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Abstract

A valid predictive tool of ballistic behaviour of composite solid propellant gives more

advantage for a designer of solid propellant to freeze a composition for a particular

application. Composite solid propellant in ISRO is composed of major fraction of am-

monium perchlorate (AP) as oxidizer and hydroxyl terminated polybutadine (HTPB)

as the fuel-cum-binder. In this work, attempt has been made to validate one of the

latest burning rate prediction models: heterogeneous quasi one dimensional model

(He-Qu-1D) developed at IIT, Madras utilizing ISRO compositions of solid propel-

lant. Thus this model can be used for the new compositions development in ISRO,

and invariably reducing the trails for the optimization of the composition. Composite

solid propellant combustion is determined by the diffusion and premixing of decom-

position products of AP and HTPB binder where the binder is surrounded around the

AP particle. Hence, the particle size distribution of AP is very crucial information

for solid propellant combustion modelling. In view of this, different techniques of

particle size distribution viz., sieve analysis, laser scatter dry method, laser scatter

wet method, image analysis has been explored and studied in detail to determine

the best method for repeated measurement. Based on this standardized method of

measurement, particle size distribution information of AP, is measured and is fed to

the above said He-Qu-1D model and predictions were made for six compositions of

propellants. The results thus obtained were compared with the ultrasonic burning

rates (UBR) results measured experimentally. Details of these results are discussed

in this report. It is observed that there is a good agreement between the prediction

and experimental results of major compositions.
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Chapter 1

Introduction

Composite solid propellant formulations being used in space launch vehicle applica-

tions are majorly based on an oxidizer - ammonium perchlorate (AP) which consti-

tutes from 65-86 % of the total composition, a metallic fuel - aluminium powder of

0-18 %, and a binder - hydroxyl terminated poly butadiene (HTPB) which consti-

tutes of 10-15% of the total composition. Based on the specific ballistic and structural

requirements a composition is usually altered and tailoring of the composition is ma-

jorly done to obtain the required ballistic behaviour of the propellant, especially the

burning rate.

Figure 1.1: Schematic of a solid rocket motor

Hence, achieving a required burning rate for a particular application in a solid rocket

motor, Figure 1.1, the solid propellant has to undergo rigorous trials and tests with

a set of compositions which is time consuming and cumbersome with a set of com-

positions. However, with a good and reliable theoretical predictive tool, these tests

can be reduced and increase the confidence of the designer. In this context, many

burning rate models were developed and are being developed by the solid propellant
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community in the world since many decades. To mention a few, Hermance[1, 2], BDP

model [3] and Cohen [4, 5] and many others [6, 7, 8, 9, 10] had attempted to model the

solid propellant combustion. Nevertheless, none of these models could turn out to be

an easy and effective tool for the accurate prediction of the ballistic behaviour of the

solid propellant. However, the Heterogeneous Quasi 1-D model[11, 10, 12] developed

based on the physical aspects of solid propellant combustion which is governed by the

particle size distribution of the oxidizer i.e., AP, appears producing promising results.

This model has been developed based on the serial burning approach adopted from

studies of previous investigators [13, 5]. The model requires accurate distribution

of particle size of AP. Hence major emphasis was given in this present work to de-

velop a methodology of accurate measurement of AP particle size distribution (PSD)

. Knowing particle size distribution, the burning rate of the several compositions of

propellant based on AP/HTPB/Al /Catalysts are predicted using the model and the

results are compared with the actual burning rates of these propellants measured by

ultrasonic technique (UBR).

Based on the particle size distribution, AP grains are classified into three categories

viz. coarse, fine and ultrafine. Different techniques were explored for the measure-

ment of AP particle size distribution of all the three classes and an easy and accurate

method of measuring the particle size distribution is evolved.

1.1 Literature review

1.1.1 Particle size distribution of Ammonium Perchlorate

Though particle size distribution of AP is having such significance in the burning

rate of solid propellant, very little work had been pursued to standardize the accu-

rate measurement of particle size distribution of AP. Conventionally sieve analysis has

been the measurement technique for the solid propellant community while processing

the propellant. There are numerous techniques of evaluation of particle size distri-

bution. Selection of appropriate technique for a particular material depends of many

factors. However, investigators or plant quality engineers expect to get the results as

fast as possible and hence time is one of the crucial factors of consideration, but not

in lieu of accuracy and reproducibility. Kelly and Etzler[14] in their publication had
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discussed the laser diffraction technique of measurement of particle size distribution,

in particular non spherical particles and had specified a good understanding on selec-

tion of right method of measurement of PSD . Although they advocates for an urgent

review of these techniques in use, the process of selection which they have discussed

i.e., comparison of any technique with microscopic analysis is a good strategy to be

followed.

