and nonzero (ZFC) external field modes. The difference between the 

M(T)ZFC and M(T)FC dependences and the pronounced maximum in the M(T)ZFC dependences 

evidence for the superparamagnetic (SP) behavior of the investigated particles. In addition, 

according to our data, the maximum temperature (hereinafter, blocking temperature TB) shifts 

toward lower temperatures, which is typical of the SP systems. Note that for the as-prepared 

ferrihydrite samples from different series the TB value in the same field differed by no more than 

3 deg and lied between 23−25K (H = 1 kOe). In addition, it can be seen in Fig. 2 that annealing 

significantly increases the blocking temperature and this effect is governed by the annealing 

temperature and time.  
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Fig. 2. FC and ZFC M(T) dependences for the as-prepared and annealed ferrihydrite samples. 
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Based on the classical Néel–Brown relation 

kTB = KeffV / ln(/0)  ≈ KeffV/ 25,   (2) 

where k is the Boltzmann constant, Keff is the effective magnetic anisotropy constant; V is the 

particle volume;  and 0 ~ 10−9−10−10 s are the characteristic times of the measurements 

( ~ 102 s for the magnetic measurements) and particle relaxation, we may conclude that the 

annealing increases the particle size. This is confirmed by the TEM data (Fig. 1).  

The particle size growth during annealing is confirmed also by the magnetization curves 

M(H) in the temperature range of T > TB. Figure 3 shows magnetization isotherms for the as-

prepared samples and the samples annealed at 1600С for 24 h. According to the generally 

accepted approach, the magnetization curve of the ensemble of AFM nanoparticles in the region 

of T > TB can be described by the expression 

   )( ),(N  )M(H
0

P PPPP dfHL 


  + AF  H.      (3) 

 

 

 

Fig. 3. Experimental (dots) and fitting (lines, expression (3)) M(H) dependences for the 

ferrihydrite samples. The inset on the left shows the temperature behavior of fitting parameter 

<P>.  

 

This expression was written with regard to the distribution over magnetic moments f(P). The 

first term of (3) describes the alignment of particle magnetic moments P along the external field 

direction in accordance with the classical Langevin function L(P, H) 

(L(P, H) = coth(P×H / kT) - 1/(P×H/kT); NP is the number of particles in unit mass. The 

second term AFH describes the cant of sublattices of the AFM particle core (AF is the AFM 

susceptibility of the particle core). Solid lines in Fig. 3 show the best fitting of the experimental 

data by expression (3) using the lognormal distribution over the magnetic moments: 

f(P) = (Ps(2)1/2)-1 exp{-[ln(P/n)]2/2s2}, where <P> = nexp(s2) is the average particle 

magnetic moment and s2 is the ln(P) dispersion.  

The inset in Fig. 3b illustrates the temperature behavior of <P>, which is described well by 

the law <P(T)> = <P(T = 0)>  (1 – Ta) at typical a values between 1.5−2.0. It can be seen that 

annealing leads to a noticeable increase in <P>. This allows us to reliably determine the <P> 

value from the M(H) data at T = 0 for the as-prepared and annealed samples (162 B and 302 B, 

respectively). These values correspond to the numbers of uncompensated iron atoms of ~30 and 



~60 (at Fe3+ = 5B) and agree well with the model Neel hypothesis with the exponent b ≈ ½ in 

Eq. (1). Indeed, using the values of <d> ≈ 2.7 nm for the as-prepared sample and ~4.0 nm for the 

annealed sample (Fig. 1 shows the data for this sample series) and taking an average distance of 

0.31 nm between Fe atoms in ferrihydrite [9], we obtain the numbers of iron atoms of N ~ 600 

and 2200 in the approximation of the cubic particle shape and, consequently, N1/2 ≈ 25 and ≈ 47. 

Thus, the uncompensated magnetic moment of the bacterial ferrihydrite occurs due to defects 

both on the surface and in the bulk of a sample. 

