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Abstract 

 

Steel-concrete composite slabs are gaining importance, due to the ease of construction 

without heavy lifting machinery and also the performance of steel decking as a 

permanent formwork and external reinforcement. At elevated temperatures, steel-

concrete composite slabs experience debonding of steel deck from the concrete slab. 

This debonding creates a layer of air which offers thermal resistance to the rise of 

temperature in the concrete slab. There is very limited numerical or analytical work 

in the literature that provides a rational framework for thermal resistance offered by 

this intermediate layer. Experiment data to support the modelling research is also very 

sparse.  

As a consequence of de-bonding of steel deck from the concrete slab, the heat 

transfer from the steel deck to the concrete slab is through radiation and conduction 

of the intermediate air layer. Preliminary structural analyses of the composite floor 

systems reported in the literature showed that a proper temperature calculation of the 

steel deck as well as concrete slabs is of great importance for the thermal gradient of 

the slab and thus for global load redistribution. The temperatures have a simultaneous 

effect on mechanical behaviour; and also the mechanical behaviour has a direct effect 

on temperatures, which can be understood through a fully coupled thermal-stress 

analysis. ABAQUS software is used for performing numerical simulations. However, 

there are certain limitations while defining the parameters of radiation. 

   The present work addresses a way to include the radiation 

effect due to debonding of steel deck in steel concrete composite slab, under standard 

fire conditions. The factors influencing the radiative heat transfer are studied in detail. 

As a first step, an uncoupled heat transfer analysis has been performed over a section 

of steel-concrete composite slab taking into account the radiation and conduction 

properties using interface elements. The radiation properties are accounted for, using 

equivalent conductance for the interface elements as a function of temperature. The 

concrete slab, the interface element and the steel deck are modelled using DC2D4 

elements. Material properties for steel and concrete are adopted from Eurocode. 
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Chapter 1 
 

Introduction 

   

This chapter describes briefly about the steel-concrete composite slabs, the de-

bonding effect of steel deck, and motivation behind the present study. 

 

1.1 Steel-Concrete Composite Slabs 

 

Steel Concrete Composite Slabs are used as roofs and floors to carry vertical loads in 

commercial structures such as buildings and bridges. They comprise of the concrete 

slab, which is cast on top of a flat/trapezoidal steel decking, and may include steel 

reinforcement along both the directions in the plane of the slab. Steel deck acts as 

permanent formwork for the concrete. The overall depth of slabs ranged from 100 mm 

to 150mm, with the height of steel deck from 45mm to 80mm and steel deck thickness 

ranging from 0.7mm to 1.5 mm. The profile of the steel deck can be flat, trapezoidal 

or re-entrant. For durability purposes, the steel deck is hot-dip galvanized. Indentation 

and embossments are used to improve the mechanical bond between the steel deck 

and the concrete slab. Main advantages of these composite slabs, as compared to the 

conventional reinforced concrete slabs are structural efficiency and speed of 

construction with ease. 

 

1.2 De-bonding in Steel-Concrete Composite Slabs under high temperatures 

 

When the bottom face of the slab is subjected to high temperatures, the steel deck is 

subjected to buckling and de-bonding from the bottom surface of the concrete. This 

occurs because the concrete, which was mechanically anchored to the concrete, gets 
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ripped off from the slab due to the release of steam. The steam releases because of the 

inherent moisture content present in the concrete slab.  

 When steel deck debonds from the concrete slab, it creates a layer of air 

between steel deck and concrete slab, which acts as a layer of insulation and therefore 

reduce the temperature rise at the bottom of the slab. Therefore, the temperature rise 

at the bottom of the slab is primarily due to phenomenon of convection and radiation 

from the heated steel deck, rather than the conduction through the steel deck. In most 

of the research work on the behaviour of structures at elevated temperatures, e.g. 

beams and columns, conduction phenomenon is the primary mode of heat transfer and 

most of the finite element packages such as ABAQUS have been very successful in 

performing thermal and stress analyses.   

 

1.3 Motivation behind the Study  

 The motivation factor behind the study is to predict the concrete temperatures 

with reasonable accuracy, post debonding. Many researchers state that preliminary 

structural analyses of composite floor systems require proper temperature calculation 

in the concrete slab, and thus predict better fire resistance of the composite slab 

system. Till date, researchers focused on developing the fundamental understanding 

of composite slabs, and have come up with models calculating the load capacity of 

the composite slabs. Because of the evident debonding effect, the contribution of steel 

deck is not considered and this leads to a conservative estimate of strength of 

composite slabs at elevated temperatures. The steel deck, however, plays an important 

role in determining the temperature distribution within the concrete, and thereby 

affecting the overall fire resistance. It prevents the hot gases and flame during the fire 

event, reducing the heat flow into the concrete and controls spalling. This is an 

advantage over the conventional reinforced concrete slabs. Accurate prediction of 

concrete temperatures would be useful in evaluating correct fire resistance, thereby 

economizing the use of insulation. 

The present work aims to propose an interface model, that can account for the 

thermal insulation of the interlayer between the steel deck and concrete slab. 
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Uncoupled heat transfer analyses are performed in ABAQUS using interface elements 

between steel deck and concrete slab. Detailed calibration and validation are used to 

find the appropriate thermal properties of the interface element, that account for the 

radiation and also the insulation effect between steel deck and concrete slab. As a 

consequence, an equation for predicting the surface temperature of concrete as a 

function of steel temperature is proposed which can evaluate the temperature 

distributions across the slab accurately.  
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Chapter 2 

 

Literature Review 

   

This chapter describes the factors influencing the radiation phenomenon in detail, and 

literature review of some experiments on steel-concrete composite slabs. 

 

2.1 Radiation: Introduction and Mathematical Definition 

Radiation is the phenomenon of heat transfer between two surfaces, or objects not in 

contact with each other. Unlike conduction and convection, which require a medium 

for heat transfer to take place, radiation can take place in vacuum. In most practical 

applications, all the three modes of heat transfer occur simultaneously, each mode 

with varying degrees of intensity. 

 Radiation is of two types: electromagnetic radiation and thermal radiation. Our 

interest is in thermal radiation, emitted as a result of energy transitions of molecules, 

atoms and electrons of a substance. At the microscopic level, the temperature is the 

measure of strength of these activities. In conduction and convection, the rate of heat 

transfer decreases with increasing temperature; whereas in thermal radiation, the rate 

of thermal radiation emission increases with increasing temperature. Thermal 

radiation is emitted by all the matter whose temperature is above absolute zero i.e. -

273 degrees centigrade. Thermal radiation is also defined as the portion of 

electromagnetic spectrum, that extends from about 0.1 to 100 µm i.e. it includes entire 

visible and infrared radiation, as well as a portion of ultraviolet radiation.  