Li et.al [15] investigated on the measurement of PSD using different techniques viz.,

Laser diffraction (LD) , image analysis (IA) , ultrasonic attenuation spectroscopy

(UAS) , focused beam reflectance measurement (FBRM) . Their study was majorly

on the materials which are non-hygroscopic and hence the effect of agglomeration due

to moisture was not accounted. For spheres, the PSDs obtained by image analysis,

laser diffraction and ultrasonic attenuation spectroscopy are in good agreement. It is

shown that particle shape strongly affects the PSDs measured by different techniques

for non-spherical particles. There is no consistent PSD result from different particle

measurement techniques due to the influence of shape. correlation among particle

size distributions by these three techniques is possible[15] and can be done using the

particle shape factors obtained by IA. Chord 50 corresponds to FBRM measurement

technique.

For spherical particles,

D50LA
≈ D50LD

≈ D50UAS
> Chord50 (1.1)

For non-spherical particles,

D50LA
> D50LD

> D50UAS
or Chord50 (1.2)

where D50 represents the value below which 50% by volume of the particles exists in

thee sample.

Miller [8] has studied on the effect of size of the AP on propellant burning rate. He

also reiterates that burning rate increases with decrease of particle size. The particle

size distribution measurement of AP was carried out by screening using standard

sieves for coarser particles and electrozone celloscope analysis [16] was employed for

finer particles. Ultrafine particles were analysed by sedimentation technique. Here

also, the validation of these techniques of particle size distribution measurement was
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done with microscopic data.

Jain et. al. [17] carried out investigation on effect of PSD on burning rate and pro-

pellant slurry viscosity. Major emphasis was given on the shape of the particle and

its influence on propellant mixing and burning rate. As far as size of the particle is

concerned, only the average particle is taken into account and not the size distribu-

tion and span, thus considering a mono-modal distribution of AP particles. It is also

reported about the shape factor which indicates that the sphericity of the particles is

higher for the coarser particles

Eshel et. al.[18] had carried out a detailed study on laser diffraction method of mea-

surement of particle size distribution. The material of interest of their study was

soil. However, their attempts to compare the PSD by sieve, sedimentation and laser

diffraction techniques were not successful and there was no good agreement between

the results from these techniques. Neither they could establish a correlation between

these techniques. But, in this study, they have shown that refractive index has effect

on the measurement of PSD by laser diffraction technique.

Jeenu et. al. [19] measured the particle size distribution of condensed particles in the

combustion products of aluminized composite solid propellant. They had used laser

diffraction technique to measure the PSD. This work by Jeenu et. al. [19] shows a

representation of PSD data fitted into a multimodal log normal distribution. This

will be discussed in detail in the later chapters of this article as this method of rep-

resentation is adopted for the present work also.

1.1.2 Modelling of combustion of composite solid propellant

and its prediction of ballistic behaviour

Many models of solid propellant combustion and prediction of burning rate has been

proposed and developed by many investigators for many decades. It is well accepted

that burning rate of solid propellant is a function of pressure, oxidizer to fuel (O/F) ra-

tio, oxidizer particle size distribution and type and percentage of additives (catalysts).

As the name implies composite solid propellant is heterogeneous in nature and hence

heterogeneity of composite solid propellant is one aspect which need to be taken into



1.2 Outline of the thesis 11

account. Hermance [1] has developed a model taking heterogeneity in the condensed

phase of solid propellant and heat generation taken in to account. Hermance[1] has

considered this three-dimension unsteady phenomenon and converted into a one di-

mensional steady state in his model. Further, it has been modified [2] with inclusion

of diffusional mixing process in the determination of flame standoff distance.

