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Abstract
Wediscuss optical chirality in different types of gyrotropicmedia. Our analysis is based on the
formalismof nongeometric symmetries ofMaxwell’s equations in vacuumgeneralized tomaterial
media with given constituent relations. This approach enables us to directly derive conservation laws
related to nongeometric symmetries. For isotropic chiralmedia, we demonstrate that like a free
electromagnetic field, both duality and helicity generators belong to the basis set of nongeometric
symmetries that guarantees the conservation of optical chirality. In gyrotropic crystals, which exhibit
natural optical activity, the situation is quite different from the case of isotropicmedia. For light
propagating along a certain crystallographic direction, there arises two distinct cases: (1) the duality is
broken but the helicity is preserved, or (2) only the duality symmetry survives.We show that the
existence of one of these symmetries (duality or helicity) is enough to define optical chirality. In
addition, we present examples of low-symmetrymedia, where optical chirality cannot be defined.

1. Introduction

The notion of chirality, the term originally coined by LordKelvin for any object that cannot be superimposed
onto itsmirror image [1], is perhaps one of themost fundamental concepts in nature ranging fromparticle
physics to biology [2]. After the discovery of a new conservation law forMaxwell’s equations in vacuumby
Lipkin [3], it was realized that not onlymaterial objects but alsofields can be characterized by a certain chirality
[4, 5]. In particular, we can construct the conserving pseudoscalar for a free electromagnetic field
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which is even under time-reversal (T) and odd under spatial inversion (P) transformations. These symmetry
properties are consistent with the definition of true chirality proposed by Barron [6, 7], who stressed that we
should distinguish it from false chiralitywith brokenT-symmetry. In this respect, this quantity is eligible to be
called optical chirality, whichwas originally coined zilch by Lipkin [3].

Later it was realized that besides classical conservation laws arising from the invariance under the space-time
Poincaré group, a free electromagnetic field is invariant under the eight-dimensional Lie algebra of
nongeometric symmetry transformations. This algebra results in an infinite number of integro-differential
conservation laws, which include zilch as a particular case [8]. Togetherwith the approach based on
nongeometric symmetries [8], these conservation lawswere studied using the Lie theory and theNoether
theorem [9–14], using the analogy between theMaxwell andDirac equations [15], and through gauge
symmetry [16].

For a free electromagnetic field, it was demonstrated that the existence of duality symmetry forMaxwell’s
equations, i.e. the linear transformation thatmixes electric andmagnetic fields, automatically engenders the
preservation of optical helicity, i.e. the projection of total angularmomentumon the direction of linear
momentum [17–20].
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The renewed interest in optical chirality has been stimulated through interdisciplinary studies inmolecules
andmetamaterials [21–26]. Notable progress in the field of optical angularmomentum is also relevant to these
directions [27, 28]. The relationship between optical chirality, helicity, and spin angularmomentumof light was
discussed in a number of papers [29–37]. A recent review on the general space-time symmetries ofMaxwell’s
equations can be found in [38].

For an electromagnetic field inmedia, the problemof optical chirality has been considered in [16, 39, 40]. In
dispersivemedia, the generalization of Lipkin’s zilchwas established by Philbin [16] bymeans ofNoether’s
theorem applied to the specific gauge transformation of themagnetic vector potential. In isotropic chiralmedia,
first-order electromagnetic conservation lawswere heuristically constructed byRagusa in the relativistically
noncovariant [39] and covariant forms [40].

The purpose of this paper is to develop a systematic approach to the optical chirality in gyrotropicmedia. To
provide a theoretical basis for our treatment, we invoke the formalism of nongeometric symmetries in vacuum
[8], and generalize it tomedia taking heed of the corresponding constituent equations. The key idea is tofind the
invariance algebra of nongeometric symmetries inmedia, and to investigate whether the basis set of this algebra
includes the transformations of duality and helicity.

First, we analyze nongeometric symmetries in isotropic chiralmedia. Like an electromagnetic field in
vacuum [17, 18], an isotropic chiralmedium is self-dual, which automaticallymeans that helicity is preserved
[41]. However, as we explicitly show, in chiralmedia, the original eight-dimensional invariance algebra of the
free electromagnetic field is broken down to its four-dimensional subalgebra due to lack of inversion symmetry.
Duality and helicity are two essential generators of this subalgebra. For a spatially nonuniform chiralmedium,
wefind that the actual expression for optical chirality depends on the choice of constituent relations in order to
guarantee continuity of the chiralityflow.

Next, we consider optical chirality in gyrotropic crystals, where surrounding symmetry ismore restrictive,
and, globally, neither duality nor helicity symmetry transformations are allowed. Although these symmetries can
survive along the principal crystalline axes, the equivalence between duality and helicity that holds in isotropic
media is lost.Wefind that in crystals with gyrotropic birefringence both duality and helicity operations are
allowed along the principal axis. Crystals possessing natural optical activity and belonging to point groupsCn or
Cnv (n 3 ) provide an example, where helicity is preserved along the principal axis [42]while the duality
symmetry is broken. The opposite situation is realized in achiralmaterials with natural optical activity, where the
duality symmetry along the principal axis is preservedwithout helicity. The existence of either duality or helicity
transformations along a certain direction leads to the conservation law for optical chirality, which is consistent
with underlying symmetries.

Conclusively, we consider low-dimensional crystals, wherewe encounter the invariance algebrawith neither
preserved duality nor preserved helicity, whichmakes optical chirality ill-defined.

2. Free electromagneticfield

Webeginwith a brief review of the latest developments in symmetry analysis of the electromagnetic field in
vacuum.We give a pedagogical introduction in themethod of nongeometric symmetries, which is generalized in
subsequent sections to an electromagnetic field inmedia.

The discovery of a conservation law in equation (1) stimulated the discussion of the related ‘hidden’
symmetries for the electromagnetic field.Historically, it had been established shortly after the formulation of
electrodynamics thatMaxwell’s equations in free space

E B B E, , 2t t ´ = -¶ ´ = ¶ ( )

E B0, 0, 3 = =· · ( )

(in this sectionwe use c = 1 and 1 = ) remain invariant under the duality transformation

E E Bcos sin , 4q q + ( )

B E Bsin cos , 5q q - + ( )

which can be viewed as ‘rotation’ in the pseudospace of E and B vectors (for a review and historical background,
see [12, 13]).

