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Abstract 

Aquatic invertebrates are valuable dietary sources of essential polyunsaturated fatty acids, 

eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3), for fish. 

Phylogeny, diet, and various ecological factors affect the fatty acid composition of aquatic 

invertebrates. We focused our study on the effect of ecological factors to a cosmopolitan 

species inhabiting lakes that differed in salinity, temperature, and presence/absence of 

predators (fish). To avoid the effect of phylogeny, which strongly influences the fatty acid 

composition of animals, we studied several populations of one cosmopolitan benthic species, 

Gammarus lacustris Sars. We found that differences in fatty acid percentages of G. lacustris 

were mainly affected by differences in their diets. Some populations preferred dinoflagellates, 

cryptophytes, green algae/cyanobacteria, and bacteria; other populations selected diatoms; and 

still other populations consumed zooplankton or allochthonous (terrestrial) organic matter. 
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The salinity and presence/absence of fish affected the contents of EPA and DHA in G. 

lacustris. Populations from saline and fishless lakes had significantly higher contents of EPA 

and DHA. Thus, stocking of fishless lakes dominated by G. lacustris with fish could lead to a 

decrease in EPA and DHA contents in the gammarids. We propose that some saline and 

fishless lakes could be used as a source of gammarids for aquaculture fish feeding. 

 

KEYWORDS essential polyunsaturated fatty acids, fish, food quality, mineralization, 

temperature 

 

Introduction 

In aquatic ecology, fatty acids (FAs) are often used as biochemical markers to reconstruct 

animals’ diets (Daly et al. 2010, Mezek et al. 2011, Budge et al. 2012, Kelly and Scheibling 

2012, Lau et al. 2012) and as indicators of the food quality of different aquatic items for 

consumers (e.g., Parrish 2009, Takeuchi 2014, Litz et al. 2017). Some polyunsaturated fatty 

acids (PUFAs) of n-3 family, eicosapentaenoic (EPA, 20:5n-3) and docosahexaenoic (DHA, 

22:6n-3), are essential for growth and development of aquatic and terrestrial animals, 

including humans (e.g., Plourde and Cunnane 2007, Arts and Kohler 2009, Parrish 2009, Pike 

2015). The contents of these PUFAs are considered major indicators of food quality (e.g., 

Ahlgren et al. 2009). EPA and DHA are primarily synthesized de novo by certain algae, 

mainly diatoms, cryptophytes, and dinoflagellates (Berge and Barnathan 2005, Dijkman and 

Kromkamp 2006, Kelly and Scheibling 2012, Taipale et al. 2013). Some animals can convert 

EPA and DHA from their precursor, α-linolenic acid, but at insufficient rates; thus, in general, 

animals must obtain these molecules directly from their diets (Brett and Müller-Navarra 1997, 

Gladyshev et al. 2009, Guo et al. 2016). PUFAs are transferred from microalgae to 

invertebrates and fish and then to humans through food webs (Gladyshev et al. 2013). 



Aquatic invertebrates are a major food source for many fish. Various factors such as 

phylogeny, diet, temperature, salinity, pollutants, immune system function, starvation, 

parasites, predation, age, and gender affect invertebrate FA content and therefore the nutritive 

values of invertebrates for their consumers (e.g., Brett et al. 2009, Fokina et al. 2010, 

Makhutova et al. 2011, Lau et al. 2012, Gladyshev et al. 2015). Thus, studying the effects of 

these factors is important for pure and applied aquatic ecology.  

Phylogeny itself or together with diet is considered a key factor determining FA 

profiles of aquatic animals (Makhutova et al. 2011, Lau et al. 2012, Gladyshev et al. 2015). 

Among ecological factors, water temperature is one of the most studied. According to the 

hypothesis of “homeoviscous adaptation,” a decrease in ambient temperature leads to an 

increase in the percentages of PUFAs with comparatively low melting points to maintain cell 

membrane fluidity (Stillwell and Wassall 2003, Brett et al. 2009, Koussoroplis et al. 2013). 

The role of highly unsaturated FAs, such as EPA and DHA in temperature adaptation, is 

questionable, however, and is still under discussion (Hazel 1995, Gladyshev et al. 2015). The 

effect of salinity on the FA composition of aquatic animals is believed to manifest in changes 

of the percentages of omega-3 (n-3) and omega-6 (n-6) PUFAs (Fokina et al. 2010, Sarker et 

al. 2011, Fonseca-Madriqal et al. 2012). Numerous data on the importance of the influence of 

diets on FA composition of planktonic and benthic animals have been obtained, mainly under 

experimental conditions (Weers et al. 1997, Brett et al. 2006, Torres-Ruiz et al. 2010, 

Gladyshev et al. 2016a). Lau et al. (2013), however, studied FA variation in Asellus aquaticus 

(benthic isopod) across a nutrient gradient by combining a field study and laboratory 

experiments and showed a strong effect of dietary FAs on the PUFA composition of that 

isopod. The effect of other factors, for instance parasites or predation, has been much less 

studied or not studied at all.  



We consider that cosmopolitan species inhabiting aquatic ecosystems with a wide 

range of environmental conditions are the most interesting taxa to study the effect of 

ecological factors on FA profiles of aquatic animals in natural conditions. Thus, the aim of 

our study was to reveal the effect of salinity, temperature, diet, and the presence/absence of 

predators (fish) on the FA content and composition of an aquatic cosmopolite invertebrate. To 

avoid the effect of phylogeny, which strongly influences FA composition of animals, we 

studied several populations of the cosmopolitan benthic species, Gammarus lacustris Sars. 

 

Methods 

Field sampling 

Gammarus lacustris was collected in 10 lakes of different regions of Russia: in 4 lakes 

(Svetloe, Anikino, Shira, and Shunet) in July 2014, in 6 lakes (Svetloe, Anikino, Shira, 

Shunet, Fyrkal, and Krasnenkoye) in July 2015, in 3 lakes (Matarak, Utichye-1, and Utichye-

3) in July 2016, and in 2 lakes (Utichye-1 and Sobachye) in July and in the beginning of 

August 2017 (Fig. 1, Table 1). The lakes varied in salinity, temperature, and the 

presence/absence of fish (Table 1). To avoid an unaccounted possible significant effect of FA 

variability associated with gammarid age, we divided gammarids into 3 size groups: small 

(0.2–0.5 cm), medium (0.6–0.8 cm), and large (0.9–1.2 cm), which covered all sizes 

represented in the lakes. Each sample of small-sized animals consisted of 3–21 individuals, 

medium-sized animals 3–7 individuals, and large-sized animals 1–7 individuals. The number 

of samples for each size group varied from 1 to 4. The total number of samples (n) of G. 

lacustris for FA analysis was as follows from each lake: Svetloe n = 18, Fyrkal n = 8, Anikino 

n = 16, Krasnenkoye n = 10, Shira n = 16, Shunet n = 18, Matarak n = 7, Utichye-1 n = 9, 

Utichye-3 n = 7, and Sobachye n = 6. Animals were sampled in the littoral zone using a sweep 

net. Immediately after sampling, the live animals were placed in beakers with filtered (pore 
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size 80 µm) ambient water for 24 h to empty their guts. The animals’ body surfaces were then 

gently wiped with filter paper to remove water, and the animals were weighed and placed in a 

chloroform:methanol mixture (2:1, v/v) and kept until further analysis at −20 °C.  