The dependence of the quantity <P(T = 0)> on annealing time is illustrated in Fig. 4. It 

seems reasonable to explain the particle coarsening upon annealing by the agglomeration of 

neighboring particles [20, 21]: note that at higher temperatures, ferrihydrite decomposes with the 

formation of the hematite phase [22]. One may conclude that low-temperature annealing on air is 

the effective way to change the size as well as magnetic properties (the blocking temperature, the 

value of uncompensated magnetic moment) of ferrihydrite nanoparticles. 
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Fig. 4. Average magnetic moment <P(T = 0)>  of ferrihydrite particles (left scale) and 

coercivity HC (at T = 4.2 K and Hmax = 60kOe, ) vs time of annealing at 1600С.  

 

3.2.  

Within the temperature range T < TB the isotherms of magnetization M(H) are hysteretic. 

At T = 4.2 K the value of coercivity HC (obtained from M(H) curves measured at the maximal 

applied field Hmax =  60 kOe) lies within 1.5-3.0 kOe for as prepared samples from different 

series. Low-temperature annealing leads (besides increase in size, TB and <P> values, see 

Sec.3.1) to enhancement of coercivity at T = 4.2 K. The Fig.4 shows this behavior. This is in 

accordance with Stoner-Wohlfarth expression for single domain particles: HC ≈  
M

K

S

eff

[1– 

(T / TB)1/2], where MS – is the saturation magnetization. Indeed, MS = P / V and P ~ N1/2 ~ V1/2. 

Therefore, MS ~ V-1/2 and HC ~ V1/2, i.e., coercivity increases with growth of particle size. 

From the other hand, AF nanoparticles are known to exhibit very high irreversibility field 

[]. Therefore, in the most cases the M(H) hysteretic dependences are partial []. Also, many 

authors observed a shift of hysteresis loop on systems of AF nanoparticles after cooling in a 

magnetic field from a temperature which is higher than the blocking temperature [] (FC 



conditions). However, it is questionable does the shift of M(H) hysteresis is due to internal effect 

(exchange bias) or this is an analogue of the minor loop effect after field cooling. Here we show 

a method how it is possible to separate these effects. 

An example of ZFC M(H) hysteresis curve obtained by cycling external field up its 

maximal values Hmax with a gradual increase in the Hmax is shown on Fig.5. M(H) curves 

measured after field cooling at H = 30 kOe are also shown in this figure. The Fig.6 shows the HC 

values as a function of maximal applied field Hmax deduced from M(H) data (Fig.5) for both ZFC 

and FC cases. It is seen that HC(Hmax) dependence has a tendency to saturation. Silva [silva] 

argued that this dependence can be described by the following expression: 

HC(Hmax) = HCinf [1 – (H*/Hmax)].   (4) 

Here HCinf – is the “infinite coercivity” (i.e. HC at high Hmax). Expression (3) is valid at the fields 

higher than H*, and the exponent  is determined by the structure of energy barriers which the 

particle moment P overcomes during magnetization process [silva]. Experimental data HC(Hmax) 

are well described by expression (4) within the range H > 30 kOe at  = &&, H* = &&, and 

HCinf ≈ 3.8 kOe. The magnitude of HCinf is shown on Fig.6 as horizontal dashed line. It is seen 

from the Fig.6 that FC HC values noticeable exceed HCinf. This supports that observed shift of 

M(H) loop after field cooling is due to internal effect.  
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There are at least two possible mechanisms of this behavior. The first mechanism is 

exchange bias which is known to take place in FM/AF (FM – is ferro- or ferrimagnet) structures 

(films) or core/shell nanoparticles []. In the case of “pure” AF nanoparticles there is a possibility 

of exchange coupling between uncompensated magnetic moment P (FM) and AF “core” of a 

particle []. The second mechanism was pointed out by Berkowits and Kodama; they have shown 

that existence of large number of the broken exchange bonds on the surface can lead to the 

occurrence of the multi-sublattice states in an AF nanoparticle and this may result to the shift of 

M(H) loop after field cooling. The Fig.7 shows the dependence HEB as a function of particle size 

d obtained on ferrihydrite samples undergone heat treatment for different times. The loop shift is 

not observed for ferrihydrite nanoparticles whose size is less than 3 nm. Increase of HEB values 

with size is seen from the Fig.7. Similar behavior was observed on CuO and NiO 

nanoparticles…..  
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4. Possible applications in medicine 

4.1.   Elimination of ferrihydrite nanoparticles from the organism 

Elimination of ferrihydrite nanoparticles from the organism was studied by NMR 

tomography on laboratory animals (mice). The suspension containing 0.7 g/l H2O was injected 

singly abdominally in amount of 1 ml or singly intramuscularly in a thigh in amount of 0.1 ml.  