In contrast toMaxwell’s equations, the standard Lagrangian formulation of electrodynamics is not
symmetric under the duality transformation, and, tomitigate this obstacle, a duality symmetric formof the
Lagrangian density was proposed [12, 13]. The duality symmetric form, on the basis of theNoether theorem, ties
up the transformation in equations (4) and (5)with conservation of optical helicity,
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written in terms ofmagnetic (A) and electric (C) vector potentials, which are determined by
E C At= - ´ = -¶ and B A= ´ , and satisfy the symmetry transformation in equations (4) and (5).

With respect to the optical helicity, Lipkin’s zilch in equation (1) can be regarded as the next-order term in
the infinite hierarchy of higher-order conserving zilches [5, 32]. Although being different fromoptical helicity in
general, formonochromatic fields, Lipkin’s zilch becomes proportional to the helicity. Both quantities are
determined by the difference between left and right polarized photon numbers [30, 31]. Tang andCohen
proposed to use Lipkin’s 00-zilch as ameasure of optical chirality in light–matter interactions [21, 23].

A different approach to zilch conservation laws has been developed in [9–11] on the basis of the Lie–Noether
analysis. Recently, Philbin explicitly demonstrated that zilch conservation can be obtained from the standard
electromagnetic Lagrangian L E B 22 2= -( ) by applying a specific ‘hidden’ gauge symmetry transformation
of themagnetic vector potential, A A Ath + ´ ¶ , with infinitesimal parameter η [16], similar toCalkin’s
original arguments [17].

Another powerful tool, different form the Lagrangian–Noether approach, that we used throughout this
paper, is amethod of the nongeometric symmetries developed by Fushchich andNikitin [8]. The advantage of
thismethod is that it is solely based on the analysis of the equations ofmotion and, therefore, does not rely on
any ambiguity in specific gauge choice or Lagrangian representation. This factmakes it possible to generalize this
approach toMaxwell’s equations inmedia with given constituent relations.

For the symmetry analysis, it is essential tofind convenient representation ofMaxwell’s equations.We use
the Silberstein–Bateman form,which is convenient towork in themomentum space. The transformation to the
momentum space is reached by

E r E pt p t,
1

2
d e , , 7p r

3 2
3 iòp

=( )
( )

( ) ( )·

B r B pt p t,
1

2
d e , . 8p r

3 2
3 iòp

=( )
( )

( ) ( )·

In the Silberstein–Bateman representation, the first pair ofMaxwell’s equations in equation (2) is expressed
in terms of a Shroedinger-like equation for a six-component vector column p E Bt , , Tf =( ) ( )

p
p

t

t
ti

,
, , 9

f
f

¶
¶

=
( ) ( ) ( )

where is theHermitianmatrix given by

S p
S p

S p

0 i

i 0
, 102 s= - Ä =

-

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ˆ · )

( ˆ · )
( ˆ · )

( )

which can be considered as an analog of the quantum-mechanical Hamiltonian. Here, we introduced 3×3 spin
matrices Saˆ withmatrix elements S i= -a bg abg( ˆ ) , where abg is the Levi-Civita symbol,⊗means theCartesian
product, and sm ( 1, 2, 3m = ) are 2×2 Paulimatrices. Inwhat follows, we hold the following notations. The

‘hat’ is used to distinguish 3×3matrices. Calligraphic style is reserved for the 6×6matrices. 0s and Î denote
two- and three-dimensional unitmatrices, andGreek indices run over the three-dimensional space.

The second pair ofMaxwell’s equation (3) is equivalent to the additional constraint imposed on pt ,f ( ) [8]:

p pt p, 0, , 112 2 f = = -( ) ( · ) ( )

where S0 sº Ä ˆ, which accounts for the transversal character of the electromagnetic field. For real pt ,f ( ),
one should also require p pt t, ,*f f= -( ) ( ).

Now let usfind all the transformations in the p-space given bymatrices pA ( ) that transform a solution of
Maxwell’s equations pt ,f ( ) into another solution p p pt t, ,Af f¢ =( ) ( ) ( ). Following [8], wewill call pA ( )
nongeometric symmetry transformations. The total number of such pA ( ) is given in the theorem, which claims
thatMaxwell’s equations in vacuum are invariant under the eight-dimensional Lie algebra:

S p D I, i , 121 3 2 2 s s= Ä = Ä( ˆ · ˜ ) ˆ ˆ ( )

S p D D, , 133 1 4 1 s s= - Ä = - Ä( ˆ · ˜ ) ˆ ˆ ( )

S p D, , 145 0 6 3 s s= Ä = - Ä( ˆ · ˜ ) ˆ ( )

S pI , i , 157 0 8 2 s s= Ä = Äˆ ( ˆ · ˜ ) ( )
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where f p p p p p p1
2

2
2

1
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3
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2
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3
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3
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2
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3
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1
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2

1
2

3
2 1 2d = - + - -[ ( ) ( )( )] . The basis

elements form the algebra, which is isomorphic to the Lie algebra of the groupU U2 2Ä( ) ( ) [8].
All the basis elements in equations (12)–(15) commutewith in equation (10) and act as generators for the

continuous symmetry transformations

p pt t, exp , , 17A Af q f( ) ( ) ( ) ( )

where Aq are real parameters.
Analogywith quantummechanics suggests that one can find conserving quantities related to the symmetry

transformations A , which can be conveniently formulated in terms of bilinear forms:

p pp t t
1

2
d , , , 18A A

3 ò f fá ñ = ( ) ( ) ( )†

where is any operator commutative with.
Some symmetry transformations in equations (12)–(15) have transparent physical interpretations. For

example, 7 is the identity transformation. The corresponding conserving quantity is the electromagnetic
energy

p pp t t p E B
1

2
d , ,

1

2
d . 197

3
7

3 2 2 ò òf fá ñ = = +( ) ( ) ( ) ( )†

The duality transformation in equations (4) and (5) also belongs to the class on nongeometric symmetries.
This symmetry is generated by 2 , in accordancewith equation (17).

Electromagnetic chirality can be expressed as a conserving quantity that corresponds to the operator p 5 .
Indeed, the expression

p p pC p t t
1

2
d , , 203 ò f f=c ( )( · ) ( ) ( )†

is transformed into equation (1) in the real space. Inwhat follows, wewould refer to 5 as a helicity operator,
since electromagnetic helicity in equation (6) can be also expressed in terms of a bilinear form containing this
operator acting in the space A C,( ).