Backstead et. al. [13, 3] had introduced a model which states that heat release in the

gas phase is contributed by three flames 1) primary diffusion flame between the de-

composition products of binder and oxidizer, 2) mono propellant(oxidizer) premixed

flame, 3) final diffusion flame between the primary decomposition products of mono

propellants and products of premixed flame. Further many scientists modified these

models and were elegant at their inception. But these models were somehow not

been used by the designer who could readily develop a composition with the desired

ballistic behaviour with the confidence of the theory proposed by these models due

to complexity of the model and may be lack of confidence in the models itself.

Recently Gross and co investigators[20, 21, 7] has come up with a tool to model the

combustion process and predict the burning rate of composite solid propellant. Here

the burning rates were calculated by numerical simulations of CFD which requires

time and high computational resources.

1.2 Outline of the thesis

The next chapter explains in detail about the ammonium perchlorate and its particle

size distribution. A detailed analysis of particle size distribution of AP using differ-

ent measurement techniques and their comparison. Advantages and disadvantages of

each technique is discussed

The third chapter describes in brief the heterogeneous quasi one dimensional burn

rate prediction model and its the novel technique of experimental measurement of

burning rate of solid propellant i.e., Ultrasonic Burning Rate (UBR).

The fourth chapter deals with the predictions of different solid propellant compo-
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sitions with dry method of particle size distribution of AP and comparison of the

burning rate results with experimental results generated with UBR.

The fifth chapter is for conclusion and the proposal of the future work to make this

model further robust.



Chapter 2

Ammonium Perchlorate and its

particle size characterization

2.1 Ammonium Perchlorate

Ammonium Perchlorate (AP) is a white, crystalline solid with chemical formula

NH4ClO4 (see Table 2.1) is generally used as oxidizer in almost all the solid pro-

pellant formulations of ISRO. Most of the composite solid propellant compositions

contain solid loading up to 86% of AP thus making it the main solid ingredient of com-

posite solid propellant. Moreover, due to the high available oxygen content and high

density. It secures its position as workhorse oxidizer in solid propellant. Other main

ingredients are aluminium powder and hydroxyl terminated polybutadiene (HTPB)

which acts as a fuel-cum-binder material for AP and aluminium powder particles.

The two most important ballistic properties of solid propellant are its energy content

(heat of combustion) and burning rate. The energy content is determined by the

composition whereas the burning rate is not only a function of composition, but is

a strong function of particle size distribution (PSD) of ammonium perchlorate(AP).

Hence, it is very important to know the size distribution of AP particles that goes into

the propellant composition. Usually, AP powders with different particles size distri-

butions are added to propellant in order to control the burning rate and increase the

AP solid loading in the propellant. Based on the average particle size distribution,

they can be called as coarse, fine, and ultrafine AP (Table 2.2). These three classes

of AP powers are added in different proportions in order to get the required burning

rate to the propellant. In addition, these proportions controls the viscosity of the

propellant slurry and the mechanical properties of cured propellant.
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Chemical formula NH4ClO4

Molar mass 117.49 g/mol
Appearance White crystalline
Density 1.95 g/cm3

Melting point Exothermic decomposition before melting above 200oC
Solubility in water 20.85 g/100 ml (20oC)
Solubility Soluble in Methanol and water, partially soluble

in acetone and insoluble in ethyl acetate and ether.

Table 2.1: Properties of ammonium perchlorate

Class Particle size
range (mi-
crons)

Productionn method

Coarse 500 − 150 Prepared by crystallization and
sieving. Crystallization condi-
tions affects the distribution

Fine 150 20 Prepared by grinding in an attri-
tion mill or hammer mill. Feed
rate control the distribution.

Ultra fine less than 20 Prepared by grinding in fluid en-
ergy mill. Clustering may hap-
pen on storage.