The tomography study was carried out on a Bruker Avance DPX 200 NMR facility in a field 

of 4.7 T with a Greate 3/60 gradient block. The 1H nuclear tomographic images were obtained by 

a spin-echo technique [23]. 

Figure 5 shows typical tomographic images of the thigh cross section in 15 min and 2 h after 

the intramuscular injection of the suspension. For a time period of 15 min, the signal intensity 

noticeably increases (shown by the arrow in Fig. 5a), which is reasonable to attribute to the 

presence of magnetic nanoparticles. However, for a period of 2 h, we noticed no changes in the 

signal intensity within the sensitivity of the method (10 µg per 1 g of tissue). These results were 

obtained also for the cross-sectional peritoneal cavity images after the abdominal drug injection. 

Based on the results obtained, we may conclude that ferrihydrite nanoparticles can be eliminated, 

at least, at the intramuscular and abdominal injection.  



 

Fig. 5. Tomography images of the thigh cross section in 15 min and 2 h after the 

intramuscular injection of the suspension of ferrihydrite nanoparticles. 

 

4.2. Targeted drug delivery and nontoxicity of ferrihydrite NPs 

To establish the possibility of targeted drug delivery and effect of magnetic nanoparticles on 

the conditions of inflammatory and reparative processes of laboratory animals, we compared the 

results of treatment of three groups of animals (rats). The animals of group I were not treated, the 

animals of group II were treated by ampicillin, and the animals of group III were treated by 

ampicillin (500 mg) combined with ferrihydrite nanoparticles. The thermal injury region was 

affected by an external magnetic field (Polyus-101, magnetic field gradient of 4−6 mT/mm, and 

magnetic induction of 10−20 mT) for 20 min.  

Macroscopic control of the reparative process of burnt rats showed that in the group of 

animals treated locally by ampicillin with nanoparticles, the wound healing occurred twofold 

faster than in the group of animals treated by pure  ampicillin (Fig. 6). 

 

 

Fig 6. Thermal injury of rats treated by (a) ampicillin and (b) ampicillin with magnetic 

nanoparticles in seven days. 

 
The cytological examination of thermal injury smears showed that during the first day after the 

burn all animals experienced the degenerative inflammatory changes. The local use of ampicillin 

with nanoparticles in group III significantly reduced the inflammation and activated the tissue 

regeneration, which was reflected in the regenerative inflammatory cytogram type.  



Comparative analysis of the microflora of the rats treated by ampicillin showed that the 

Staphylococcus bacteria on the thermal injury surface retained their content [25]. The situation 

was opposite in the group of rats treated by ampicillin with magnetic nanoparticles. The amount 

of Staphylococcus bacteria was much smaller. 

 

5. Conclusions 

The nanoparticles of biogenic ferrihydrite obtained from the Klebsiella oxytoca bacteria vital 

products have the uncompensated magnetic moment caused by defects on the surface and in the 

bulk of the particles. The presence of a magnetic moment of particles leads to the characteristic 

SP behavior. The described procedure yields nanoparticles ~ 3 nm in size with an SP blocking 

temperature of ~23−25 K, and an average particle magnetic moment of 150−200 µB. Heat 

treatment at 150−2000С increases the TB and <µP> values due to the particle coarsening via 

agglomeration. Note that the particles over 3 nm in size (or with the TB value higher than 40 K) 

exhibit the exchange bias effect, i.e., the magnetic hysteresis loop shift after cooling in an 

external magnetic field starting from the temperature higher than TB [26].  

According to the NMR study, elimination of ferrihydrite nanoparticles at the intermuscular 

and abdominal injection occurs for the time of no longer than 2 h. The positive results of using 

the drugs in combination with nanoparticles for treating thermal injuries under the action of a 

gradient magnetic field together with ferrihydrite nontoxicity open wide opportunities for 

application of these nanoparticles in biomedicine.  
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