By noting that p i t5 2  = - = ¶ , we can find an alternative formof the optical chirality expressed via the
duality operator

p pC p t t
i

2
d , , . 21t

3
2ò f f= - ¶c ( ) ( ) ( )†

However, as we show in the next sections, the identity above between 5 , 2 , and does not necessary hold in
crystals, where it is possible that either 2 or 5 is allowed symmetry along a certain crystallographic direction,
but not both simultaneously.

Using the ambiguity in the choice of in equation (18), we can identify the hierarchy of higher-rank
conserving zilches, which contain high-order derivatives of electromagnetic fields. Substituting

p1 n m n m2 2 1 = - + +( ) into equation (21) (apparently, it commutes with), we obtain the following
conserving quantities:

B E E BC r
1

2
d , 22m n n

t
m n

t
m, 3 2 2 1 2 2 1ò=  ¶ -  ¶c

+ +( · · ) ( )( )

whichwere found previously by othermethods (see e.g. [16, 19, 20]).

3.General formalism inmedia

The formalismof nongeometric symmetries can be generalized toMaxwell’s equations inmedium,where
symmetry of constituent relations imposes additional constraints on the formof conservation laws. In general,
this leads to the reduction of the original eight-dimensional invariance algebraA8 to a smaller number of
elements. In this section, we analyze the situationwhen the electromagnetic field propagates in a time-
independent dielectricmedium.We show that, basically,A8 shrinks to one of its commutative subalgebrasA4

with four basis elements. In the subsequent sections, we demonstrate that this situation is common for isotropic
chiralmedia as far as for chiral gyrotropic crystals when light spreads along the principal symmetry direction.
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It should bementioned that the existence ofA4 symmetry does not guarantee the conservation of optical
chirality, as we discuss at the end of this section.

On amacroscopic level,Maxwell’s equations in dielectricmedia can be expressed as follows:

E B H D, , 23t t ´ = -¶ ´ = ¶ ( )

D B0, 0, 24 = =· · ( )

which should be accompanied by constituent relations. Inwhat follows, we consider the following formof
constituent relations:

D p

B p
p

E p

H p

t

t

t

t

,

,

,

,
, 25=

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( )
( ) ( )

( )
( ) ( )

where themomentum representation is used. Thematrix p( ) is supposed to be time-independent and
determined by the properties of themedium.

For symmetry analysis in themedium, it is convenient to introduce the Silberstein–Bateman vector
p D Bt , , Ty =( ) ( ) . In this case, the first pair ofMaxwell’s equations is written as

0, i , 26t    y = = ¶ - ( )( ) ( ) ( )

where

S p , 272
1  s= - Ä -( ˆ · ) ( )( )

and the constraint on pt ,y ( ) imposed by the second pair ofMaxwell’s equations is the same as in equation (11).
For a common situationwhen constituent relations do notmix up electric andmagnetic fields, equation (27)

is reduced to the following expression:

S p p

S p p

0 i

i 0
, 28

1

1
 

m

e
=

-

-

-

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( ˆ · ) ˆ ( )
( ˆ · ) ˆ ( )

( )( )

where p1e-ˆ ( ) and p1m-ˆ ( ) are inverse permittivity and permeability tensors.

3.1. Nongeometric symmetries
In general, itmay be a tedious problem tofind symmetry transformations forMaxwell’s equations in amedium.
However, the task is alleviated along the directions where transverse electromagnetic waves can propagate.
Mathematically, it corresponds to p( ) being commutative with  in equation (11) along such directions. In
this case, to identify possible symmetry transformations, we apply a transformation 1y y= -¯ to the basis,
where ( ) and  are both diagonal:

diag , , 0, , , 0 , 291
1 2 4 5     w w w w= =-¯ ( ) ( )( ) ( )

p pdiag 0, 0, , 0, 0, , 301 2 2  = =-¯ ( ) ( )

where parameters pi iw w= ( ) are real-valued in the absence of dissipation. Note that, since in the original basis
 ( ) is not necessary aHermitianmatrix, the transformation  may be nonunitary.

For the diagonal operators in equations (29) and (30), it is easy tofind the invariance algebra. The number of
basis elements in the invariance algebra depends on the symmetry relations between iw (see appendix A for
mathematical aspects of the derivation). In the absence of any degeneracies between iw , all symmetry
transformations in the ȳ-basis are given by four diagonal operators. The basis in this four-dimensional linear
space can be chosen as follows:

diag 1, 1, 0, 1, 1, 0 , 31a = - -¯ ( ) ( )

diag 1, 1, 0, 1, 1, 0 , 32b = - -¯ ( ) ( )

diag 1, 1, 0, 1, 1, 0 , 33c =¯ ( ) ( )

diag 1, 1, 0, 1, 1, 0 , 34d = - -¯ ( ) ( )

which can be conveniently expressed by theKronecker product of ,0 3s s{ }and I , G{ˆ ˆ }, where
diag 1, 1, 0G = -ˆ ( ), which forms theKlein four-group isomorphic to the direct sum 2 2 Å [43]. The formof

these operators in the original basisψ is reached by the inverse transformation y y= ¯ .
From equations (31)–(34), we conclude that a radiation field inmedia is invariant at least under the four

commutative symmetry transformations, whichwewill refer to asA4 symmetries. This group has two trivial
elements that correspond to the identity and i t ¶ º . The latter simply states that in a time-independent
medium the time derivative of the solution is again the solution. The physicalmeaning of the other two elements
is determined by the constituent relations encoded into the transformation  . Let us note thatA4 is aminimal

5
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symmetry. In the case of additional degeneracies between different iw in equation (29),A4 becomes a subalgebra
of a larger invariance algebra.

For illustration, we consider a free electromagnetic field. In vacuum, the diagonal formof in equation (10)
is reached by unitary transformation y y= ¯ , where U U2 = Ä L̂ combines the transformation to the helicity
basis:

U , 35

p p p p

pp

p p p p

pp

p

p

p p p p

pp

p p p p

pp

p

p

p

p

p

p

p

p

i

2

i

2

i

2

i

2

2 2

1 3 2 1 3 2 1

2 3 1 2 3 1 2

3

=

-

-

-

L

+ -

- +
^ ^

^ ^

^ ^

⎛

⎝
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⎞

⎠

⎟⎟⎟⎟⎟
ˆ ( )

where S p( ˆ · ) is diagonal, andwith SU(2) rotation in the pseudospace of D and B vectors

U
1

2
i . 362 0 1s s= -( ) ( )

Comparing the resulting diagonal formof,

p p p p pdiag , , 0, , , 0 , 373   s= = Ä G = - -¯ ˆ ( ) ( )†

with equation (29), we find that ̄ has two degeneracies between iw , namely, p1 5w w= = - and p2 4w w= = .
The existence of these degeneracies, according to (A6), means that the symmetry transformation A̄ in (A5)
contains in total eight free parameters: q11, q22, q44, q55, q15, q24, q51, and q42. In the original basis 1y y= - ¯ , it
gives rise to the eight-dimensional algebraA8 in equations (12)–(15). Under the inverse transformation, four
diagonal operators in equations (31)–(34) transform into a 2 ¯ , b 5 ¯ , c 7 ¯ , and d 8 ¯ .