Simultaneously with sampling of G. lacustris, we measured water temperature and 

took samples for analyses of salinity of the water from the lakes. Salinity of the water in Lake 

Sobachye was not measured, so we used data from the literature. To determine salinity, the 

previously filtered water (pore size 130 µm) was evaporated by heating and then combusted at 

450 °C to a constant weight. The obtained ash content was used as a measure of salinity. 

Additionally, we sampled G. lacustris for analyses of total organic carbon, nitrogen, and 

moisture. Phytoplankton samples were collected in the littoral zone in Lakes Svetloe and 

Anikino in July 2015, in Lakes Shira, Shunet, Fyrkal, Krasnenkoye, Matarak, Utichye-1, and 

Utichye-3 in July 2016, and in Lake Sobachye in August 2014–2017. The samples were 

filtered through “Vladipor” membrane filters (Mytischi, Russia; pore size, 0.75–0.85 µm) and 

then placed in filtered lake water with Lugol’s solution. Microalgae were identified and 

counted using a Fuchs-Rosenthal counting chamber (3.2 µL volume) under an inverted 

microscope at 400× magnification.  

 

Fatty acid analysis 

The methods of lipid extraction, transesterification (methylation) of the lipid extracts, and 

purification of methyl esters were described by Christie (2003). Briefly, lipids from the 

samples were extracted with chloroform:methanol (2:1, v/v) 3 times simultaneously with 

mechanical homogenization of the tissues with glass beads. Before extraction, a defined 

volume of an internal standard solution (a solution of free 19:0 in chloroform, 0.5 mg/mL; 

Sigma-Aldrich, St. Louis, MO, USA) was added to the samples. The volume of the internal 

standard solution added to the samples depended on the lipid content and weight of the 



samples and corresponded to 1 mL per 1 g of wet weight (ww) of animal tissues. The 

combined lipid extracts were filtered, dried by passing through anhydrous Na2SO4 layer, and 

evaporated at 35 °C. FA methyl esters (FAMEs) were prepared in a mixture of 

methanol:sulfuric acid (20:1, v/v) at 90 °C for 2 h as previously described (Makhutova et al. 

2012). FAMEs were analyzed on a gas chromatograph (GC) equipped with a mass 

spectrometer detector (model 6890/5975C, Agilent Technologies, Santa Clara, CA, USA) and 

a 30 m long × 0.25 mm internal diameter HP-FFAP capillary column (Agilent Technologies, 

Santa Clara, CA, USA). The GC temperature program was as follows: from 100 to 190 °C at 

3 °C/min, 5 min isothermally, then to 230 °C at 10 °C/min, and 20 min isothermally. Other 

instrument conditions were as described elsewhere (Gladyshev et al. 2014). FAME peaks 

were identified by their mass spectrum compared to those in a database (NIST-2005, 

Gaithersburg, MD, USA) and to those of available authentic standards (Sigma-Aldrich, St. 

Louis, MO, USA). 

 

Carbon, nitrogen, and moisture analysis 

The samples of G. lacustris (50–150 mg ww) for total organic carbon, nitrogen, and moisture 

were dried until constant weight at 70 °C. Samples were then weighed to measure their 

moisture and stored in a desiccator until analysis with a Flash EA 1112 NC Soil/MAS 200 

elemental analyzer (ThermoQuest, Italy). Calibration curves for the elemental analyzer were 

built using aspartic acid and standard reference soil samples (ThermoQuest, Italy). The 

numbers of samples for carbon, nitrogen, and moisture of G. lacustris were similar to the 

numbers of samples for FAs.  

 

Statistical analyses 
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Standard errors (SE) and one-way ANOVA with Tukey LSD post hoc test were calculated 

conventionally and applied for normally distributed variables (Campbell 1967, Brown 2005). 

When not normally distributed, a Kruskal-Wallis test with multiple comparisons of mean 

ranks was applied. To reveal differences in the content of some FAs of G. lacustris inhabiting 

lakes with different temperatures, salinity, and presence/absence of fish, a Mann-Whitney U 

test was used. We considered lakes with salinity >3000 mg/L as saline lakes (Shunet, Shira, 

Krasnenkoye, Utichye-1, and Utichye-3) and <3000 mg/L as freshwater lakes (Svetloe, 

Fyrkal, Anikino, and Matarak; Hammer 1986). To reveal differences in the FA composition 

of G. lacustris inhabiting different lakes, we used multivariate discriminant analysis (MDA), 

a method of linear modelling to classify observations using a priori known groups (Legendre 

and Legendre 1998). All calculations were carried out using STATISTICA 9.0 software 

(StatSoft, Inc., Tulsa, OK, USA). 

 

Results 

Water temperature, salinity, and the presence/absence of fish were recorded for all study lakes 

(Table 1). Five lakes (Shira, Shunet, Krasnenkoye, Utichye-1, and Svetloe) were fishless and, 

except Lake Svetloe, warm and saline. The other 5 lakes contained fish and were warm and 

freshwater, except Lake Utichye-3, which was saline, and Lake Sobachye, which was cold 

(Table 1). Lake Anikino is a warm lake, but in 2015 a hot June was followed by cool weather, 

which persisted until the end of the summer, and therefore the water temperature of Lake 

Anikino on the sampling dates in 2015 was below normal (Table 1). 

Algae from 3 main taxa, Cyanophyta, Chlorophyta, and Bacillariophyta, dominated 

the phytoplankton in all lakes except Lakes Svetloe and Sobachye, where the major taxa were 

Dinophyta, Chrysophyta, and Bacillariophyta (Table 1).  