The amount of radiation energy emitted from a surface depends on the material of the 

body and the condition of the surface and the surface temperature. Therefore, different 

bodies emit different amounts of radiation per unit surface area, even when they are 

at same temperature. The maximum amount of radiation that can be emitted by a 
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surface, at a given temperature is expressed with reference to an idealized body, which 

is termed as a blackbody.   

             A blackbody is said to be a perfect emitter and absorber of radiation.  A 

blackbody absorbs all incident radiation, and emits radiation energy uniformly in all 

the directions, per unit surface area, normal to the direction of emission.  

The radiation energy emitted by a blackbody per unit time, per unit surface area was 

determined experimentally by Joseph Stephan in 1879 and expressed as  

𝐸𝑏(𝑇) = 𝜎𝑇
4      (

𝑊

𝑚2
) 

Where 𝜎 = 5.67 x 10-8  (
𝑊

𝑚2𝐾4
)  is Stefan Boltzmann Constant  and ‘T’ is the absolute 

temperature of the surface in Kelvin. 

 

2.2 Heat Transfer and Boundary Conditions  

Heat transfer takes place in three possible ways: Conduction, Convection and 

Radiation. Conduction deals with heat transfer within the solids. Convection deals 

with heat transfer by the movement of the medium (i.e. flow of air/liquid) around the 

solid body. Radiation is the transfer of heat via electromagnetic waves.   

The heat conduction equation within a structural member is represented as  

𝜆𝑥
𝜕2𝑇

𝜕𝑥2
 + 𝜆𝑦

𝜕2𝑇

𝜕𝑦2
+ 𝜆𝑧

𝜕2𝑇

𝜕𝑧2
= 𝜌𝑐

𝜕𝑇

𝜕𝑡
 

where 𝜆𝑥, 𝜆𝑦, 𝜆𝑧 are the thermal conductivities of the material in Cartesian coordinate 

directions 𝑥, 𝑦, 𝑧 respectively; 𝑇 is the temperature;  𝑡 is the time;  𝜌 is the density of 

the material, and 𝑐 is the specific heat of the material.  

To solve the above equation, heat transfer boundary conditions should be provided on 

the surface of the structural member, which is exposed to the fire environment. The 

boundary conditions in the form of convection and radiation boundary conditions are 

given as  
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ℎ̇𝑛𝑒𝑡 = ℎ̇𝑛𝑒𝑡,𝑐 + ℎ̇𝑛𝑒𝑡,𝑟 

         ℎ̇𝑛𝑒𝑡,𝑐 = 𝛼𝑐(𝑇𝑔 − 𝑇𝑠),      ℎ̇𝑛𝑒𝑡,𝑟 = 𝜙𝜀𝑚𝜀𝑓𝜎[(𝑇𝑔 + 273)
4
− (𝑇𝑠 + 273)

4]    

where  ℎ̇𝑛𝑒𝑡,𝑐, ℎ̇𝑛𝑒𝑡,𝑟 are  heat flux per area from convection and radiation 

respectively (in W/m2);  𝑇𝑔 is the gas/fire temperature adjacent to the exposed 

surface; 𝑇𝑠 is the surface temperature, 𝛼𝑐 is the convective heat transfer coefficient 

(in W/m2-K);  𝜀𝑚 is the emissivity of the surface material, and 𝜀𝑓 is the emissivity of 

fire, usually taken equal to 1.0; 𝜎 = 5.67 𝑥 10−8
𝑊

𝑚2−𝐾4
    is the Stefan-Boltzmann 

Constant, and 𝜙 is the view factor or configuration factor.  The important 

parameters which affect the radiation heat transfer, emissivity and view factor are 

discussed in the next section in detail. 

 

2.3 Emissivity  

The emissivity of a surface is defined as “the ratio of radiation emitted by a surface 

at a given temperature to the radiation emitted by a blackbody at the same 

temperature”. It is denoted by 𝜀 and it varies between zero and one. The emissivity 

of a material is a measure of how close a surface approximates a blackbody, for which 

𝜀 =1.  

Hence, for a surface which is not a blackbody, the radiative energy per unit time per 

unit surface area can be expressed  

𝐸(𝑇) = 𝜎𝜀𝑇4      (
𝑊

𝑚2
) 

Calculation of heat flux from radiation, which dominates most of the heat transfer 

process, requires understanding and careful evaluation of the emissivity in the 

radiation heat transfer coefficient for both steel and concrete.  For steel, no consensus 

on the value of emissivity has been reached and various values have been proposed 

for adoption by different researchers. Swedish Institute of Steel Construction (SBI 

1976) recommends a value of 0.8. Kay et al. (1996) tried to justify a value of 0.8 for 

emissivity of steel to be adopted. Eurocode 3 recommends a value of 0.7 for carbon 
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steel (CEN 2005). The usual practice has been to adopt a constant value of emissivity 

of steel to match experimental results, but Wong and Ghojel (2003a) reported that the 

steel emissivity varies with the temperature.  

The emissivity of concrete is reported to be in the range of 0.63 to 0.94, depending on 

surface roughness, and type of concrete. Concrete with a rough surface has a higher 

emissivity than that of the concrete with a smooth surface.  For the present study, the 

emissivity of concrete is taken to be 0.7 for all the cases.  

In the case of composite slabs, the steel deck is galvanized (coated with zinc). During 

fire exposure, the galvanized coating starts oxidizing at a temperature of about 400⁰C. 

Research on determining the emissivity of steel states that emissivity increases upto 

800⁰C and thereafter becomes constant.  

Hence, for the present study the emissivity of the steel is considered as follows:  

𝜀 =  {

0.28                            00𝐶 ≤ 𝑇𝑠 ≤ 4000𝐶

0.28 + 0.00105𝑇𝑠      400
0𝐶 ≤ 𝑇𝑠 ≤ 8000𝐶

0.7                                           𝑇𝑠 ≥ 800⁰𝐶

 

 

2.4 View factor  

Radiation heat transfer between surfaces depends on the orientation of the surfaces 

relative to one another, as well as their radiation properties and temperatures. View 

factor is defined as “the fraction of radiation leaving one surface, that strikes another 

surface directly.” It is a purely geometrical quantity and is independent of the surface 

properties and temperature.  