Table 2.2: Classification of AP powder based on its particle size distribution

2.2 Particle size distribution

As the particle size distribution of AP is a very important measurement to characterize

the propellant, it is very much essential to measure it accurately. The particle-size

distribution can be defined as distribution of the relative amount, typically number,

mass or volume of particles present in a sample according to the particle size. Over

the period of time, many techniques had evolved for the accurate measurement of

particle size distribution. In the current work, the following techniques were used for

the measurement

• Sieve analysis

• Microscopic method and image analysis
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• Laser scatter: dry method and

• Laser scatter: wet method

2.2.1 Sieve analysis

This method is a standard measurement technique conventionally being used in ISRO

for the measurement of particle size distribution of AP. A set of standard sieves of

known mesh sizes arranged progressively from larger mesh at the top to smaller mesh

at the bottom in a sieve shaker. A known amount of powder material is added at the

top. After a fixed time of shaking, the particles retained in each sieve is weighed and

mass distribution is obtained. A large amount of materials can be readily loaded into

sieve trays to improve the measurement accuracy. As far as AP is concerned, being

a hygroscopic material there is an uncertainty with finer particles. These particles

may get adhered to the sieve. These cases make the sieve analysis inferior method of

measuring particle size distribution especially for AP.

2.2.2 Microscopic method and image analysis

This method is more accurate as the actual dimensions of particles can be directly

measured with the help of a microscope. Size of all particles can be noted, but

for a statistically valid analysis, very large number (>1000) of particles have to be

measured. This is time consuming and cumbersome. However, automated image

analyzing techniques are now available to obtain an accurate particle size distribution.

The main difficulty with this technique is the preparation of a well and representative

spread of particle on the slide of the microscope. It is extremely difficult to measure

for very fine particles due to clustering.

2.2.3 Laser scatter method

In this method, the particles disperse in a medium in a measurement cell are illu-

minated in a collimated laser beam, causing the light to be scattered in different

directions. Bigger particles will bring about a high intensity of scattering at low an-

gles to the beam. Smaller particles, on the other hand, create a low intensity signal

at far wider angles as shown in Figure 2.1. The intensity of scattered light at var-

ious angles are measured with specially-designed ring shaped annular detectors and

particle size distribution is determined from the resulting data.
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Figure 2.1: Scattering of laser according to the particle size

Different dispersion medium can be used for dispersing the particles. In dry method,

the dispersion medium is dry air which carries the particles through an optical mea-

surement cell. In wet method, the sample is dispersed in liquid and circulated through

the optical measurement cell. For AP particles, the suggested liquids are ethyl acetate

or n-butyl acetate for wet method of dispersion.

2.3 Laser diffraction particle size analyser

The laser diffraction particle size analyser (Malvern Mastersizer 3000) employing laser

scatter technique available at Rocket Propellant Plant(RPP) in Vikram Sarabhai

Space Centre (VSSC) is used for the measurement of particle size of AP powder.

This equipment is capable of measuring particle size distribution in the range of 0.1

to 3000 µm. The Malvern Mastersizer is comprised of a main optical unit, one or

more dispersion units and a measurement cell as shown in the Figure 2.2 .

The optical unit transmits red and blue laser light through a well dispersed powder

sample and uses light detectors to generate data from the light scattering pattern

caused by the particles in the optical cell. The data is then interpreted by the Mas-

tersizer application software to provide the particle size information. The blue laser

light improves the measurement resolution for particles below 1µm size.
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Figure 2.2: Optical unit of Malvern Mastersizer 3000

2.3.1 Dry method

The dry powder sample is manually placed in the sample hopper fitted to the top

of the vibrating sample feed tray of the dispersion unit as shown in the Figure 2.3.

Additionally, a mesh basket with a steel ball, is used to help smooth the flow of

sample and break up any loose agglomerates within the sample before it falls into the

venturi disperser. The air supply and vacuum suction system is connected. When

the sample feed tray vibrates the sample in the hopper travels down the tray until it

eventually falls into the main feed mechanism - the venturi disperser.

The rate at which the sample is fed into the venturi disperser is governed by the

amplitude of vibration of the feed tray (controlled by the software) and also by the

gap set between the feed tray and hopper on the sample tray. As the sample falls

through into the funnel of the venturi disperser, it is accelerated by compressed air

within the centre of the venturi disperser where agglomerates are dispersed. The

sample is then directed through the dry measurement cell fitted to the Mastersizer

optical unit, where it is measured and then collected by the vacuum suction system

at the rear of the dry cell.