Percentages of prominent FAs were calculated for all lakes (Table 2). Populations of 

G. lacustris from Lakes Shunet, Fyrkal, and Utichye-1 had high percentages of FA markers of 

bacteria (18:1n-7, 15:0, and 17:0) while populations from Lakes Sobachye and Svetloe had 

lowest percentages of these FAs. G. lacustris from Lakes Utichye-3 and Krasnenkoye had a 

high percent of FA markers of diatoms: 16:1n-7, 16:2n-4, 16:3n-4 and 20:5n-3. Additionally, 

high percentages of the physiologically important 20:5n-3 were found in the populations from 

Lakes Sobachye, Shunet, and Anikino while low percentages of EPA were found in the 

populations from Lakes Svetloe, Utichye-1, Fyrkal, and Matarak. A high level of linoleic acid 

(LA, 18:2n-6), which is known as a marker of green algae, cyanobacteria, and even terrestrial 

vegetation, was a characteristic of G. lacustris from Lakes Svetloe and Fyrkal. Other markers 

of green algae and cyanobacteria (18:3n-3 and 18:3n-6) were observed in G. lacustris from 

Lakes Krasnenkoye and Anikino, and a population of G. lacustris from cold Lake Svetloe had 

the highest percent of 18:4n-3. G. lacustris from Lakes Shira, Shunet, and Sobachye 

contained high percentages of physiologically important 22:6n-3; percentages of 22:6n-3 in 

gammarids from these lakes were about twice as high as in G. lacustris inhabiting the other 

lakes. The highest percent of the physiologically most important FA of the n-6 family, 20:4n-

6, was found in G. lacustris from Lake Sobachye followed by Lake Fyrkal.  

The percentages of total n-3 PUFAs in G. lacustris from all habitats studied were 

higher than the percentages of total n-6 PUFAs (Table 2); however, the n-3/n-6 ratio was 

variable. G. lacustris from Lake Krasnenkoye had the highest n-3/n-6 ratio due to a high 

percent of EPA and low percentages of arachidonic acid (ARA, 20:4n-6) and LA in this 

population. G. lacustris from Lakes Shira, Shunet, and Utichye-3 had medium values for the 

n-3/n-6 ratio due to high or medium percentages of DHA and EPA, and medium percentages 

of ARA and LA. G. lacustris from Lakes Svetloe and Fyrkal had low values of this ratio due 

to low percentages of EPA and DHA and high percentages of LA and/or ARA. 
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High total FA content was found in G. lacustris from 3 fishless lakes, Svetloe, 

Krasnenkoye, and Utichye-1, while low total FA content was found in G. lacustris from lakes 

that contained fish, Sobachye, Anikino, Fyrkal, Matarak, and Utichye-3, and one fishless lake, 

Shira (Table 2). Among fishless lakes, high total FA content was found in lakes with low 

salinity, whereas medium FA content was found in lakes with high and medium salinity 

(Table 2).  

The moisture of G. lacustris varied from 73.4% to 82.7% (Table 2). Total organic 

carbon and nitrogen of G. lacustris varied from 34.5% to 43.7% of dry weight and from 7.6% 

to 9.1% of dry weight, respectively (Table 2). 

The percentages of 18 FAs were used in an MDA (Table 3, Fig. 2) that showed root 1 

and root 2 were statistically significant (Table 3). MDA also showed that the most significant 

differences in the first canonical root were observed between populations of G. lacustris from 

cold freshwater Lake Svetloe and warm saline Lake Krasnenkoye (Table 3, Fig. 2). The 

differences were caused primarily by a high percent of 18:2n-6 in G. lacustris from Lake 

Svetloe and a high percent of 20:5n-3 in G. lacustris from Lake Krasnenkoye (Tables 2 and 

3). The second canonical root reflected the differences between G. lacustris inhabiting warm 

saline fishless Lake Utichye-1 and cold freshwater fishless Lake Svetloe (Table 3, Fig. 2). 

The differences were primarily due to high percentages of 18:4n-3 and 20:4n-3 in the 

population from Lake Svetloe and high percentages of 18:1n-7 and 17:0 in the population 

from Lake Utichye-1 (Tables 2 and 3). Additionally, the MDA showed the similarity of FA 

percentages of G. lacustris inhabiting all fish lakes, Sobachye, Anikino, Fyrkal, Matarak, and 

Utichye-3, and the similarity of FA percentages of G. lacustris inhabiting 3 saline warm 

fishless lakes, Shira, Shunet, and Krasnenkoye (Fig. 2).  

To identify the most variable and most constant FAs of G. lacustris, we calculated the 

10th and 90th percentiles and, additionally, the minimum, the median, and the maximum 



values for the percentages of each fatty acid (Table 4). The most constant FAs, in which 80% 

of the data had a narrow range, were 16:0, 18:0, 18:1n-9, 18:1n-7, and 20:5n-3 (Table 4). 

High variability in percentages was found for ai17:0, 16:2n-4, 16:3n-4, 18:4n-3, 20:4n-3, and 

22:5n-6 (Table 4). DHA percentages showed higher variability than EPA percentages, 

whereas the variabilities of EPA and DHA contents were similar and comparably high (Table 

4).  

Contents of EPA and DHA in G. lacustris inhabiting the fishless lakes were 

significantly higher than those in G. lacustris from lakes that contained fish (Table 5). The 

populations from the saline lakes had significantly higher contents of EPA and DHA than 

populations from the freshwater lakes; however, the EPA and DHA contents in populations 

from the cold and the warm lakes were not significantly different (Table 5).  

 

Discussion 

The intraspecific differences in the FA composition of G. lacustris inhabiting lakes that 

differed in salinity, temperature, food composition, and the presence/absence of fish were 

probably caused by differences in their diets. Most likely, G. lacustris from Lakes Utichye-3, 

and Krasnenkoye consumed diatoms in greater proportions than the other populations because 

the individuals had higher percentages of the diatom biomarkers (16:1n-7, 16:2n-7, 16:2n-4, 

etc.). G. lacustris from Lake Svetloe preferred cryptophytes and/or dinoflagellates rich in 

18:4n-3 and green algae and/or cyanobacteria rich in 18:2n-6; the population from Lake 

Fyrkal also preferred green algae/cyanobacteria, but of other species rich in 18:3n-3. Indeed, 

many gammarids are believed to be herbivores, and their major food sources are benthic 

unicellular microalgae (Gladyshev et al. 2000, Biandolino and Prato 2006, Platvoet et al. 

2006, Mirzajani et al. 2011, Michel et al. 2015). The diets of G. lacustris from Lakes Shunet, 

Fyrkal, and Utichye-1 contained bacteria in greater proportions than in the other populations. 



The populations studied could consume algae and bacteria directly from benthic biofilms and 

detritus and indirectly through trophic chains consuming small animals whose food was algae 

and bacteria.  