3.2.Optical chirality
The generalization of the conservation laws in equation (18) inmedia is straightforward.We define conserving
quantities as

p p p pp t t
1

2
d , , , 38A A

3 ò y r yá ñ = ( ) ( ) ( ) ( ) ( )†

where A is one of the symmetry transformations. The scalar product ismodified by 1 1 r = - -( )† for
nonunitary  . For anyHermitianmatrix, the property 1r = is restored.

In general, the existence of the symmetries defined in equations (31)–(34) does not automatically ensure the
conservation law for optical chirality. It can be introduced if the invariance algebra contains an element that
yields a conserving pseudoscalar Cc, which is simultaneously even under time-reversal and odd under spatial
inversion symmetries.

The existence of Cc is justified in amedium that has duality symmetry [41, 44]. In this case, the duality
transformation Iidual

1
2 r s= Ä- ( ˆ) is one of the symmetries, and Cc can be introduced as a conservation of

A tdual = ¶ in equation (38) that eventually leads to the following formof optical chirality:

B D D BC p
1

2
d . 39t t

dual 3 * *ò= ¶ - ¶c ( · · ) ( )( )

The general formof the constituent relations inmedia, which preserves the duality transformationwas obtained
in [41]. It was demonstrated that a necessary and sufficient condition for the system to remain self-dual is
commutativity of the duality transformation generator and thematrix of constituent relations.

Unlike a free electromagnetic field, where conservation of tdual ¶ is equivalent to the helicity conservation
(see equations (20) and (21)), inmedia it is possible that the helicity is conserved even if the systemdoes not have
dual symmetry. In this case, we define Cc as a conservation of the p( · ) operator in equation (38). A general
criterion for the helicity conservation is commutativity of the p( · ) operatorwith thematrix of constituent
relations.

Note that there is no ambiguity in the definition of optical chirality if the system is invariant under both the
duality symmetry and the helicity transformations. In this case, these two elements belong to the same set of
transformations in equations (31)–(34), whichmeans that the product tdual ¶ is a linear combination of other
symmetry elements ofA4 that include p( · ).

4.Optical chirality inmedia

In dielectricmedia, optical activity is a usualmanifestation ofmicroscopic structural chirality. This effect, in
general, is related to noncentrosymmetry and is shared by both chiral and achiralmaterials [45]. On a
macroscopic level, optical activity can be described by proper constituent relations.Historically, constituent
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relations describing natural optical activity werefirst developed in the Born–Drude–Fedorov (BDF) form
[46–49]:

D E E , 400ee a= + ´ˆ ( ˆ ) ( )

B H H , 41T
0mm a = + ´ˆ ( ˆ ) ( )

where ê and m̂ are the electric permittivity and themagnetic permeability tensors, and â is the gyration tensor
( Tâ means transposed â).

Another formof constituent relation that features optical rotation, whichwewill refer to as chiral
magnetoelectric (CME) constituent relations, comes from the general relativity covariance principle [49, 50] and
can bewritten as follows:

D E Hi , 420 ee= +ˆ ˆ ( )

B H Ei , 43T
0 mm= -ˆ ˆ ( )

where ̂ is themagnetoelectric tensor [51].We note that these relations are usually formulated in the frequency
domain for time-harmonic electromagnetic fields with the frequency factorω being included in ̂ . Inwhat
follows, whenwe useCME relations, we imply that the formalismof complex time-harmonic fields is used,
where time dependencies are given by texp iw-( ).

TheCME formof constituent relations is frequently used in chiralmetamaterials [26, 52] and in crystals with
gyrotropic birefringence [53, 54]. Themutual relation between the BDF andCME equations has been studied by
several authors [55–57].

4.1. Isotropic chiralmedia
Let usfirst consider optical chirality in isotropic chiralmedia characterized by constituent relations of either
BDForCME types. Both types share a number of common features, and therefore, we carry out the discussion in
parallel. To avoid redundant complications, we use the units where 10 0ee mm= = and restore SI units
whenever necessary.

Thematrix formof constituent relations in themomentum space is given by equation (25)with

p
S pI

I

, BDF,

, CME,
440

0 2




s a

s s
=

Ä +

- Ä

⎪

⎪

⎧
⎨
⎩( ) ( ˆ ( ˆ · ))

( ) ˆ
( )

where the upper (lower) line is for constituent relations in equations (40) and (41) (equations (42) and (43)),
which thus provides theHermitianmatrix

S p S p

S p

p1
, BDF,

1
, CME,

45
2

2

2 2

2 0 2








s
a
a

s s

=
- Ä

-
-

- + Ä
-

⎧
⎨
⎪⎪

⎩
⎪⎪

( ˆ · ) ( ˆ · )

( ) ( ˆ · )
( )( )

which is invariant under both duality and helicity transformations.
Tofind the complete set of nongeometric symmetries, we diagonalize ( ) by applying the same unitary

transformation as in vacuum, U U2 = Ä L̂, whereUL̂ andU2 are defined in equations (35) and (36),
respectively, which leads to the diagonal form

p p p pdiag , , 0, , , 0 , 46  = - - - + 
¯ ( ) ( )( )

with the upper (lower) sign for the BDF (CME) constituent relation, and p p p1 1a=
-( ) (p p 1 1=

-( ) )
for BDF (CME).

In chiralmedia, symmetry breaking between left and right polarized states removes the degeneracy between
the eigenvalues of ¯ ( ), and according to equations (29) and (A5), the set of nongeometric symmetries is
reduced to four elements with the following basis:

S pIi , , 472 2 5 0 s s= Ä = Äˆ ( ˆ · ˜ ) ( )

S pI , i , 487 0 8 2 s s= Ä = Äˆ ( ˆ · ˜ ) ( )

which includes both duality ( 2 ) and helicity ( 5 ) transformations. Therefore, in isotropic chiralmedia, similar
to the case of a free electromagnetic field, we can say that duality symmetry is related to the helicity conservation.