As shown in the below figure,  the view factor from surface 1 to surface 2 (denoted 

as 𝐹12) can be calculated as  

              𝐹12 = 𝐹𝐴1→𝐴2 =
𝑄̇𝐴1→𝐴2

𝑄̇𝐴1
=

1

𝐴1
 ∫ ∫

𝑐𝑜𝑠𝜃1 𝑐𝑜𝑠𝜃2

𝜋𝑟2
 𝑑𝐴1𝑑𝐴2𝐴2𝐴1

  

 

where     𝐴1, 𝐴2 – areas of the oriented surfaces  
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     𝜃1, 𝜃2  - angles between the normal and the line connecting the surfaces 1              

and 2 respectively.  

    r – Distance between the two elemental areas 𝑑𝐴1, 𝑑𝐴2  

 

 

 

 

 

 

 

The calculation of view factors obeys the reciprocity relation which states that  

𝐴1𝐹12 = 𝐴2𝐹21 

Also, most of the radiation phenomena in practice, involve enclosed spaces. The open 

spaces are also treated as imaginary surfaces with radiation properties equivalent to 

those of an opening. The conservation of energy principle states that the energy 

leaving any one surface of the enclosure must be intercepted by the other surfaces. 

Therefore, the sum of the view factors from a given surface ‘i’ of an enclosure to all 

the surfaces of an enclosure, including to itself must equal unity. This is commonly 

known as summation rule for an enclosure and is expressed as  

∑ 𝐹𝑖→𝑗 = 1
𝑁

𝑗=1
 

For composite slabs with flat sheeting, the view factor from the point of fire to the 

bottom of steel deck is generally taken as unity. For composite slabs with profiled/ re-

entrant sheeting, it depends on the orientation of surfaces and the distance between 

them. Due to the obstruction from the web of steel deck (the inclined part of the 

Figure 2.1 Geometry for the determination of view factor between two surfaces 
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section), the view factors for the web and lower flange of steel deck are less than unity, 

which is adopted in Annex. G of EN 1991-1-2:2005.  

The view factors for the upper flange and web portion of the steel deck are 

calculated using Hottel’s Cross String Method and expressed as  

 

𝜙𝑢𝑝 =
𝑎𝑑 + 𝑏𝑐 − 𝑎𝑐 − 𝑏𝑑

2𝑎𝑏
=

(√ℎ2
2 + (𝑙3 +

𝑙1 − 𝑙2
2

)
2

 −  √ℎ2
2 + (

𝑙1 − 𝑙2
2

)
2

 )

𝑙3
  

𝜙𝑤𝑒𝑏 =
𝑎𝑐 + 𝑐𝑑 − 𝑎𝑑

2𝑎𝑐
=  

( √ℎ2
2 + (

𝑙1 − 𝑙2
2 )

2

 + (𝑙3 + 𝑙1 − 𝑙2) − √ℎ2
2 + (𝑙3 +

𝑙1 − 𝑙2
2 )

2

 )

2√ℎ2
2 + (

𝑙1 − 𝑙2
2

)
2

 

  

 

where  𝜙𝑢𝑝  , 𝜙𝑤𝑒𝑏 are the view factors for the upper flange and the web respectively 

and  𝑙1, 𝑙2, 𝑙3, ℎ1, ℎ2 are the geometric parameters as described in the figure below   

 

 

 

 

 

 

 

 

 
Figure 2.2   Schematic for Calculation of View factors for Steel Deck 
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2.5 Experimental and Numerical Research on steel concrete composite slabs  

Hammerlinck (1991) studied the behaviour of steel-concrete composite slabs at 

elevated temperatures. The aim of the study was to develop a mathematical model to 

analyse thermal and mechanical behaviour of fire exposed composite steel/concrete 

slabs. The models were verified on the basis of fire tests performed at Centre of Fire 

Research (TNO, Netherlands), as a part of an international research project, co-

sponsored by European Coal and Steel Committee (ECSC). Twelve detailed test 

specimens were analysed to verify the thermal model, and six system test specimens 

were analysed to verify the mechanical model. Type of profiled sheet and the concrete 

depth were considered parameters for the study. Furnace temperatures in the 

experiments followed the standard ISO 834 curve. 

Both (1998) performed four experimental tests on continuous two span 

composite slabs. Type of steel decking, reinforcement ratio, live load were the 

important parameters considered with respect to mechanical behaviour. Numerical 

modelling has been done for the experimental tests conducted as a part of ECSC 

research project. The slabs were subjected to furnace temperature, which followed the 

standard ISO 834 curve. 

M.A.H. Halim et al. (1998) conducted fire tests on two steel concrete 

composite floor systems at University of Salford, UK. The aim of this study was to 

Figure 2.3 Geometric Parameters of Composite Slab 
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develop fundamental information on behaviour of the composite steel concrete floor 

slabs. It is also reported that the fire resistance of the composite slab is greatly 

influenced by the steel deck, and though the contribution of steel deck is neglected in 

the calculation of fire resistance owing to its de-bonding effect, the debonding of steel 

deck influences the temperature distributions in the concrete slab, which in turn affect 

the overall fire resistance of composite slab. 

Fire tests were conducted by Lim (2002) at the BRANZ Limited (New 

Zealand), in order to investigate the behaviour of unrestrained, simply supported, steel 

concrete composite slabs in a controlled furnace environment. The floor slabs 

consisted of three reinforced concrete plain flat slabs and three different composite 

steel-concrete slabs. Analytical design methods developed by researchers (Bailey, 

Clifton) are verified with the experimental results, along with numerical modelling of 

experiments using SAFIR finite element program. Linus Lim in his experiments has 

reported the debonding of steel deck from the concrete slab precisely. Numerical 

modelling of one of the composite slab has been done to validate the experimental 

observations using a special non-linear finite element program, SAFIR using shell 

elements. Two nonlinear finite element models for thermal and structural analysis 

respectively, are developed. The numerical results are observed to be higher than the 

experimental results. The reason can be attributed to the fact, that in his numerical 

modelling, the radiation effect due to de-bonding of steel deck has not been 

considered, and hence the numerical modelling reported higher values.  However, it 

is also reported that the effect of de-bonding and the formation of air-gap can possibly 

be simulated with a ‘fictitious’ layer of thermal resistance.  

As a part of the research project sponsored by CTICM France (2008), an 8.7m 

x 6.6 composite slab testing was performed, to provide an experimental evidence 

about composite slab behaviour subjected to standard ISO 834 fire, and to promote 

the design concept based on membrane action.  

Bailey and Guo (2010) conducted a number of fire tests to investigate the behaviour 

of composite slab strips under both heating and cooling stages of fire. Different fire 

scenarios have been considered to study the thermal and mechanical behaviour due to 
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effect of different heating and cooling rates. A numerical study was followed to 

investigate the effect of steel deck thickness, the strength of concrete. It was observed 

that the influence of steel deck is significant in predicting the fire resistance of the 

composite slabs. Guo (2011) has proposed two separate nonlinear finite element 

models to simulate the thermal and structural analysis. In the thermal analysis model, 

2D plane elements are adapted for steel, concrete and the interaction elements. In the 

structural analysis model, the concrete, the steel deck and reinforcement are modelled 

using solid, shell and truss elements respectively.  The interaction between the steel 

deck and concrete was modelled using nonlinear spring elements. Debonding of steel 

deck is reported in the literature.  