2.3.2 Wet method

The wet (Hydro EV) dispersion unit uses a 600 ml or one litre glass beaker to hold

the sample and dispersant liquid. This dispersion unit consists of a pump head which
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Figure 2.3: Dry dispersion unit

can be tilted. This pump head will be immersed into the dispersant as shown in

Figure 2.4.The pump-head is tilted forward, lowering the pump arm into the beaker,

and allowing the dispersant to be pumped. The pump circulates the dispersant from

the dispersion unit to the wet cell located in the optical bench, via the sample tubing

and the pumping speed is controlled by the Mastersizer application software. Sample

is then added to the beaker as required. The stirrer agitates the sample to prevent

settling the particles. An ultrasonic transducer is provided to aid the dispersion of

the powder and also to remove bubbles from the flow path.

2.4 Particle size analysis using different techniques

and results

Measurement of particle size distribution of AP was carried out using all the above

discussed techniques. All the three classes of AP had been analysed with different

techniques. The laser scatter dry method being a new technique of dispersing the

sample, the parameters for accurate measurement has been worked out and is dis-

cussed in further sections of this report. The below are the results for each technique.
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Figure 2.4: Wet dispersion unit

2.4.1 Sieve analysis

In the sieve analysis, the measurements depend on the available standard sieves for

a range of AP particle sizes. For the AP-coarse and AP-fine classes of particles

the cumulative mass density distributions are shown in Figure 2.5. The cumulatve

proportions of each class is giccen in table 2.3 as there is no availability of necessary

sieves for the ultrafine AP, it could not be analysed by this technique.

2.4.2 Microscopic method

The Malvern make particle shape analyser was used for obtaining the particle size

analysis by microscopic method. The equipment analyses the image of the particle

(projected area of the particles image) from which the particle size distribution is

obtained by counting. The analysis gives the number distribution against particles

diameter. Hence, it has been converted to volume density for comparison. The

microscopic image of the AP coarse particles is shown in Figure 2.6.

The images of the individual AP coarse, fine and ultrafine particles obtained from

Malvern shape analyser is also shown in figures 2.7, 2.8 and 2.9.
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Figure 2.5: Cumulative AP particles size distribution of fine and coarse AP by sieve
analysis

AP coarse AP Fine

Particle size
(µm)

Cumulative vol-
ume density(%)

Particle size
(µm)

Cumulative vol-
ume density(%)

45 0.01 63 73
125 0.6 100 89
250 17.56 150 100
300 38.43
355 70.61
500 97.53
800 99.91

Table 2.3: Cumulative proportions of each class of AP by seive analysis

It is observed that the AP coarse particles have a shape of two or more particles

fused together. This shape might have occurred during its crystallization process.

AP fine and AP ultrafine particles do not show the above said characteristic, but

could detect particles with sharp corners. The particle size distributions measured

by optical analysis are shown in Figure 2.10.
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Figure 2.6: Optical microscopic image of AP Coarse particles and approximate
equivalent circles

Figure 2.7: Image of AP Coarse particles

2.4.3 Laser scatter - Wet analysis

Particle size distribution of AP using laser scatter wet method was carried out using

Malvern Mastersizer 3000. Here the carrier medium to circulate through the measure-

ment cell was ethyl acetate or n-butyl acetate for AP particles. It is a well-established

method for the measurement of particle size distribution of powders in Analytical and

Spectroscopy Division(ASD), VSSC . This method of analysis is appropriate for hard

particles such as powders of metals or oxides which will not disintegrate further dur-

ing agitation and circulation through the cell and will not dissolve in the solvent or

liquid in which the particles are dispersed. In the case of AP, being a crystalline salt

and comparatively soft, the crystals may further break during dispersion and absolute
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Figure 2.8: Image of AP Fine particles

Figure 2.9: Image of AP ultrafine particles

insolubility is not claimed in any of the solvents. Instead, we choose to analyse in a

solvent in which AP is nearly insoluble. This uncertainty in measurement is a real

concern and has to be addressed for an accurate measurement of particle size distri-

bution. The particle size distribution of different classes of AP using laser scatter wet

method is shown in Figure 2.11
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Figure 2.10: Particle size distribution of AP from image analysis

Figure 2.11: PSD of AP by wet analysis Laser scatter method

Laser scatter - Dry analysis

In dry analysis, the carrier of the sample to the measurement cell is compressed air.

As discussed in section 2.3.1 , the sample is fed into the sample tray and passed

through the venturi-disperser, and then carried away by the air current. There are
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few parameters to be optimized for the measurement of AP particle size distribution

accurately as this is a new method of dispersion especially for a sample like AP.