Since duality symmetry is preserved, Lipkin’s zilch is directly obtained from equation (39), which in the
r-space is written as

7
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B D D BC r
1

2
d . 49t t

iso 3 * *ò= ¶ - ¶c ( · · ) ( )( )

Here, and in equations (50)–(55), we hold the following convention. For BDF constituent relations one has to
remove complex conjugations for the fields in r-space. In contrast, for CME relations allfields are supposed to
be time-harmonic complexfields, and t¶ should be replaced by iw- infinal expressions. The transformation
to SI units in equation (49) is rendered by substitutions

D D B B

H H t t

, ,

, ,

0
1

0 0

0

0
0 0

1
2

1
2

1
2

ee ee mm

mm
ee

ee mm

 

 

- -

-
⎛
⎝⎜

⎞
⎠⎟

( ) ( )

( )

supplemented by C Ciso
0

isoeec c
( ) ( ).

We emphasize that in infinite homogeneousmediumoptical chirality can be expressed in several equivalent
forms. For example, instead of the operator t2 ¶ that gives the conservation law in equation (49), we can
consider another symmetry operation t2

1  ¶- , which leads to

B E D HC r
1

2
d . 50t t

iso 3 * *ò= ¶ - ¶c ( · · ) ( )( )

However, in the realistic case, we should also care about the conservation of chiralityflow across the boundaries
separating differentmedia, which removes this ambiguity.

The situationwith several forms of optical chirality is not new. A similar situation occurswith the energy
density in chiralmaterials. In the absence ofboundaries, energy density can be also expressed in several
equivalent forms.However, only one form guarantees proper energy balance across the boundary between two
chiralmedia [49]. It was demonstrated by Fedorov [49] that the physical formof energy density depends on the
choice of constituent relations as follows:

D D B B

E D H B

1

2

, BDF,

, CME.
510

1
0

1

* *

ee mm
=

+
+

- -⎧⎨⎩
( ) · ( ) ·

· ·
( )E

Weanticipate that similar to energy density, optical chirality for BDF andCME constituent relations should be
taken in different forms.

The situation becomesmore transparent in the spatially nonuniform spacewhere re ( ), rm ( ), ra ( ), and
r( ) depend on the local position. Looking for the proper formof zilch density in the real space, we have settled

on the following choice:

B D D B

B E D H
1

2

, BDF

, CME,
52

t t

t t0 0* *
r

ee mm
=

¶ - ¶
¶ - ¶c

⎧⎨⎩
· ·
· ·

( )

which corresponds to C iso
c
( ) given by equation (49) (equation (50)) for a BDF (CME)medium.

In the nonuniform space, the conservation law for rc is violated by the source termon the right-hand side of
the continuity equation

J rF t, . 53tr ¶ + =c c· ( ) ( )

However, both expressions for zilch density in equation (52) are related to the same zilch flow

J E E H H
2 2

, 54t t
0 0* *
e e m m

= ´ ¶ + ´ ¶c ( )

and the source term

r E E H HF t,
2 2

. 55t t
0 0* *
e

e
m

m = ´ ¶ + ´ ¶( ) · · ( )

The source term contains only gradients of e andμ. In this regard, wemention [58]where it has been
demonstrated that in isotropic time-independentmedia themixing of helicity occurs only in the presence of the
space-dependent ‘resistance’ proportional to r rm e( ) ( ) . Similar to [58], the absence of the gradients of
gyrotropic constants in rF t ,( ) justifies continuity of Jc between two chiralmedia if m e remains the same
across the boundary5.

We emphasize that the absence of a or  in the source term takes place only for the formof rc in
equation (52).

5
If the relation r r Constm e =( ) ( ) holds inmediumwith constituent relations in equations (40)–(43), thismedium is self-dual according

to [41]. In this case, we can also rewrite equation (53) in the formof conservation law for redefined rc and Jc.
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4.2.Optical chirality in crystals
In crystals, nonequivalent directionshave different symmetries that are encoded in the structure ofmaterial
tensors. Therefore, our general formalism shouldbe appliedwith respect to certain crystalline directions.Wenote
that, in this section, under the duality andhelicity symmetries, wemean the symmetry transformationswith
respect to the principal axis. This resembles the situationwith forward andbackward scattering symmetry
theorems,where the explicit formof theMuellermatrix for light scattering shows features that are related to the
crystal symmetry of the dielectric scatter [59].

Fundamentally, anisotropic gyrotropicmedia are split into two different groups, namely, crystals with
gyrotropic birefringence andmediawith natural optical activity, which showdifferent behaviorwith respect to
mirror reflections [49].

Let usfirst briefly focus on crystals with gyrotropic birefringence. Thesematerials are characterized by the
following constituent relations [53, 54]:

D a E Ei , 56se e= + ´ =(ˆ ) ˆ ( )

B b H Hi , 57sm m= + ´ =( ˆ ) ˆ ( )

with a and b being the gyrotropic vectors, and sê ( sm̂ ) stands for the diagonal part of ê (m̂).We consider the case
when a and b are parallel to the high-symmetry direction taken as the z-axis. The explicit formof ê and m̂ for
some point groups is given in table 1. As is well known, this kind of gyrotropy is prohibited in cubic crystals [49].

The constituent relations in equations (56) and (57) preserve the duality symmetry [41]. Apparently, along
the z-axis the helicity operator Sẑ is also a symmetry transformation, since it commutes with the constituent
relations. Taking into account broken inversion symmetry, we conclude that similar to the isotropic chiral
media, the set of nongeometric symmetries in birefringent crystals for p z ˆ is four-dimensional. It contains

identity, i t¶ , Sẑ , and duality dual . The latter guarantees conservation of chirality in the formof equation (39).
Maxwell’s equations in crystals with natural optical activity are given by equations (26)–(28)with the

following permittivity and permeability tensors:

p S pI , 58se e a= +ˆ ( ) ˆ ( ˆ ˆ ( ˆ · )) ( )

p S pI . 59s
Tm m a= +ˆ ( ) ˆ ( ˆ ˆ ( ˆ · )) ( )

Henceforth, we point p along the symmetry axis, p pz= ˆ. Different forms of the gyration tensor for point
groups in cubic, tetragonal, and hexagonal crystal families are listed in table 2. In these crystal families, sê and sm̂
are given by the diagonal parts of ê andμ in table 1. Apparently, the cubic case is identical to isotropicmedia.