Four composite steel-concrete slabs, with trapezoidal steel decking were tested 

at Tongji University (2015). The aim of the study was to investigate the effect of 

presence of unprotected secondary beam, the direction of steel deck ribs, and the 

location of reinforcement. The slabs were subjected to ISO 834 curve for different 

durations of time, followed by a cooling phase until 180 min. Debonding of steel deck 

has been reported in the literature. 
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Chapter 3 
 

Development of Modelling Technique  

  

 

3.1 Research Motivation  

 

The objective of this study is to develop an equation that can account for the 

radiation from the steel deck to the concrete slab, as well as the thermal insulation 

effect of the air gap during the debonding of steel deck in composite slabs. For the 

same, an ‘interface’ element is considered between the steel deck and the concrete, 

and the thermal properties of the interface element are defined through an 

‘equivalent conductance’ relation as a function of temperature. The equivalent 

conductance takes into account the view factor effect, the emissivity of surfaces 

participating in radiation and the insulation effect due to the air gap.  

 

 

 

 

 

 

 

 

Figure 3.1  Radiation between two surfaces                       Figure 3.2 Equivalent conductance 

 

 

 

 

Interface Element 
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3.2 Equivalent Conductance  

During the fire test of composite slab, when the steel deck is subjected to fire, there is 

a continuous deformation of the steel deck in the form of buckling and debonding. 

The temperature has a direct effect on the mechanical behaviour of the system, and in 

return, the mechanical behaviour has an effect on the temperature. This implies that 

the structural and thermal behaviour are ‘coupled’ together. Hence, to capture the 

exact behaviour through numerical modelling, a ‘fully coupled thermal stress 

analysis’ is the only possibility to capture such effect. Though there is an option in 

ABAQUS to perform a fully coupled analysis, there are certain limitations. It is 

observed that view factor depends on the relative distance between the two surfaces, 

and also the orientation of the surfaces. ABAQUS limits the way of defining view 

factor as a function of relative distance or ‘clearance’ between the surfaces.  

To overcome this limitation, an alternative to incluing the radiation effect and air gap 

insulation in the form of ‘equivalent conductance’ is chosen.  

Thermal Conductance can be defined as “measure of the ability of a material to 

transfer heat energy per unit time, per unit surface area, and the temperature gradient 

through the thickness of the material.” 

For a material with temperature gradient, where 𝑇1 𝑎𝑛𝑑 𝑇2 are the high and low 

temperatures, across the thickness of the material, it can be mathematically expressed 

as  

𝑄̇𝑒𝑞 = ℎ𝑐(𝑇1 − 𝑇2) 

Where ℎ𝑐 is the equivalent conductance of the material, accounting for radiation effect 

and conduction through the intermediate air layer.   

 

3.3 Mathematical Formulation of Equivalent Conductance  

 

Many researchers proposed different values of thermal conductance between 

steel and concrete elements. Ana Espinos has assumed a constant conductance value 

of 200 W/m2-K between the steel tube and concrete core in the thermal analysis of 
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elliptical CFT columns under fire. Guo and Bailey have assumed a constant 

conductivity of 0.8W/m-K for 1mm thickness of interaction element. Ghojel has 

proposed thermal conductance equations w.r.t temperature for loaded and unloaded 

square and circular CFT columns. Since the present work focuses on composite slab 

systems, and also the interaction between steel and concrete is different from the CFT 

columns, a different approach was employed for ‘thermal conductance’ calculation 

The calculation of equivalent conductance is done through two steps. The first step 

comprises of evaluating the equivalent conductance from steel deck to concrete slab 

due to radiation only. The second step would be accounting for the conduction through 

the air gap. The assumptions made while calculating this parameter are 1) the steel 

deck debonds and deforms in the initial stages of the fire event, due to its very low 

thickness and high thermal strain developed because of temperature gradient between 

steel and concrete and 2) the steel deck debonds between the points of embedment 

and at points of embedment it is firmly locked into concrete slab.  

Once the steel deck debonds, the heat transfers from steel deck to the concrete slab 

through radiation and conduction. For calculating the equivalent conductance due to 

radiation, consider two surfaces ‘1’ and ‘2’ temperatures 𝑇1 𝑎𝑛𝑑 𝑇2, with emissivities  

𝜀1 𝑎𝑛𝑑 𝜀2 , and the view factor from surface ‘1’ to surface ‘2’ be 𝐹12 .  

The radiative flux between the two surfaces is given by  

𝑄̇𝑟𝑎𝑑 = 𝐹12𝜎𝜀𝑟𝑒𝑠((𝑇1 + 273)
4 − (𝑇2 + 273)

4) 

Where 𝜀𝑟𝑒𝑠 =
1

𝜀1
+

1

𝜀2
− 1  = Resultant Emissivity between surfaces  

If it can be assumed that this radiative flux can be accounted by a material with 

equivalent conductance due to radiation ℎ𝑟𝑎𝑑 , then we can represent the radiative flux 

due to equivalent conductance as  

𝑄̇𝑟𝑎𝑑 = 𝐹12𝜎𝜀𝑟𝑒𝑠((𝑇1 + 273)
4 − (𝑇2 + 273)

4) = ℎ𝑟𝑎𝑑((𝑇1 + 273) − (𝑇2 + 273)) 

ℎ𝑟𝑎𝑑 =
𝐹12𝜎𝜀𝑟𝑒𝑠((𝑇1 + 273)

4 − (𝑇2 + 273)
4)

((𝑇1 + 273) − (𝑇2 + 273))
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As shown in the Fig. 3.3 it can be inferred that the equivalent conductance is a cubic 

function of temperature. 

The equivalent conductivity for a given thickness of an interface element is given by 

the relation  

𝑘𝑖𝑛𝑡 = ℎ𝑟𝑎𝑑𝑡𝑖𝑛𝑡,𝑟𝑎𝑑 + 𝑘𝑎𝑖𝑟   

where  𝑘𝑖𝑛𝑡 is the total effective conductivity of the interface element, 𝑡𝑖𝑛𝑡,𝑟𝑎𝑑 is the 

thickness of the interface element considered, and 𝑘𝑎𝑖𝑟  is the thermal conductivity of 

the air in the intermediate gap layer.  The view factor between steel deck and concrete 

slab is taken equal to 1.0, assuming negligible heat loss due to debonding. 