Along with 18:2n-6, 20:4n-6 is considered a marker of allochthonous organic matter 

of comparatively low nutritive value (Gladyshev et al. 2017). Arachidonic acid is common in 

biomass of terrestrial insects and other terrestrial invertebrates (van Dooremalen et al. 2009, 

Fontaneto et al. 2011). The highest percentage of 20:4n-6 in G. lacustris from northern 

oligotrophic Lake Sobachye and rather high percentage of 18:2n-6 together with 

comparatively low percentages of the other algal markers probably indicate a high 

contribution of allochthonous organic matter (e.g., small terrestrial insects) in the diet of this 

population of gammarids. According to the literature, gammarids can feed on animals; thus 

predation, including cannibalism, is considered a common feeding strategy for amphipods 

(MacNeil et al. 1999, Wilhelm and Schindler 1999, MacNeil and Platvoet 2005, Biandolino 

and Prato 2006). In our study, we observed the remains of copepods, specifically 

Arctodiaptomus salinus, in the gut contents of G. lacustris from Lake Shira (Fig. 3).  

An experimental study on the diet of G. lacustris from Lake Shira also revealed 

consumption of the rotifer Brachionus plicatilis and the copepod A. salinus by these 

gammarids (Yemelyanova et al. 2002). The calanoid copepod A. salinus has high percentages 

of DHA (up to 17% of total FAs) and is a dominant zooplankton species in lakes Shira and 

Shunet (Tolomeev et al. 2010). Our previous work demonstrated that seston (primarily 

phytoplankton) and benthic biofilms (primarily phytobenthos) from Lake Shira were poor in 

DHA while the bodies of G. lacustris had high percentages (8.6%) of DHA (Makhutova et al. 

2003). Based on the literature and our observations, we hypothesize that G. lacustris from 

Lakes Shira and Shunet had high contents of DHA because they consumed A. salinus.  



Salinity affects the activity of enzymes involved in the synthesis of PUFAs, leading to 

an increase in the DHA/EPA and polyunsaturated FAs/saturated FAs (PUFA/SFA) ratios in 

marine fish and invertebrates (Guermazi et al. 2008, Fokina et al. 2010, Tolomeev et al. 2010, 

Sarker et al. 2011, Fonseca-Madriqal et al. 2012, Dantagnan et al. 2013). Thus, another reason 

for high percentages of DHA in the populations of G. lacustris from saline lakes Shira and 

Shunet might be an adaptation of this species to high salinity. In the present study, however, 

the maximum and the minimum values for the DHA/EPA ratio were found in populations 

from saline lakes Shira and Krasnenkoye, respectively. Additionally, the PUFA/SFA ratios 

were comparable in the populations from saline and freshwater lakes. Thus, we propose the 

high percentages of DHA in G. lacustris inhabiting saline lakes Shira and Shunet could be 

explained by their diet rather than by an adaptation to salinity.  

 The effect of another factor, temperature, on FA percentages of G. lacustris was also 

not revealed. According to Tukey HSD post hoc test results (Table 2), the population of G. 

lacustris from cold lake, Lake Svetloe, significantly differed from the other populations only 

in the percentages of 18:4n-3, which is one of the algal markers. Additionally, relatively high 

percentages of 14:0 and 18:2n-6 in the population from the cold lake compared to the other 

populations obviously indicated the specific composition of their diet. The population from 

another cold lake, Lake Sobachye, did not differ significantly from warm water populations in 

FA percentages. High percentages of short-chain saturated FAs and long-chain PUFAs are 

thought to enhance cell membrane fluidity at low temperatures (Stillwell and Wassall 2003, 

Maazouzi et al. 2008, Smyntek et al. 2008, Arts and Kohler 2009, Brett et al. 2009, Sperfeld 

and Wacker 2012, Koussoroplis et al. 2013, Dodson et al. 2014, Gladyshev et al. 2015). We 

did not observe higher percentages of these FAs in the populations of G. lacustris from the 

cold lakes than in the other populations.  
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 The presence/absence of fish in the lakes probably affected the percentages of 

prominent FAs. The results of the MDA indicated the similarity of FA percentages of G. 

lacustris from all fish lakes and differences between FA percentages of G. lacustris from 

fishless lakes. In fishless lakes, gammarids could probably selectively consume preferable and 

diverse food items from throughout the lakes, whereas in fish lakes, the presence of predators 

restricted the selective feeding of gammarids to habitats where they could hide from fish.  

 Statistical analysis of all the data on FA percentages of the gammarids studied allowed 

us to determine the most and least variable FAs. The ranges of the percentages of the most 

consistent FAs are probably characteristics of crustacea in general and gammarids 

specifically. This means that for G. lacustris, percentages of 16:0, 18:0, 18:1n-9, and 20:5n-3, 

which mainly are part of membrane phospholipids, are stable, and any healthy population of 

this species will have similar percentages of these FAs. The most variable FAs were mainly 

algae and bacteria markers and some long-chain PUFAs, which could originate from animal 

diet and might also be synthesized by gammarids. In contrast to the constant FAs, most of the 

variable FAs are used for energy (e.g., Leonard et al. 2004). The high variability of FA food 

markers in G. lacustris confirms the hypothesis that differences in the FA percentages of the 

populations studied were mainly caused by differences in their diets.  

Note that the level of physiologically important n-3 PUFA, specifically EPA, in G. 

lacustris was more stable than the level of another physiologically important n-3 PUFA, 

DHA. Although DHA is considered a characteristic of Gammaridae (Makhutova et al. 2016), 

G. lacustris physiological needs for DHA are likely lower than for EPA. High and stable 

percentages of EPA in the gammarids, however, can be explained by high availability of EPA 

in food items in the lakes. In this study, we did not directly measure the FA composition of 

food sources of gammarids, but the dominance of Bacillariophyta in the lakes usually rich in 



EPA (Dijkman and Kromkamp 2006, Kelly and Scheibling 2012, Taipale et al. 2013) 

suggests high availability of EPA in the food webs of these lakes. 

The content of EPA and DHA in benthic invertebrates is used as an indicator of their 

food quality for fish (e.g., Ahlgren et al. 2009, Makhutova et al. 2011, 2016, Gladyshev et al. 

2015, 2016b). Gammarids are favorable food items for many fish (MacNeil et al. 1999, Zuev 

et al. 2011) and a valuable source of essential EPA and DHA (Sushchik et al. 2003, 2007, 

Makhutova et al. 2011, 2016). In the present study, however, populations of G. lacustris had 

highly variable EPA and DHA content. The gammarids from fishless and saline lakes had 

significantly higher contents of these essential PUFAs than gammarids inhabiting freshwater 

lakes that contained fish.  