All point groups in table 2 arenoncentrosymmetric andbreakdown into chiral and achiral parts. The former
are represented by the point groups of 11 enantiomorphicpairs of chiral space groups, namely,T,O,Cn, andDn

(n 3 ) [60], while the latter are given byS4,D2d, andCnv. For a reviewof natural optical activity in achiralmaterials
see, for instance, [45, 49].

Let us consider symmetry transformations in crystals with natural optical activity. According to the
conditions for dual systems (see equation (11) in [41]), wefind that the constituent relations in equations (58)

Table 1.Parameters and point groups in crystals with gyrotropic birefringence.

Tensors Point groups

a
a

b

b
i 0

i 0
0 0

,

i 0

i 0

0 0
e

e
e

e
m

m
m

m
=

-
=

-^

^

^

^

 

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟ˆ ˆ

C C m S

C S

C C C m

Tetragonal: 4 , 4 , 4

Trigonal: 3 , 6

Hexagonal: 6 , 6 , 6

h

h h

4 4 4

3 6

6 3 6

( ) ( ) (¯)
( ) ( )

( ) (¯) ( )

a b z,em me=  ˆ ˆ ˆ ˆ ˆ

Table 2.Gyration tensor in different point groups.

Gyration tensor â Point groups Gyration tensor â Point groups

0
0

0 0 0

0 2

2 0

a a
a a-

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Tetragonal: S4 (4̄) 0 0
0 0

0 0 0

2

2

a
a

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Tetragonal:D2d ( m42¯ )

0
0

0 0

0 2

2 0

1

a a
a a

a
-

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

C

C

C

Tetragonal: 4

Trigonal: 3

Hexagonal: 6

4

3

6

( )
( )

( )

0 0
0 0

0 0 0

2

2

a
a-

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

C mm

C m

C mm

Tetragonal: 4

Trigonal: 3

Hexagonal: 6

v

v

v

4

3

6

( )
( )

( )
0 0

0 0
0 0

0

0

1

a
a

a

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

D

D

D

Tetragonal: 422

Trigonal: 32

Hexagonal: 622

4

3

6

( )
( )

( )

0 0
0 0
0 0

0

0

0

a
a

a

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Cubic:T (23),O (432)
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and (59) preserve the duality symmetry only if Ta a=ˆ ˆ . Thismeans that the duality symmetry is broken inCn

andCnv (n 3 ) point groups (see table 2).
At the same time, â commutes with the helicity transformation Sẑ inCn andCnv (n 3 ), while in D d2 and S4

commutativity between â and Sẑ does not hold. The conservation of helicity inCn andCnv is supported by the
scattering theorem, which states that electromagnetic forward scattering in linear systemswith the discrete
rotational symmetry (n 3 ) can be only helicity preservingwhen light spreads along the principal axis [42].

The examples above demonstrate that in crystals with natural optical activity it is possible that either the
duality or helicity operator is the symmetry transformation but not both of them at the same time.We consider
these two cases inmore detail in the following sections.

4.2.1. Conservation of helicity with broken duality
Let us consider nongeometric symmetry transformations inCn point groups (n 3 ). The gyration tensor â is
given in table 2. For illustration, a chiral crystal belonging to theC4 point group is shown infigure 1(a).

The diagonal formof ( ) in equation (28) is brought forth by the unitary transformation

p pt t, , 60Cy y=( ) ¯ ( ) ( )

(see appendix B for the explicit formof C ) that brings about

p p p pdiag , , 0, , , 0 , 61 = - -+ - + -
¯ ( ) ( )

with p p p p1 0
2

2
2 2 1 2a a= +

-[( ) ] .
The formof equation (61) suggests that inCn point groups the invariance algebra for the light spread along

the high-symmetry direction is four-dimensionalA4. In the transformed frame, the basis elements are given in
equations (31)–(34). However, in achiral point groupsCnv, we have additional constraint 00a = (see table 2),
which restores the symmetry between left and right polarized states, p p=+ -, and the resulting invariance
algebra becomes eight-dimensional, which is in agreement with equation (A6).

In order to define optical chirality, we construct the following operator in the transformed frame:

p
p

p

p

p2 2
, 62a d a d    = + + -c

- +

¯ ( ) ( ¯ ¯ ) ( ¯ ¯ ) ( )

which in the original basis is written as

p
S p

S p

I

I

0 i i

i i
. 63

T


a

a
=

- -

+
c

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( )

ˆ ˆ ( ˆ · )
ˆ ˆ ( ˆ · )

( )

Wecan use this operator to define optical chirality. Using iA t = ¶c in equation (38), optical chirality in
point groupsCn andCnv is obtained as

D B B D

D p B B p D

C p

p

1

2
d

i

2
d . 64

c
t t

t
T

t

3

3

* *

* *

ò

ò a a

= ¶ - ¶

+ ´ ¶ - ´ ¶

c ( · · )

( · ˆ · ˆ ) ( )

( )

Figure 1.Crystals with (a)C4 and (b) S4 point groups.
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By using the constituent relations in equations (58) and (59), this equation can be rewritten in a compact form

D p D B p BC p
i

2
d , 65c

s s
3 1 1* *ò e m= - ´ + ´c

- -( · · ) ( )( )

which is nothing but the conservation law for the helicity operator p( · ˜) (see equation (B9) in appendix B).

4.2.2. Duality symmetry without helicity transformation
The gyration tensor in point groups S4 andD2d is given in table 2.We take â in the form that corresponds to the
S4 group. The case of theD2d group is obtained by setting 00a = . An example of an achiral crystal with an S4
point group is demonstrated infigure 1(b).

The unitary transformation that diagonalizes ( ) in S4 andD2d is defined as

p pt t, , , 66Sy y=( ) ¯ ( ) ( )

where S is specified in appendix C,which leads to the following diagonal form in equation (29)

p p p pdiag , , 0, , , 0 , 671 1 1 1  = - -¯ ( ) ( )( )

where p p p11 0
2

2
2 2 1 2a a= + + -[ ( ) ] .

Equation (67) shows that unlikeCn point groups, the symmetry properties of in S4 andD2d, for p along
the principal axis, are similar to the case ofCnv point groups. The invariance algebra of the symmetry
transformations in S4 andD2d is eight-dimensional since the symmetry between left and right polarized states
remains unbroken, which is related to the absence of optical rotation along the symmetry direction in achiral
crystals [45].