Two-dimensional radiative heat transfer analyses are performed in ABAQUS 

considering different thicknesses of interface element between steel deck and concrete 

slab.  In most of the situations where the experiments are done on fire-exposed 

composite slabs, it is assumed that the temperature varies across the section in the 

longitudinal direction is constant. A representation of 2D mesh for concrete slab, steel 

deck and interface element, for a flat deck and a trapezoidal steel deck are shown in 

the below figure. 
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Figure 3.3  Graph of Equivalent Conductance due to Radiation 
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Thermal boundary conditions (convection and radiation) are given through the SFILM 

subroutine. As per the Eurocode specification, the convective heat transfer coefficient 

is taken to be 25 W/m2-K at the fire exposed surface, and 9 W/m2-K at the unexposed 

surface. The view factors for radiative heat transfer coefficient have been calculated 

as per the method described in Section 2.4 of Chapter 2.  The variation of total 

Figure 3.4  Representation of a 2D mesh for flat deck composite slab system 

Figure 3.5  Representation of a 2D mesh for trapezoidal deck composite slab system 
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equivalent conductance with respect to the temperature of the steel deck for three 

different thicknesses of interface/gap is shown in the Fig. 3.4  

 

Figure 3.6   Total Equivalent Conductance w.r.t Temperature 

 

The equivalent conductance relation is used to evaluate the total effective conductivity 

of the interface element. Using the interface element, 2D heat transfer analyses are 

performed to calculate the surface temperatures of the concrete slab. The thermal 

properties of the concrete slab and steel deck specimens are taken accordingly from 

the Eurocode provisions. The density and specific heat of the interface element are 

considered to be negligible since it is filled with the air gap due to heating up of 

inherent moisture from concrete slab.  Specific cases were studied by varying the 

thickness of the interface element, ranging from 1 mm to 20 mm. One of the fire 

experiments performed by Lim has been adopted for understanding the effect of 

interface element. As mentioned in the experiments, the steel deck is subjected to a 

furnace temperature close to ISO 834. The temperatures of bottom surface of the 

concrete are plotted against the temperature of concrete when perfect contact is 

assumed. As shown in the below figure, when numerical analysis is performed 

assuming perfect contact, the temperature prediction of concrete surface is upto 200⁰C 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 200 400 600 800 1000 1200

C
o

n
d

u
ct

an
ce

 (
m

W
/m

m
2

-K
)

Temperature (⁰C)

2.5mm interface

5 mm interface

10 mm interface



19 

higher than the experimental value.  Hence, it is evident that the use of interface 

element improves the prediction of the surface temperature of the concrete slab.  

 

 

 

Figure 3.7  Temperature of bottom surface of concrete for various gaps 

 

 

Figure 3.8  Concrete Temperature vs. Steel Temperature for various gaps 
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3.4 First Methodology: Equation for Surface Temperature of Concrete 

 

In the first step, a simple but approximate methodology is adopted, where the 

effect of change of gap is not considered.  Instead, an average value of all the curves 

of concrete temperature vs. steel temperature (Fig. 3.6) between 1 mm to 20 mm is 

taken. A relationship between the surface temperature of concrete and steel deck is 

formulated as shown in below equation.  

 

𝑇𝑐 = 

{
  
 

  
 

𝑇𝑠
2

2060
+ 0.3𝑇𝑠 + 20                           𝑇𝑠 ≤ 400

𝑜𝐶

            
𝑇𝑠
2

840
− 0.8𝑇𝑠 + 350                    400

𝑜𝐶 ≤ 𝑇𝑠 ≤ 800
𝑜𝐶

−
𝑇𝑠
2

320
+ 7.715𝑇𝑠 − 3700             800

𝑜𝐶 ≤ 𝑇𝑠 ≤ 1200
𝑜𝐶

 

 

The above equation accounts for the effect of gap in an averaged sense, and the input 

is steel temperature 𝑇𝑠  during a ‘perfect contact’ analysis (here interface element is 

not used).  

The surface temperature of concrete is expressed in terms of the ISO 834 standard 

furnace temperature as  

 

𝑇𝑐 =    

{
 
 
 
 

 
 
 
 (

𝑇𝑔

127
)
3

− (
𝑇𝑔

70
)
2

+  0.07𝑇𝑔 + 20                           𝑇𝑔 ≤ 600
𝑜𝐶

           (
𝑇𝑔

80
)
3

− (
𝑇𝑔

25
)
2

+  0.3𝑇𝑔 + 70                      600
𝑜𝐶 ≤ 𝑇𝑔 ≤ 800

𝑜𝐶

(
𝑇𝑔

19
)
2

− 2.16𝑇𝑔 + 240                          800
𝑜𝐶 ≤ 𝑇𝑔 ≤ 900

𝑜𝐶

                 −(
𝑇𝑔

48
)
3

+ 0.02𝑇𝑔 − 10.65𝑇𝑔 + 520            900
0𝐶 ≤ 𝑇𝑔 ≤ 1100

0𝐶                                              

 

 

 

Following are the results of the surface temperature of concrete as per the above 

equation in comparison to perfect contact case: 
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Figure 3.9  Temperature of Concrete Surface as per proposed equation - TrayDec Slab 

 

 

Figure 3.10 Temperature of concrete surface as per proposed equation - Hibond Slab 
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3.5 Second Methodology: Effective conductance vs. Temperature relation   

 

It must be noted that the above results are for a constant value of gap during 

one analysis. However, in real experiment scenario, the gap value keeps increasing 

due to thermal gradient between steel deck and concrete slab. Hence, a more accurate 

and realistic phenomenon is needed to calculate the concrete temperatures, taking into 

account the thermal insulation effect. A second methodology is proposed in detail in 

this section. 

Variation of this gap is a function is a function of thermal expansion 

coefficient and also the distance between points of embedment of steel deck. The steel 

deck is embedded into concrete at points of embossments/corrugations depending on 

the profile of the slab. However, it varies between 150 mm to 300 mm in most of the 

practical cases.  

 To understand how gap varies with the thermal gradient between steel deck 

and concrete slab, a simple calculation of thermal strains in concrete slab and steel 

deck is done. The time-temperature curves of concrete and steel, the distance between 

the points of embedment are the input parameters. The gap due to deformation of steel 

deck is assumed to be of a parabolic profile, for a flat deck. This assumption renders 

that the evaluation of the gap, in this case, is purely a geometrical calculation.  In a 

real experiment, it is really difficult to say how the gap varies between steel deck and 

concrete slab after debonding.  

 

Following is the procedure for calculating the gap values due to the thermal gradient 

between steel and concrete, for which the time temperature curve for the steel deck 

and concrete slab is known.  

 

Step 1 :   The temperature-time history of steel deck and concrete slab 𝑇𝑐, 𝑇𝑠 is known.  