Three different mechanisms may be responsible for the high contents of EPA and 

DHA in the populations from the fishless lakes: (1) gammarids consume food with high 

proportions of EPA and DHA, but in low quantity, and do not accumulate storage lipids; (2) 

gammarids consume food with low proportions of EPA and DHA, but in high quantity, and 

accumulate storage lipids; (3) gammarids consume food with high proportions of EPA and 

DHA in high quantity and accumulate storage lipids. All 3 mechanisms were observed in the 

studied lakes. The populations from Lakes Shira and Shunet had relatively low contents of 

total FAs (9.8 and 11.6 mg/g ww, respectively) but notably high percentages of EPA together 

with DHA (18.7% and 19.5%, respectively). The population from Lake Svetloe had a high 

content of total FAs (17.6 mg/g ww) but the lowest percentages of EPA and DHA (11.6%). 

Finally, the population from Lake Krasnenkoye had a high content of total FAs (16.8 mg/g 

ww) and relatively high percentages of EPA and DHA (16.3%). 

In contrast to the 3 different mechanisms that regulated contents of EPA and DHA in 

the populations from fishless lakes, in fish lakes, predation seemed to be the principal 

determinant of the PUFAs content. The gammarids likely consumed food with low, medium, 



or even high proportions of EPA and DHA, but in low quantity. The populations from Lakes 

Fyrkal, Anikino, Matarak, and Sobachye had low contents of total FAs (8.5, 8.1, 8.1, and 4.2 

mg/g ww, respectively) and low (12.7%), medium (15.9% and 14.4%), and high (19.3%) 

percentages of EPA and DHA. To date we have only a speculative explanation of this finding. 

In the presence of fish, gammarids could not move freely in water column searching for 

biochemically valuable food items, but instead they searched for shelters to avoid predators 

and could not actively forage during hiding. In the fishless lakes, however, populations of G. 

lacustris inhabited both the littoral and the pelagic zones and moved freely in open water 

areas, whereas in the fish lakes, the gammarids inhabited only the littoral zone, hiding among 

macrophyte beds, tangles of roots of higher plants, and stones. Additionally, fish could affect 

the gammarids through trophic chains (J. Vrba, 2017 10th Symposium for European 

Freshwater Sciences, pers. comm.). Planktivorous fish consumed zooplankton and probably 

deprived gammarids of a valuable food source. In fishless lakes, gammarids could feed on 

zooplankton, evidenced by the example of G. lacustris from Lake Shira (Fig. 3). Evidently, G. 

lacustris inhabiting fish lakes was limited both in quantity and diversity of food compared to 

free-swimming gammarids from the fishless lakes. By comparison, lower total FA content in 

G. lacustris from fish lakes may be also due to higher metabolic rates as a reaction to the 

presence of alarming substances (kairomones) from fish.  

The high content of EPA and DHA in gammarids from saline lakes could be explained 

by the high content of total FAs and high percentages of EPA and DHA (Lake Krasnenkoye) 

and by high percentages of EPA and DHA while the contents of total FAs were relatively low 

(Lakes Shira, Shunet, and Utichye-3). Not all populations from the saline lakes had high 

contents of EPA and DHA, however. The contents of these PUFAs in G. lacustris from saline 

Lake Utichye-1 (1.08 mg/g EPA and 0.42 mg/g DHA) were close to those of G. lacustris 

from freshwater lakes. 



Thus, if G. lacustris is considered a source of physiologically important EPA and 

DHA for fish, the most valuable populations are those that inhabit saline fishless lakes. If true, 

then increasing freshwater salinization, decadal trends of which have been observed around 

the world (e.g. Dugan et al. 2017, Kaushal et al. 2018), may not lead to a decrease but rather 

to an increase in the food quality of the gammarids that thrive in saline lakes. We propose  

some saline small lakes may be used for growing gammarids for aquaculture fish feeding. 

Stocking fish in fishless lakes dominated by G. lacustris may result in lower food quality of 

the gammarids. G. lacustris inhabiting fishless lakes moves freely in open water areas and in 

the littoral zone. Harvesting gammarids from such lakes and using them for aquaculture fish 

feeding could be economically efficient. Alternatively, fishless lakes may be used for stocking 

sterile fish (e.g., triploid rainbow trout) for fattening for a short period, followed by harvesting 

all of the stocked fish. The calculation of economic efficiency was beyond the scope of our 

study, but we propose that using saline and fishless lakes as a source of gammarids for fish 

feeding may be highly beneficial.  

In the present study, we performed only pairwise comparisons between fish/fishless, 

cold/warm, and saline/fresh lakes. When more data are obtained, interactive effects of these 

factors may be revealed, for instance by factorial ANOVA or/and by redundancy analysis. 

Our field study showed variability of FA percentages and EPA and DHA contents in 

benthic invertebrate G. lacustris, an important food source for fish. Differences in FA 

percentages of the populations were primarily caused by the variability of FA food markers. 

Thus, among the factors we investigated, food composition of the populations was probably 

the principal factor affecting the FA composition of the gammarids. According to the contents 

of physiologically important EPA and DHA, the populations from saline fishless lakes had 

higher nutritional value than the populations from freshwater lakes and lakes with fish.  
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Figure 1. Sampling regions. Numerals indicate the number of lakes sampled. 
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Figure 2. Multivariate discriminant analysis of fatty acid composition of Gammarus lacustris 

from lakes: Svetloe (s), Shira (h), Shunet (u), Anikino (a), Krasnenkoye (k), Fyrkal (f) 

Matarak (m), Utichye-1 (y1), Utichye-3 (y3), and Sobachye (d). 

Figure 3. Remains of copepods in gut content of Gammarus lacustris from Lake Shira. (a) 

parts of cephalothorax, (b) mandible, (c) swimming legs, and (d) furca.  
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Table 1. Description of the lakes studied: location, surface area (A, in km
2
), maximum depth (hmax, in m), temperature (t, in °C), total 

mineralization (M, in mg L−1), the presence/absence of fish, and dominating phytoplankton taxa. 

 
Region, lake Location A hmax t °C M Fish Phytoplankton 

    2014 2015 2016 2017 2014 2015 2016   

Ergaki Mountains 

Svetloe 52°48'N, 93°25'E 0.48
a
 24

a
 18 15 n.d. n.d. 10 11 n.d. − Din Chry Bac 

Putorana Plateau 

Sobachye 69°01′N, 91°05′E 99.0
b
 162

b
 n.d. n.d. n.d. ≤10 13-42

f
 + Bac Chry Din 

Khakasia 

Fyrkal 54°63'N, 89°81'E 13.0 n.d. n.d. 24 n.d. n.d. n.d. 200 n.d. + Cya Chl Bac 

Krasnenkoye 54°44'N, 90°34'E 0.11 n.d. n.d. 23 n.d. n.d. n.d. 3670 n.d. − Cya Bac 

Shira 54°30'N, 90°11'E 35.9
c
 23

c
 23 25 n.d. n.d. 16000 15610 n.d. − Cya 

Shunet 54°25'N, 90°13'E 0.47
c
 6

c
 21 24 n.d. n.d. 16460 17820 n.d. − Cya Bac 

Matarak 54°24'N, 90°11'E 0.79
d
 n.d. n.d. n.d. 25 n.d. n.d. n.d. 652 + Chl Cya Din Bac 