The feed rate is fixed by optimizing the frequency and amplitude of the vibration

of the feed tray and the gap between hopper and tray (hopper gap, which acts as

the gate for the sample into the venturi-disperser) and the pressure of the inlet air,

which influences the flow of the particles and residency period of the particles in the

measurement cell. The sample fed in the dry dispersion method is a once through

pass system and the quantity of sample size in a single test is limited due to be

constraint of volume of the hopper. Since the period of measurement is fixed, higher

the feed rate lower the number of measurements. In view of this, 20% of the vibration

amplitude of the tray has been chosen as to maintain the feed rate optimumally and

number of readings can be maximized for ≈ 30g of AP sample powder.

It is observed that the optimized hopper gap is 1mm as the AP coarse particles may

range from 1to 700 m. Further reduction in hopper gap results in the particles to

clog inside the hopper and further increase lead to higher feed rate resulting in less

number of measurements per test.

The dispersion mechanisms of AP particles in dry method is illustrated in Figure

2.12. It indicates the velocity of particles is an important parameter in dispersing the

particles, which in turn determined by the pressure of the feed air. At high pressures,

as AP particles are brittle in nature, the particle may break and at low pressures,

the dispersion may not be effective. This will affect the particle size distribution.

Hence, to get an optimum pressure, the AP was analysed using dry dispersion unit

at different pressures ranging from 0.1 bar to 3 bar of air pressure. The results are

shown in Figure 2.13.

Figure 2.12: Illustration of the dispersion mechanisms in dry method

In the Figure 2.13, Dv10, Dv50 and Dv90 are the parameters based on the cumulative

particle size data of a given sample. Here Dv10, Dv50 and Dv90 denote the maximum

particle size (µm) below which 10%, 50% and 90% of the sample volume respectively
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Figure 2.13: Variation of PSD of AP coarse w.r.t pressure

exists. From the Figure 2.13 it is observed that Dv10, which indicated the size of

finer particles in the sample below which 10% of the sample volume exists, is smaller

if the feed pressures is higher than 1 bar. This is an indication of possible breaking

of particles at higher pressures. At lower pressures, Dv10 is found to be constant.

Hence a lower pressure, say 0.2 bar, is chosen for the analysis.

Figure 2.14: Particle size distribution of coarse-AP at 2 bar and 0.2 bar air pres-
sures.

The Figure 2.14 are results of repeated measurements of the same batch of AP coarse

sample at 2 and 0.2 bar air pressures. From this, it is clear that the 0.2 bar pressure

of air current gives less dispersed results in repeated measurements as compared to

2.0 bar results. It is also evident that the fine particles are increased in 2bar test.
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Figure 2.15: Particle size distribution of fine-AP at 2 bar and 0.2 bar air pressures.

Similarly, from the Figure 2.15 which shows the particle size distribution of AP fine

at two different pressures and less dispersed results are obtained at lower pressures.

However, for ultra fine AP, (see Figure 2.16), as the chances of further reduction of

particle size is not easy due to the inter particle and wall collision, it is proposed

to use higher pressures i.e., 2 bar. As clustering can occur easily in ultrafine AP,

higher pressure is beneficial for the breakage of these clusters. The volume density of

ultrafine particles is increased in 2 bar as compared to 0.2 bar which is an indication

of agglomeration being dispersed.

Figure 2.16: Particle size distribution of ultrafine-AP at 2 bar and 0.2 bar air pres-
sures.

Figure 2.17 shows the particle size distribution of all the three classes measured by

laser scatter dry method. Based on this study, the parameters shown in Table 2.4
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Figure 2.17: Particle size distribution of all the three classes of AP using laser scat-
ter dry method

have been arrived at for the measurement of particle size distribution for all the three

classes of AP.