The length of embedment of the steel deck and concrete slab at ambient temperature 

is known. At ambient temperature, there is no expansion observed in steel and 

concrete. 
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Step 2 :  As the temperature rises beyond ambient temperature, steel and concrete start 

expanding. Due to different thermal expansion coefficients (𝛼𝑠𝑡𝑒𝑒𝑙 being higher than 

𝛼𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 during initial rise of temperatures), and the steel is assumed to be firmly 

locked between points of embedment, deformation of steel w.r.t concrete surface is 

observed. The thermal expansion coefficients are adopted from ASCE codes. 

 

Step 3 :  Thermal strains, and thermal elongations are calculated 𝑖𝑡ℎ point of time, for 

both steel and concrete where 𝑖 = 1 𝑡𝑜 𝑛,   (n = no. of time steps of thermal analysis) 

as   

𝜀𝑐,𝑖 = 𝛼𝑐,𝑖Δ𝑇𝑐,𝑖 = 𝛼𝑐,𝑖(𝑇𝑐,𝑖 − 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡), 𝜀𝑠,𝑖 = 𝛼𝑠,𝑖Δ𝑇𝑠,𝑖 = 𝛼𝑠(𝑇𝑠,𝑖 − 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡) 

𝑙𝑐,𝑖 = 𝑠𝑐𝑜𝑛𝑐(1 + 𝜀𝑐,𝑖) , 𝑙𝑠,𝑖 = 𝑠𝑠𝑡𝑒𝑒𝑙(1 + 𝜀𝑠,𝑖)  

 

Figure 3.11  Representation of gap formation due to thermal gradient  

a) at ambient temperature b) other than ambient temperature 

 

Step 4 : To calculate the gap formation, the steel deck  is assumed to deform in a 

parabolic profile given by the equation  

𝑦 = 𝑔𝑚𝑎𝑥 (1 −
4𝑥2

𝑠2
)        −

𝑠

2
≤ 𝑥 ≤

𝑠

2
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The amount of maximum gap formed at a given time is calculated from the below 

equation  

 

𝑙𝑠,𝑖 = √
𝑙𝑐,𝑖
2

4
+ 4𝑔𝑚𝑎𝑥2 +

𝑙𝑐,𝑖
2

8𝑔max
sin−1(

4𝑔𝑚𝑎𝑥
𝑙𝑐,𝑖

) 

 

Using above procedure, the variation of maximum gap w.r.t the steel 

temperature for different lengths of embedment are shown in below figure.  

 

 

From the above discussion, it is evident that the parameters affecting the gap are 

concrete and steel temperatures, the length between points of embedment of steel 

deck. This gap, in turn, affects the distribution of concrete temperature. 
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Figure 3.12  Profile of a parabola 
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The steel temperature is observed to have a steady increase up to a certain 

temperature (approximately up to 700 degrees) and then shows a nearly stable 

behaviour in the increase of temperature. Hence, the gap between steel and concrete 

increases as long as there is a temperature difference between steel and concrete. 

From this understanding, an iterative approach to evaluate the effective conductance 

as a function of temperature is proposed. The iterations are performed until there is 

no subsequent increase in the temperature of steel. The procedure is explained 

through a flowchart given below: 

 

FLOWCHART 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Assume a conductance value (say 0.2 mW/mm2-K) 

Perform a 2D Heat Transfer analysis using SFILM subroutine 

and calculate steel and concrete temperatures 𝑇𝑠,𝑖, 𝑇𝑐,𝑖 

Calculate the average gap 
2

3
𝑔𝑚𝑎𝑥 due to the thermal 

gradient between steel and concrete. 

Calculate the effective conductance ℎ𝑐, which is the 

conductance due to radiation as well the air gap effect  

Perform a 2D Heat Transfer analysis using SFILM subroutine 

and calculate steel and concrete temperatures 𝑇𝑠,𝑖+1, 𝑇𝑐,𝑖+1 

 

Step: 1 

Step: 2 

Step: 3 

Step: 4 

Step: 5 
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From the above iterative procedure, we obtain a point where the gap due to steel 

temperature and concrete temperature difference, gets stabilized.  The effective 

conductance is that value of conductance for which the gap variation stabilizes, or 

remains constant after any iteration from this point. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Is  max (𝑇𝑠,𝑖+1 − 𝑇𝑠,𝑖) <  1
0𝐶 ?? 

 

YES 

NO 

Then 𝑖 = 𝑖 + 1 , Go to 

Step - 2 

Compare the concrete temperatures with the 

experimental values  

 

Step: 6 
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Chapter 4 
 

Material Properties and Experimental 

Data for Validation 

   

This chapter presents the complete description of the finite element model developed 

for modelling the radiation and thermal insulation effect of debonding in the 

composite slabs.  Results from the numerical model are validated against the fire tests 

available in the literature. Emissivity is varied to study the change in behaviour.  

 

4.1 Characteristics of the Numerical Model  

 

A two dimensional, plane numerical model for uncoupled heat transfer analysis is 

developed. The main parameters are the width of the section (W), depth of section 

(D), the thickness of the steel deck (t). The interface element of a certain thickness is 

used between steel deck and concrete slab. The bottom of steel deck is subjected to a 

time-dependent temperature curve, ISO 834 given by  

𝑇(𝑡) = 20 + 345 log10(8𝑡 + 1) where t = time duration in minutes 

For the 2D analysis, the steel deck, interface element, and the concrete slab are 

modelled using DC2D4 elements. In the 3D analysis, DC3D8 elements are used for 

concrete, DS4 elements are used for steel, and DC1D2 elements are used for 

reinforcement. In most situations involving fire-exposed composite slabs, the 

temperatures are assumed to vary only across the thickness of the section, and are 

uniform across the length of the slab. 
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4.2 Thermal Properties of Concrete at Elevated Temperatures  

 

Thermal Elongation of Concrete  

The thermal strain of the concrete 𝜀𝑐(𝜃) may be determined from the following with 

reference to the length at 200𝐶: 

Siliceous Aggregates:  

𝜀𝑐(𝜃) =  −1.8 𝑥 10
−4 + 9 𝑥 10−6𝜃 + 2.3 𝑥 10−11𝜃3         𝑓𝑜𝑟 20 0C ≤ 𝜃 ≤ 700 0C  

𝜀𝑐(𝜃) =   14 𝑥 10
−3                                     𝑓𝑜𝑟 700 0𝐶 < 𝜃 ≤ 1200 0𝐶                             

Calcareous Aggregates: 

𝜀𝑐(𝜃) =  −1.2 𝑥 10
−4 + 6 𝑥 10−6𝜃 + 1.4 𝑥 10−11𝜃3         𝑓𝑜𝑟 20 0C ≤ 𝜃 ≤ 805 0C  

𝜀𝑐(𝜃) =   12 𝑥 10
−3                                     𝑓𝑜𝑟 805 0 < 𝜃 ≤ 1200 0𝐶                             

 