Utichye-1 54°28'N, 90°25'E 0.45
d
 2

e
 n.d. n.d. 27 n.d. n.d. n.d. 4909  −- Cya Chl 

Utichye-3 54°30'N, 90°27'E 1.40
d
 3

e
 n.d. n.d. 26 n.d. n.d. n.d. 6322 + Bac Cya 

Tyumen area 

Anikino 56°11'N, 69°43'E 0.33 2 25 18 n.d. n.d. 1097 998 n.d. + Cya Chl Bac 

Cya = Cyanobacteria, Chl = Chlorophyta, Bac = Bacillariophyta, Chry = Chrysophyta, Din = Dinophyta, n.d. = no data 
a
Anishchenko et al. 2015; 

b
Gladyshev et al. 2017; 

c
Gladyshev et al. 2015; 

d
Parnachev and Degermendzhy 2002; 

e
Parnachev et al. 1999; 

f
Zadelenov et al. 2017. 

 

 

 

Table 2. Mean values of prominent fatty acids (FA; % of the total), total fatty acids (mg/g wet weight), moisture, total organic carbon (C), and 

nitrogen (N) of Gammarus lacustris from the lakes studied. Means in lines labeled with the same letter are not significantly different at P < 0.05 

after Tukey HSD post hoc test (normal distribution, standard errors [SE] are given) or Kruskal-Wallis test with multiple comparisons of mean 

ranks (nonnormal distribution [SE] are omitted). Fish/M = the presence or absence (+ or −) of fish and average total mineralization (mg/L) of the 

lakes. 

 

 Svetloe Sobachye Fyrkal Anikino Krasnenkoye Shira Shunet Matarak Utichye-1 Utichye-3 



Fish/M −/11 +/13–42 +/200 +/1048 −/3670 −/15805 −/17140 +/652 −/4909 +/6322 

12:0 1.1 (0.1)
A
 0.2 (0.0)

B
 1.0 (0.2)

AB
 0.6 (0.1)

BC
 1.0 (0.1)

AB
 0.9 (0.1)

AB
 0.7 (0.1)

AB
 1.2 (0.4)

AC
 0.7 (0.1)

AB
 1.1 (0.3)

AB
 

14:0 3.7 (0.3)
A
 0.7 (0.1)

C
 1.8 (0.2)

BC
 2.3 (0.3)

BD
 3.6 (0.1)

AD
 2.0 (0.2)

BC
 2.2 (0.2)

BC
 2.7 (0.4)

AB
 2.8 (0.3)

AB
 2.6 (0.5)

AB
 

15:0 0.5
A
 0.4 (0.0)

A
 0.8

ABC
 0.7

AC
 1.0

BC
 0.7

AC
 1.3

B
 0.8

ABC
 0.8 (0.0)

BC
 0.7

ABC
 

16:0 16.3 (0.3)
AC

 14.6 (0.5)
C
 16.8 (0.6)

ABC
 17.1 (0.2)

ABC
 16.9 (0.5)

ABC
 16.2 (0.7)

AC
 15.6 (0.5)

AC
 18.2 (1.1)

AB
 16.6 (0.8)

ABC
 19.3 (0.3)

B
 

17:0 0.6 (0.0)
A
 0.8 (0.0)

ACE
 1.5 (0.0)

D
 1.2 (0.1)

BD
 0.8 (0.0)

AC
 1.0 (0.0)

BC
 1.1 (0.1)

BC
 1.2 (0.1)

BDE
 1.4 (0.0)

D
 0.9 (0.0)

AB
 

18:0 3.4 (0.2)
AB

 3.7 (0.2)
AEF

 4.9 (0.3)
CDF

 4.2 (0.2)
ABC

 3.1 (0.1)
BE

 4.4 (0.4)
AC

 3.7 (0.2)
ABD

 5.3 (0.1)
CF

 4.5 (0.2)
AF

 4.5 (0.2)
AEF

 

20:0 0.3 (0.0)
ABCD

 0.2 (0.0)
ABCD

 0.4 (0.0)
CD

 0.3 (0.0)
BCD

 0.2 (0.0)
A
 0.3 (0.0)

ABCD
 0.2 (0.0)

ABD
 0.3 (0.0)

D
 0.2 (0.0)

ABCD
 0.3 (0.0)

ABCD
 

22:0 0.2
A
 0.3

AB
 0.4

B
 0.4

B
 0.2

A
 0.4

AB
 0.3

AB
 0.3

AB
 0.2

AB
 0.3

AB
 

i15:0 0.4
AC

 0.2 (0.0)
C
 0.7

AB
 0.6

AB
 0.5

AB
 0.5

AB
 0.5

AB
 0.6

AB
 0.9 (0.1)

B
 0.4

AC
 

ai15:0 0.3 (0.0)
AB

 0.1 (0.0)
B
 0.4 (0.0)

ABC
 0.2 (0.0)

B
 0.3 (0.0)

ABC
 0.4 (0.1)

AC
 0.4 (0.0)

AC
 0.5 (0.1)

C
 0.5 (0.0)

C
 0.2 (0.0)

AB
 

i17:0 0.3 (0.0)
A
 0.3 (0.0)

AEG
 0.6 (0.0)

BD
 0.5 (0.0)

CDF
 0.4 (0.0)

AC
 0.7 (0.0)

B
 0.5 (0.0)

CDE
 0.7 (0.1)

BF
 0.7 (0.0)

B
 0.5 (0.0)

CDFG
 

ai17:0 0.2
ABC

 0
BC

 0.3
A
 0.02

B
 0.2

AB
 0.3

AC
 0.2

A
 0.1

AB
 0.2

AB
 0

BC
 

16:1n-9 0.4
ABC

 0.3
C
 0.4

BC
 0.7

AD
 0.8

ABD
 0.5

ABCD
 0.4

ABCD
 0.3

C
 0.9

D
 0.3

C
 

16:1n-7 8.6 (0.5)
AB

 7.3 (1.1)
AB

 6.1 (0.5)
A
 10.5 (1.2)

BD
 10.4 (0.8)

BCD
 6.4 (0.6)

A
 8.6 (0.6)

AB
 7.8 (0.4)

AB
 6.6 (0.4)

AC
 13.9 (0.3)

D
 

18:1n-9 21.9 (0.7)
AB

 23.2 (0.6)
BF

 18.2 (0.6)
CD

 13.3 (0.5)
E
 17.3 (1.3)

CD
 19.1 (0.8)

AC
 16.6 (0.4)

CD
 18.7 (0.4)