Since in S4 andD2dwehave Ta a=ˆ ˆ for p z ˆ, the constituent relations preserve the duality symmetry, which
means that dual enters the invariance algebra. Thismeans that optical chirality in S4 andD2d groups is given by
equation (39).

We emphasize that the helicity operator p( · ˜) does not belong to the symmetry transformations in S4 and
D2d point groups even for p z ˆ6. Instead, the role of the helicity operator is played by p th

1
dual = - ¶- , whose

explicit form is given by

p p

p p

0

0
, 68h

1

1





e

m
=

-

-

⎛
⎝⎜

⎞
⎠⎟

( · ˜ ) ˆ ( )
( · ˜ ) ˆ ( )

( )

wherewe used the identity i t  ¶ º ( ) togetherwith equation (28).

4.3. Lack of duality symmetry and helicity
In systemswith low crystalline symmetry, the definition of optical chiralitymeets with difficulties. For
illustration, we consider a simple example of the nongyrotropic system that belongs to the orthorhombic crystal
class. In this case, the electric permittivity andmagnetic permeability tensors in principal axes are given by
diagonalmatrices diag , ,1 2 3e e e e=ˆ ( ) and diag , ,1 2 3m m m m=ˆ ( ).

For the diagonal ê and m̂, the symmetry analysis developed in section 3 remains valid along the principal
axes.We consider one particular direction taken as the ẑ-axis, andfix p pz= ˆ. To implement the general
formalism in equations (26)–(28), we use the nonunitary transformation 2y y= ¯ ( 2 is specified in
appendixD), which leads to the diagonal form,

p p p p
, , 0 , , 0 , 69

1 2 2 1 1 2 2 1

 

e m e m e m e m
=

- -⎛
⎝
⎜⎜

⎞
⎠
⎟⎟¯ ( )( )

prescribed by equation (29). In accordance with equation (A6), the symmetry transformations in the
transformed frame are given in equations (31)–(34).

However, neither duality nor helicity operators can be expressed in this basis. To illustrate this fact, we apply
the inverse transformation to the initial basis, 2

1y y= -¯ , to the operators in equations (31)–(34).
Straightforward calculation yields the following basis operators in the initial frame:

, , 70a b3 2
1

6 2
1     r r¢ = ¢ =- -¯ ¯ ( )

, , 71c d7 2
1

8 2
1     r r¢ = ¢ =- -¯ ¯ ( )

where the explicit formof thesematrices is given in appendixD.Now if we take the limiting case of the isotropic
system, 1i ie m= = (i 1, 2= ), wewillfind that equations (70) and (71) aremapped to the commutative

6
Here, under the helicity wemean the projection of the spin onto the direction of propagation, p( · ˜).We note that to discuss the physical

helicity expressed through the difference in population of left and right polarized photons, one has to construct a photonwave function in
chiral crystals with S4 andD2d groups, which is, however, beyond the scope of our symmetry analysis.
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subalgebra , , ,3 6 7 8   { }ofA8 (see equations (12)–(15)), which contains neither 2 (duality)nor 5
(helicity) operators.

From equations (70) and (71), wefind that the only possibleT-even andP-odd combinations are pz 6¢ and
pz 7¢ . However, substitution of these expressions into equation (38) gives zero. Therefore, wemake a conclusion
that it is not possible to construct optical chirality in the system,where both duality and helicity are absent. This
result is supported by the conclusions in [42] that helicity-conserving scattering theorems do not exist for
systemswith one- and two-fold principal rotational axes.

5. Summary

Weexamined the symmetry properties ofMaxwell’s equations in various types of gyrotropicmediawith a
particular focus on the conservation of optical chirality. For this purpose, we extended the formalism of
nongeometric symmetries in vacuum to amediumwith given constituent relations.Within this approach, a
conclusion about the conservation of optical chirality is reduced to the analysis of the invariance algebra of the
nongeometric symmetries and establishing possible isomorphism between some elements of this algebra and
operators of the helicity and duality symmetries in vacuum. The advantage of this approach is that it suggests a
straightforwardway to derive various conservation laws related to the invariance algebra ofMaxwell’s equations.

Using thismethod, we constructed the conservation law for optical chirality in isotropic chiralmedia, as well
as in trigonal, tetragonal, and hexagonal crystals along the symmetry direction. In particular, we demonstrated
that in the gyrotropic crystals with natural optical activity, which belong to the point groupsCn orCnv, only the
optical helicity remains along the principal axis; whereas in the case of achiral optically active crystals of the point
symmetry S4 orD2d, only the duality transformation remains. In all presented examples, except the achiral
materials, we deal with a reduction of the original eight-dimensional invariance algebra in the vacuum to the
four-dimensional basis set. Additionally, we give an example of amediumwhere none of these symmetries is
conserved.
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AppendixA.Derivation of the invariance algebra inmedium

Wehighlight the derivation of the invariance algebra forMaxwell’s equations in (23) and (24). Any symmetry
transformation pA ( ) that transforms a solution p D p B pt t t, , , ,y =( ) ( ( ) ( )) of equations (23) and (24) into
another solution Ay y¢ = should satisfy the following invariance conditions:

g g, , A1A 11 12    = +[ ] ( )( ) ( )

g g, , A2A 21 22   = +[ ] ( )( )

where  and  ( ) are determined in equations (11) and (26), and gij denotes some arbitrary operators acting
onψ.

For the diagonal operators in equations (29) and (30), we can find the invariance algebra. Given the fact that
pA ( ) depends only on p, the invariance conditions in the transformed frame take the following reduced form:

g, , A3A 12   =[ ¯ ¯ ] ¯ ¯ ( )( )

g, , A4A 22  =[ ¯ ¯ ] ¯ ¯ ( )

where A A
1   = -¯ , and g12¯ and g22¯ denote some redefined operators.
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Themost general formof A̄ imposed by equation (A4) is rendered as

q q q q

q q q q

q q q q

q q q q

0 0

0 0

0 0 0 0 0 0
0 0

0 0

0 0 0 0 0 0

, A5A

11 12 14 15

21 22 24 25

41 42 44 45

51 52 54 55

 = +

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

¯ ¯ ( )

with some operator  . The last term in this equation can be safely dropped since it does not contribute to
finding the invariance algebra [8]. Then, the first invariance condition given by equation (A3) is satisfied for
commutative ¯ ( ) and A̄ .

To identify the invariance algebra, we explicitly calculate the commutator in equation (A3):

q q q

q q q

q q q

q q q

,

0 0 0

0 0 0

0 0 0 0 0 0
0 0 0

0 0 0

0 0 0 0 0 0

, A6A

12 2 1 14 4 1 15 5 1

21 1 2 24 4 2 25 5 2

41 1 4 42 2 4 45 5 4

51 1 5 52 2 5 54 4 5

 

w w w w w w
w w w w w w

w w w w w w
w w w w w w

=

- - -
- - -

- - -
- - -

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

[ ¯ ¯ ]

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( )( )

where equation (29) is used. The number of basis elements in the invariance algebra depends on the symmetry
relations between iw that occur in equation (29).When there are no degeneracies between iw (the lowest
symmetry case), all thematrices A̄ , which commutewith ¯ ( ), have diagonal formwith four free parameters

q q q qdiag , , 0, , , 0 , A7A 11 22 44 55 =¯ ( ) ( )

which corresponds to the set of basis operators in equations (32)–(34).

Appendix B. Transformations in point groupsCn,Cnv, andDn, n 3

In the point groupsCn,Cnv, andDn, the inverse tensors 1e-ˆ and 1m-ˆ in equation (28) are given by

d

p p

p p
1

1 i i 0

i 1 i 0

0 0 0

1 0 0 0
0 0 0
0 0 1

, B11
2 0

0 2e
e

a a
a a

e
=

+
- + +-

^ 

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ˆ ( )

d

p p

p p
1

1 i i 0

i 1 i 0

0 0 0

1 0 0 0
0 0 0
0 0 1

, B21
2 0

0 2*
m

m

a a
a a

m
=

-
- - +-

^ 

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ˆ ( )

where d a p1 2i2
2a= - +∣ ∣ and a pi0 2a a= +( ) . Inwhat follows, wewill use the units where 1e m= =^ ^ .

Thematrix ( ) in equation (28) is diagonalized in two steps. First, wemake a transformation to the helicity
basis

, B3    =L L L ( )( ) † ( )

where U0 s= ÄL L̂ (see equation (35)), which gives

M

M

0 i

i 0
, B4
*

  =
-

L

⎛
⎝⎜

⎞
⎠⎟

ˆ
ˆ

( )( )

where M p a p adiag 1 , 1 , 0*= - + +ˆ ( ( ) ( ) ). Second, we apply a unitary transformation

, B5M M    = L
¯ ( )( ) † ( )
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with

p

p a

p

p a

p

p a

p

p a1

2

i

1
0 0

i

1
0 0

0
i

1
0 0

i

1
0

0 0 2 0 0 0
1 0 0 1 0 0
0 1 0 0 1 0

0 0 0 0 0 2

, B6M
* * =

-
- -

-
+ +

+ +

- -

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

( ) ( )

( ) ( ) ( )

which gives the diagonal form equation (61). Altogether, thewhole transformation in equation (60) is rendered
by

. B7C M  = L ( )

Let us note that the conservation law for the optical chirality in equation (65) is obtained directly. If we notice
that the inverse transformation of b̄ in equation (32) gives the helicity operator

p , B8C b C   =( · ˜ ) ¯ ( )†

then optical chirality can be defined similar to equation (20):

p p pC p t t
1

2
d , , , B9c 3 ò y y=c ( )( · ) ( ) ( )( ) †

which corresponds to equation (65).

AppendixC. Transformations in point groups S4 andD2d

In achiral point groups S4 andD2d, we have the following 1e-ˆ and 1m-ˆ in equation (28):

a

p p

p p
1

1

1 i i 0

i 1 i 0

0 0 0

1 0 0 0
0 0 0
0 0 1

, C11
2

2 0

0 2e
e

a a
a a

e
=

+

-
+ +-

^ 

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ˆ

( ∣ ∣ )
( )

a

p p

p p
1

1

1 i i 0

i 1 i 0

0 0 0

1 0 0 0
0 0 0
0 0 1

. C21
2

2 0

0 2m
m

a a
a a

m
=

+

-
+ +-

^ 

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ˆ

( ∣ ∣ )
( )

In order to diagonalize ( ) in equation (28), we apply a sequence of unitary transformations

, C3S N 2   = L ( )

where U0 s= ÄL L̂, UN N0 s= Ä ˆ , and U I2 2 = Äˆ with

U U

a

a

a

a a

a

a

a

a a

a

a a

a

a a

1

2

1

2
0

i

2

i

2
0

0 0 1

,

2

1 1

1 1 2

1 1

1 1
0

2

1

1 1 2

1

1 1
0

0 0 1

.

C4

N

2

2 2

2

2 2

2 2 2 2

* *

=

-

=

- +

+ - +

+ +

+ + +

+ - + + + +

L

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

ˆ ˆ

∣ ∣ ∣ ∣

∣ ∣ ∣ ∣

∣ ∣ ∣ ∣

∣ ∣ ∣ ∣
∣ ∣

∣ ∣ ∣ ∣

∣ ∣

∣ ∣ ∣ ∣

( )

Note that N commutes with    = L L¯ † .
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AppendixD.Orthorhombic crystal

The diagonalization in equation (29) is carried out by applying

0 0 0 0

0 0 0 0

0 0 1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0 1

, D1

1

1 2

1

1 2

2

2 1

2

2 1

1

1 2

1

1 2

2

2 1

2

2 1

 =

-

-

e
e m

e
e m

e
e m

e
e m

m
m e

m
m e

m
m e

m
m e

+ +

+ +

+ +

+ +

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

( )

which commutes with  in equation (11).
The explicit formof A¢ in equations (70) and (71) is given by the following expressions:

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

,

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

, D2

3

2

2

2

2

8

2

2

2

2

1 2

1 2

2 1

2 1

2 1

2 1

1 2

1 2

1 2

1 2

2 1

2 1

2 1

2 1

1 2

1 2





¢ =

-

-

-

-

¢ =

-

-

e m
e m

e m
e m

e m
e m

e m
e m

e m
e m

e m
e m

e m
e m

e m
e m

+

+

+

+

+

+

+

+

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

( )

diag
2

,
2

, 0,
2

,
2

, 0 ,

2
,

2
, 0,

2
,

2
, 0 . D3

6
1 2

1

2 1

2

2 1

1

1 2

2

7
1 2

1

2 1

2

2 1

1

1 2

2





e m
e

e m
e

e m
m

e m
m

e m
e

e m
e

e m
m

e m
m

¢ = -
+ + +

-
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