Where 𝜃 is the temperature of the concrete in degrees centigrade.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1  Variation of Thermal Elongation of Concrete with Temperature 
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4.3 Specific Heat of Concrete 

 

The specific heat of dry concrete (in J/kg-K) may be determined from the following 

equations:  

𝑐𝑝(𝜃) = 900                                                      𝑓𝑜𝑟 20 0𝐶 ≤  𝜃 ≤ 100 0𝐶 

𝑐𝑝(𝜃) = 900 + (𝜃 − 100)                            𝑓𝑜𝑟 100 0𝐶 < 𝜃 ≤ 200 0𝐶  

𝑐𝑝(𝜃) = 1000 + 0.5 ∗ (𝜃 − 200)               𝑓𝑜𝑟  200 0𝐶 < 𝜃 ≤ 400 0𝐶 

𝑐𝑝(𝜃) = 1100                                                  𝑓𝑜𝑟  400 0𝐶 < 𝜃 ≤ 1200 0𝐶   

 

The moisture content effect for 3% and 10% is included in numerical analysis within 

temperature range of 100 0𝐶 − 200 0𝐶   , with a constant peak at 115 0𝐶  by 

accounting for additional capacity as shown. For intermediate values, linear 

interpolation is recommended.  

 

At 3% and 10%, peak value of specific heat = 2020 J/kg-K and 5600 J/kg-K 

respectively 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Specific Heat of Dry Concrete 

 

0

1000

2000

3000

4000

5000

6000

0 200 400 600 800 1000 1200 1400

Sp
ec

if
ic

 H
ea

t 
(J

/k
gK

)

Temperature (⁰C)

Mositure Content - 0 %

Mositure Content - 3 %

Mositure Content - 10 %



30 

4.4 Thermal Conductivity of Concrete  

 

Upper limit of  thermal conductivity 𝜆𝑐 (in W/m-K) of normal weight concrete may 

be determined from the following equation:  

𝜆𝑐 = 2 − 0.2451 (
𝜃

100
) + 0.0107 (

𝜃

100
)
2

           𝑓𝑜𝑟 20 0𝐶 ≤ 𝜃 ≤ 1200 0𝐶  

Where 𝜃  is the concrete temperature.   

Lower limit of thermal conductivity 𝜆𝑐 (in W/m-K) of normal weight concrete may 

be determined from the following equation: 

𝜆𝑐 = 1.36 − 0.136 (
𝜃

100
) + 0.0057 (

𝜃

100
)
2

           𝑓𝑜𝑟 20 0𝐶 ≤ 𝜃 ≤ 1200 0𝐶  

 

 

 

 

 

 

 

 

 

Figure 4.3  Thermal Conductivity of Concrete 
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4.5 Thermal Elongation of Steel  

 

Thermal elongation of steel Δ𝑙/𝑙  shall be determined from the following :  

Δ𝑙

𝑙
= 1.2 𝑥 10−5 𝜃𝑎 + 0.4 𝑥 10

−8 𝜃𝑎
2 − 2.416 𝑥 10−4          𝑓𝑜𝑟 20 0𝐶 ≤ 𝜃 ≤ 750 0𝐶 

Δ𝑙

𝑙
= 1.1 𝑥 10−2                                                                          𝑓𝑜𝑟 7500𝐶 < 𝜃 ≤ 8600𝐶  

Δ𝑙

𝑙
= 2 𝑥 10−5 𝜃𝑎 − 6.2 𝑥 10

−3                                             𝑓𝑜𝑟 8600𝐶 < 𝜃 ≤ 12000𝐶  

Where 𝜃𝑎   is the steel temperature in degree centigrade  

 

 

 

 

 

 

 

 

 

 

Figure 4.4    Thermal Elongation of steel 
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4.6 Specific Heat of Steel  

 

Specific Heat of Steel 𝑐𝑎  (in J/kg-K) shall be calculated as follows : 

𝑐𝑎 = 425 + 7.73 𝑥 10−3 𝜃𝑎 − 1.69 𝑥 10
−3 𝜃𝑎

2 + 2.22 𝑥 10−6 𝜃𝑎
3     200𝐶 ≤  𝜃𝑎 ≤

6000𝐶       

𝑐𝑎 = 666 +
13002

738 − 𝜃𝑎
                                              𝑓𝑜𝑟 6000𝐶 ≤  𝜃𝑎 < 735

0𝐶  

𝑐𝑎 = 545 +
17820

𝜃𝑎 − 731
                                                𝑓𝑜𝑟 7350𝐶 ≤  𝜃𝑎 < 900

0𝐶  

𝑐𝑎 = 650                                                                        𝑓𝑜𝑟 9000𝐶 ≤ 𝜃𝑎 ≤ 1200
0𝐶  

 

Figure 4.5 Specific Heat of Steel 
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Figure 4.10  Thermal Conductivity of Air 1 

4.7 Thermal Conductivity of Steel  

Thermal  Conductivity of Steel  𝜆𝑎 (in W/m-K) shall be calculated from the following 

equation :-  

𝜆𝑎  =   54 − 3.33 𝑥 10
−2𝜃𝑎                                                   𝑓𝑜𝑟 20

0𝐶 ≤  𝜃𝑎 < 800
0𝐶  

𝜆𝑎 =   27.3                                                                             𝑓𝑜𝑟 800
0𝐶 ≤ 𝜃𝑎 ≤ 1200

0𝐶
  

 

 

 

 

 

 

 

 

Figure 4.6  Thermal Conductivity of Steel 

 

4.8 Thermal Conductivity of Air  

Thermal conductivity of air w.r.t temperature is shown below. For intermediate values 

of temperature, interpolation is made.  
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4.9 Thermal Expansion Coefficients of Concrete and Steel as per ASCE-78 

 

The thermal expansion coefficients from ASCE-78 are used for the second 

methodology (as described in Chapter 3). 