ACF
 24.0 (1.0)

B
 14.1 (0.2)

DE
 

18:1n-7 3.8 (0.1)
A
 5.5 (0.2)

B
 6.2 (0.2)

B
 5.9 (0.3)

B
 4.0 (0.1)

A
 5.4 (0.1)

B
 5.9 (0.1)

B
 5.6 (0.1)

B
 5.7 (0.1)

B
 5.8 (0.1)

B
 

16:2n-4 0.6
ABC

 0.1
CD

 0.1
CD

 0.6
ACD

 1.3
B
 0.3

ACD
 0.7

AB
 0.2

ACD
 0.1

D
 1.1

AB
 

16:3n-4 0.5
AB

 0.1
ACD

 0.03
C
 0.9

AB
 1.1

B
 0.2

AC
 0.8

BD
 0.2

ACD
 0.05

C
 1.2

B
 

18:2n-6 9.8 (0.4)
A
 7.0 (0.3)

EF
 8.0 (0.4)

AF
 5.7 (0.5)

CDE
 3.6 (0.3)

B
 4.1 (0.3)

B
 4.6 (0.2)

BC
 6.6 (0.4)

DF
 5.5 (0.2)

BDE
 4.5 (0.3)

BD
 

18:3n-6 0.5
ABC

 0.3
AC

 0.4
CD

 0.6
ABC

 0.8
B
 0.3

AC
 0.4

ACD
 0.6

BD
 0.3

CD
 0.5

ABC
 

18:3n-3 2.6
ACD

 1.6
BD

 3.4
AC

 4.2
C
 4.8

C
 2.2

ABE
 1.6

B
 1.7

BD
 3.6

CE
 1.6

BD
 

18:4n-3 2.2 (0.2)
A
 0.3 (0.0)

C
 0.4 (0.0)

C
 0.6 (0.1)

C
 1.0 (0.0)

BC
 1.1 (0.1)

B
 1.2 (0.1)

B
 1.1 (0.1)

BC
 0.7 (0.1)

BC
 0.8 (0.0)

BC
 

20:4n-6 3.3 (0.2)
AB

 8.0 (0.2)
F
 6.6 (0.3)

DF
 5.5 (0.4)

DE
 2.6 (0.2)

A
 5.1 (0.5)

CD
 3.9 (0.3)

ABC
 4.8 (0.3)

BD
 4.5 (0.3)

BCE
 4.2 (0.2)

ABCE
 

20:3n-3 0.3
AB

 0.2
BD

 0.4
ACD

 0.5
C
 0.5

C
 0.4

A
 0.2

BD
 0.2

B
 0.4

ACD
 0.2

B
 

20:4n-3 0.4 (0.0)
A
 0.0 (0.0)

D
 0.2 (0.0)

CD
 0.2 (0.0)

CD
 0.3 (0.0)

ACE
 0.6 (0.1)

B
 0.3 (0.0)

AC
 0.2 (0.0)

CD
 0.2 (0.0)

CE
 0.1 (0.0)

DE
 

20:5n-3 8.3 (0.4)
A
 14.0 (0.4)

D
 9.7 (0.4)

AC
 12.1 (0.4)

BDE
 13.6 (0.7)

D
 11.0 (0.5)

BC
 12.7 (0.2)

BD
 10.3 (0.9)

ACE
 8.6 (0.3)

A
 12.8 (0.4)

BDE
 

22:5n-6 0.5 (0.0)
AC

 0.4 (0.0)
ABC

 0.7 (0.1)
A
 0.6 (0.1)

A
 0.2 (0.0)

B
 0.6 (0.0)

A
 0.6 (0.0)

A
 0.2 (0.0)

BC
 0.2 (0.1)

BC
 0.1 (0.0)

B
 

22:5n-3 0.5 (0.0)
A
 1.5 (0.1)

D
 1.1 (0.1)

BCD
 1.2 (0.1)

CD
 0.6 (0.0)

AB
 0.9 (0.1)

B
 0.9 (0.1)

BC
 0.7 (0.1)

AB
 0.7 (0.1)

AB
 0.9 (0.1)

BC
 

22:6n-3 3.3
AC

 5.3
C
 2.9

AC
 3.8

AC
 2.7

A
 7.8

C
 6.8

C
 4.1

AC
 3.2

AC
 3.8

AC
 

Total FA 17.6 (0.9)
A
 4.2 (0.3)

C
 8.5 (1.0)

BC
 8.1 (0.9)

BC
 16.8 (0.9)

AD
 9.8 (1.7)

BC
 11.6 (1.3)

BD
 8.1 (0.6)

BC
 13.0 (1.7)

AB
 10.5 (0.6)

BCD
 

BFA 2.5 (0.1)
A
 2.0 (0.1)

A
 5.1 (0.3)

CD
 3.7 (0.3)

B
 4.1 (0.2)

BD
 4.0 (0.3)

BD
 5.8 (0.3)

C
 4.4 (0.6)

BD
 5.1 (0.2)

CD
 3.2 (0.2)

AB
 

DFA 13.6 (0.6)
ABCD

 8.3 (1.3)
AC

 8.1 (0.7)
A
 14.6 (1.9)

BCD
 17.1 (1.1)

BD
 9.1 (0.9)

A
 12.6 (1.0)

AB
 10.9 (0.7)

AB
 9.7 (0.6)

AC
 19.0 (0.9)

D
 

G-C FA 13.1
A
 8.8

AB
 12.0

A
 10.8

A
 10.0

AB
 6.7

B
 6.7

B
 8.9

AB
 9.7

AB
 6.7

B
 



n-3/n-6 1.2 (0.1)
A
 1.4 (0.0)

AEF
 1.1 (0.1)

A
 1.8 (0.1)

BE
 3.2 (0.3)

D
 2.2 (0.1)

BC
 2.3 (0.1)

C
 1.4 (0.1)

AEF
 1.5 (0.0)

AEF
 2.0 (0.1)

BCF
 

DHA/EPA 0.4 (0.02)
A
 0.4 (0.02)

A
 0.3 (0.02)

AD
 0.3 (0.03)

AD
 0.2 (0.01)

D
 0.7 (0.04)

B
 0.5 (0.02)

C
 0.4 (0.02)

A
 0.4 (0.02)

A
 0.3 (0.01)

AD
 

PUFA/SFA 1.3 (0.04)
AB

 1.9 (0.1)
C
 1.3 (0.05)

AB
 1.3 (0.04)

A
 1.3 (0.03)

AB
 1.4 (0.1)

A
 1.4 (0.04)

A
 1.1 (0.13)

AB
 1.1 (0.06)

B
 1.1 (0.05)