 

 

 

4.10 Experimental Data for Validation 

 

Uncoupled 2D heat transfer analyses are performed in ABAQUS. The experimental 

data has been taken from Lim. (2002).  Flat slab and trapezoidal steel deck types are 

taken for validation. The experimental data used for validation are subjected to a 

furnace temperature that follows the standard ISO 834 curve. The summary of the 

experiments done is given below: 
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1) Flat Deck Profile:- 

Composite Slab  TrayDec  

Dimensions of the slab 4.3 m x 3.3 m 

Slab Thickness 130 mm 

Compressive Strength of Concrete (28 days) 30.2 MPa 

Thickness of steel deck  0.75 mm 

Yield Strength of structural Steel   550 MPa 

Reinforcing Steel  8.7 mm dia @ 300 mm c/c – Two way 

spanning 

Yield Strength of Reinforcing Steel  565 MPa 

Mositure Content(by weight)  5.1 %  

 

 

  

Figure 4.11  TrayDec Slab Section  
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2) Trapezoidal Profile :-  

 

Composite Slab  Hibond 

Dimensions of the slab 4.3 m x 3.3 m 

Concrete Slab Thickness 130 mm 

Compressive Strength of 

Concrete (28 days) 

30.2 MPa 

Thickness of steel deck  0.75 mm 

Yield Strength of structural 

Steel  (at 20 0C) 

550 MPa 

Reinforcing Steel  8.7 mm dia @ 300 mm 

c/c – Two way spanning 

Yield Strength of 

Reinforcing Steel  

565 MPa 

Mositure Content(by weight)  5.1 %  

 

 

Geometric Properties of the trapezoidal sections (dimensions in mm) 

 

Decking h1 h2 l1 l2 l3 

 Hibond 75 55 182 130 126 
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Chapter 5 
 

Results and Conclusions 

   

 

The temperatures obtained after the heat transfer analysis were measured at various 

locations starting from the bottom of the concrete surface. 2D heat transfer analyses 

without interface elements are performed, to confirm the fact that the temperatures are 

over predicted when the radiation effect and thermal insulation of air gap are not 

considered. To validate the proposed hypothesis, heat transfer analyses with and 

without interface elements are performed using the two methodologies described in 

Chapter 3, for the available experimental data. 

 

5.1 Results: When radiation only is included  

The steel deck bottom surface has the input temperature. Comparison between the 

surface temperature of concrete when interface element is not used, and when 

interface element is used is given below. Only radiation is taken into account through 

equivalent conductance in the below-represented results. 

The figure below shows, that the results of numerical analysis are higher than the 

experimental results, thereby indicating that due to debonding of steel deck, the 

contact is lost, and the temperature rise is no more due to conduction, but due to 

radiation. Also, the steam generated in between the concrete slab and steel deck, 

creates a thermal layer of insulation, preventing the temperature rise in concrete.   



38 

 

Figure 5.1  Temperatures across the concrete section 

 

 

5.2 Results: When conductivity of air is considered along with Radiation 

 

A similar heat transfer analysis is performed, including the inherent conductivity of 

air along with the radiation in the equivalent conductance of the interface material.  It 

is observed that when conductivity of air is included, the numerical results reported 

even higher temperatures.  

It is to be noted that, even when the interface element is used, the temperature 

predictions are higher than the experimental results, but not as high as when there is 

a perfect contact between steel and concrete. The same is depicted in the Fig.5.1 and 

Fig. 5.2.  Hence, radiation effect has to be considered while performing numerical 

analyses of composite slabs, which exhibit debonding behaviour.  

   Also, the variation in temperature of bottom surface is plotted, when 

only equivalent conductance and when equivalent conductance along with 

conductivity of air is used, in Fig.5.3  
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Figure 5.2 Temperatures across the concrete section 

 

 

 

 

Figure 5.3 Temperature variation at the bottom surface of concrete section 
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In the experiments conducted by Linus Lim, it is reported that the steel deck bends in 

double curvature. Since the slab is simply supported at both the ends, there was hardly 

any opening into the atmosphere which caused significant heat loss i.e. all the 

radiative flux from the steel is incident on concrete, irrespective of the magnitude of 

deflection of steel deck, and orientation of the steel deck. Hence, the view factor from 

the steel deck to the concrete slab is assumed to be equal to unity.  

 

5.3 Results: Varying Emissivity of Steel  

 

Apart from the view factor, emissivity of steel has an impact on the radiative flux 

from the steel surface. Hence, a range of values of emissivity varying from 0.3 to 0.7 

has been selected, and the heat transfer analysis was run for each case of emissivity, 

considering the conductivity of air along with the equivalent conductance. The results 

at bottom surface of the concrete, and at a point 30mm from the surface are shown 

below: 

 

Figure 5.4 Temperatures at bottom surface of concrete 
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Figure 5.5 Temperature at 30mm above the concrete surface 

 

Similarly, for a given emissivity value of steel, the temperatures across different 

points on the concrete section are plotted, which are shown below  

 

Figure 5.6 Temperature distribution for emissivity of steel as 0.7 
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Figure 5.7 Temperature distribution for emissivity of steel as 0.6 

 

 

Figure 5.8 Temperature distribution for emissivity of steel as 0.5 
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Figure 5.9     Temperature distribution for emissivity of steel as 0.3 
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5.4 Results: TrayDec Slab  

The numerical results are compared with the experimental values and are shown 

below: 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10    Position of Temperature Calculation for TrayDec Slab 

Figure 5.11  Effective Conductance vs. Temperature 
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Figure 5.12  Average Gap vs. Temperature - Traydec slab 

 

 

 

 

Figure 5.13  Variation of Steel Temperature - Iterative Procedure 
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Figure 5.14  Variation of Concrete Temperature - Iterative Procedure 

 

 

 

Figure 5.15  Comparison of Concrete Temperature with effective conductance and perfect 
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Figure 5.16  Temperature profile across the concrete section - TrayDec Slab 

 

 

 

5.5 Results:  Hibond Slab 

The numerical results are compared with the experimental values and are shown 

below: 
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Figure 5.17   Positions of Temperature Calculations - Hibond Slab 
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Figure 5.18  Effective Conductance vs. Temperature 

 

 

Figure 5.19 Average gap variation with temperature 

 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 50 100 150 200

Ef
fe

ct
iv

e 
C

o
n

d
u

ct
an

ce
 (

m
W

/m
m

2
-K

)

Time (min)

1st iteration

2nd iteration

3rd iteration

4th iteration

-2

0

2

4

6

8

10

12

14

0 20 40 60 80 100 120 140 160 180

G
ap

 (
m

m
)

Time(min)

Perfect Contact 1ST ITERATION

2ND ITERATION 3RD ITERATION

4TH ITERATION



49 

 

 

 

 

Figure 5.21  Variation of Concrete Temperature 
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Figure 5.20  Variation of steel temperature - Iterative Procedure 
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Figure 5.22  Comparision of  Concrete Temperature With effective conductance and perfect 

contact 

 

 

 

Figure 5.23  Temperature profile across the concrete section - Hibond Slab 
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5.6 Conclusions  

 

From the above study, it is verified that the numerical results are over predicted when 

there is a perfect contact is assumed between the steel and concrete. Emissivity and 

view factor are the parameters which influence the equivalent conductance property, 

and indicate how good is the convergence of results of the numerical analysis when 

compared to the actual results. The proposed equation accounts for the debonding 

effect and using an interface element yields very good results and in turn better fire 

resistance prediction, but more experimental validation needs to be done.  The 

iterative procedure using effective gap calculation proves to be a better way to tackle 

the insulation effect. 
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