AB
 

Moisture, % 81.4 (0.6) 82.7 (0.4) 75.4 80.8 (0.5) 77.3 (1.4) 79.2 (1.5) 78.0 (0.7) 73.4 (0.6) 74.7 (0.4) 74.8 (0.4) 

C, % dw 41.5 (2.6) 35.1 (0.4)  36.5 (0.3) 38.1 (0.9) 43.7 (3.1) 37.2 (0.9) 39.2 (1.4) 34.5 (0.6) 38.1 (0.2) 37.1 (0.3) 

N, % dw 7.6 (0.5) 8.6 (0.2) 8.1 (0.2) 8.1 (0.1) 8.5 (0.5) 8.1 (0.3) 7.8 (0.2) 7.9 (0.1) 9.1 (0.1) 8.0 (0.1) 

BFA = FA markers of bacteria (i13:0, ai13:0, 13:0, 13:1, i15:0, ai15:0, i15:1, 15:0, 15:1, i17:0, ai17:0, i17:1, 17:0, 17:1); DFA = FA markers of 

diatoms (14:0, 16:1n-7, 16:2n-7; 16:2n-4, 16:3n-4, 16:4n-1); G-C FA = FA markers of green algae and cyanobacteria (16:2n-6, 16:3n-6, 16:3n-3, 

16:4n-3, 18:2n-6, 18:3n-3, 18:3n-6); DHA = 22:6n-3; EPA = 20:5n-3; PUFA = polyunsaturated fatty acids; SFA = saturated fatty acids. 

  



Table 3. Results of multivariate discriminant analysis of fatty acid composition of Gammarus 

lacustris inhabiting the lakes studied. 

 
Subject of analysis 

(parameter, lakes, 

fatty acids) 

Root 1 Root 2 

Canonical R 0.964 0.947 

Chi-square 1071 808 

Degrees of freedom 162 136 

P 0.000000 0.000000 

Canonical mean values 

Svetloe 4.859 −4.775 

Shira −2.912 −1.184 

Shunet −3.909 −1.019 

Anikino 0.738 1.216 

Krasnenkoye −5.392 −1.556 

Fyrkal 3.197 2.260 

Matarak 1.923 3.543 

Utichye-1 −0.589 4.319 

Utichye-3 2.205 2.865 

Sobachye 3.741 2.924 

Structural factor coefficients 

12:0 0.035 −0.072 

14:0 0.020 −0.148 

16:0 0.028 0.073 

17:0 −0.071 0.305 

18:0 0.033 0.165 

20:0 0.096 0.043 

ai15:0 −0.093 0.040 

i17:0 −0.130 0.241 

16:1n-7 0.005 −0.005 

18:1n-9 0.116 −0.061 

18:1n-7 −0.078 0.360 

18:2n-6 0.394 −0.181 

18:4n−3 0.077 −0.361 

20:4n-6 0.096 0.238 

20:4n-3 −0.100 −0.301 

20:5n-3 −0.189 0.095 

22:5n-6 0.006 −0.089 

22:5n-3 −0.008 0.197 



 
 

Table 4. Values of the minimum, median, maximum and 10th and 90th percentiles for each 

fatty acid proportionpercentages (% of the total) and EPA (20:5n-3*) and DHA (22:6n-3*) 

contents (mg/g ww). The length of row for each fatty acid is 115.  

 
FA Min Median Max Percentiles 

    10th 90th 

12:0 0.11 0.75 3.70 0.22 1.46 

14:0 0.00 2.48 7.24 0.75 4.07 

15:0 0.33 0.71 1.87 0.43 1.31 

16:0 12.68 16.43 24.20 14.37 19.34 

17:0 0.42 0.96 1.95 0.55 1.49 

18:0 2.24 4.10 9.41 2.88 5.21 

20:0 0.05 0.24 0.62 0.14 0.4 

22:0 0.00 0.25 1.01 0.15 0.51 

i15:0 0.12 0.48 1.34 0.31 0.86 

ai15:0 0.09 0.31 1.14 0.16 0.54 
i17:0 0.18 0.51 1.23 0.27 0.78 

ai17:0 0.00 0.15 0.86 0.00 0.41 

16:1n-9 0.14 0.43 1.80 0.26 0.91 

16:1n-7 2.85 8.00 16.55 4.72 13.64 

18:1n-9 10.14 18.06 28.94 13.04 24.02 
18:1n-7 3.03 5.48 7.52 3.74 6.53 

16:2n-4 0.00 0.39 1.72 0.06 1.28 

16:3n-4 0.00 0.35 2.32 0.00 1.37 

18:2n-6 2.39 5.60 14.02 3.46 9.22 

18:3n-6 0.12 0.43 1.36 0.22 0.81 

18:3n-3 1.07 2.48 8.17 1.35 5.08 

18:4n-3 0.18 0.86 3.97 0.36 2.1 

20:4n-6 1.73 4.38 8.58 2.53 7.46 

20:3n-3 0.12 0.30 0.81 0.21 0.53 

20:4n-3 0.00 0.27 0.99 0.12 0.51 

20:5n-3 6.04 11.47 17.03 7.93 14.22 

22:5n-6 0.00 0.45 1.83 0.14 0.82 

22:5n-3 0.23 0.77 1.78 0.44 1.46 

22:6n-3 1.62 3.90 12.47 2.42 7.87 

20:5n-3* 0.19 1.12 3.10 0.56 2.03 

22:6n-3* 0.08 0.45 1.57 0.24 0.79 

 

Table 5. Average values of EPA and DHA (mg/g ww [SE]) of Gammarus lacustris inhabiting 

fish lakes (Fish) number of samples, n = 4455; fishless lakes (No Fish), n = 71; warm lakes 

(Warm), n = 91; cold lakes (Cold), n = 24; saline lakes (Saline), n = 60; freshwater lakes 

(Fresh), n = 55; and significance of differences (p values) after Mann-Whitney U test 

(*significant values). 

 

 Fish  No Fish p value Warm Cold 
p 

value 
Saline Fresh p value 

EPA 
0.93 

(0.06) 

1.41 

(0.07) 
0.0000* 

1.23 

(0.07) 

1.21 

(0.09) 
0.5938 

1.40 

(0.09) 

1.04 

(0.06) 
0.0054* 

DHA 
0.29 

(0.01) 
0.6 (0.03) 0.0000* 

0.48 

(0.03) 

0.49 

(0.04) 
0.4594 

0.58 

(0.03) 

0.37 

(0.02) 
0.0000* 

 

 

Примечание [U16]: I added 

“percentages (% of the total)” to 

clarify that all FAs are shown as 

percentages, but two FAs (with 

asterisks) are additionally shown as 

mg/g ww 

Примечание [JEF17]: What does 

the asterisk indicate? 

Примечание [U18]: I found my 

mistake 