Sl. No. Parameter AP
coarse

AP fine AP ul-
trafine

1 Gap between hopper and sample
tray

1mm 1mm 1mm

2 Feed rate 20% 50% 50%
3 Compressed air pressure 0.2 bar 0.2 bar 2 bar
4 Observation time per reading 6 seconds 6 seconds 6 seconds
5 No. of measurements per sample 12 12 12
6 No. of samples per batch 3 3 3

Table 2.4: Parameters for particle size distribution determination using dry method
in Malvern Mastersizer 3000

To account for the effect of agglomeration in ultrafine powder of AP, further studies

were carried out to understand the effect of time on the agglomeration. If the mea-

surement can be done with in 10 minute of the production of ultrafine powder, we

get a particle size distribution with particle size not exceeding 40 microns as shown

in Figure 2.18. On the other hand, at lower pressure say 0.2 bar (2.16) we observe

a peak showing the agglomerated ultrafine particles which could not be dispersed at

0.2 bar.

A comparison of particle size distribution of ultrafine AP measured by both wet and
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Figure 2.18: Particle size distribution of ultrafine AP measured after 10 minutes of
production at 2.0 bar using laser scatter dry method.

dry methods of laser scatter is shown in Figure 2.19. A review into this comparison

reveals that in dry method there is higher fraction of very fine particles in the dis-

tribution as compared to wet method where this fraction of very fine particels is not

observed in measurement. This can be attributed to the dissolution of these very fine

particles in ultrafine powder in the solvent while stirring and sonication. The rate of

agglomeration is captured in dry method which is indicative in Figure 2.20.
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Figure 2.19: Comparison of particle size distribution of ultrafine AP using both wet
and dry method of laser scatter
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Figure 2.20: Change of particle size distribution of ultrafine AP with time after its
production
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2.5 Comparison of Particle size distribution anal-

ysed by different techniques

2.5.1 Sieve analysis and laser diffraction techniques

Typical cumulative particle size distribution of AP coarse is shown in Figure 2.21. It

is observed that the distribution of AP coarse using sieve analysis is in between the

laser scatter techniques of wet and dry methods. For the particles of size above 350

µm the sieve data is in very close agreement with laser scatter dry method. However,

dry method measures approximately 5% of fine particles below 100 µm in the coarse

AP. This was not detected by either sieve analysis or laser scatter wet method.

Figure 2.21: Cumulative particle size distribution of AP Coarse

Similarly, Figure 2.22 shows the cumulative particle size distribution of AP fine. The

wet method shows larger quantity of finer particles in the fine-AP powder than that

by dry method. This may be due to the possibility of particle disintegration during

agitation in the mixing container. In sieve analysis of AP fine particles, by virtue of

its moisture sensitivity, the particles get adhered to the sieve. And hence, three sieves

could only be used in sieving. However, the results are in line with laser scatter dry

method.
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techniques

Figure 2.22: Cumulative particle size distribution of AP fine

2.5.2 Microscopic (image analysis) and Laser scatter tech-

niques

Figure 2.7 shows the comparison of particle size distribution of AP coarse measured

by Laser scatter and microscopic analysis techniques.

Figure 2.23: Particle size distribution of AP Coarse comparison with image analysis
data

It shows that the measured particle size distribution by microscopic analysis is more
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biased towards the coarse particles. However, for fine particles (AP fine and ultrafine)

Figure 2.8 2.9, such bias is not observed and modes for both classes are close to the

mode by laser scatter dry method.

Figure 2.24: Particle size distribution of AP fine comparison with image analysis
data

Figure 2.25: Particle size distribution of AP ultra fine comparison with image anal-
ysis data

The different methods of particle size distribution measurements can be compared as

given in Table 2.5.
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Laser Scatter - Dry method 1. Easy to carry out test
2. Repeatability
3. Quick in measurement
4. In line with microscopic analysis

Laser Scatter - wet method 1. Better dispersion of particle is possible
2. Ultrasound can be applied for breaking cluster
3. Elaborate cleaning process is required
4. Slow drift in the measurement possibly due to dis-
solution or grinding during circulation
5. Large amount of dispersion liquid is required

Microscopic analysis 1. Direct measurement
2. High time consuming
3. Low repeatability
4. Cumbersome
5. gives number distribution

Sieve analysis 1. Well accepted
2. Discrete distribution
3. Less accurate
4. Not effective for fine particle analysis

Table 2.5: Comparison of different techniques of PSD measurements

2.6 Representation of particle size distribution

A typical report of mono modal particle size distribution measured by using laser scat-

ter technique is shown in Figure 2.26. However, this report does not give the standard

deviation or dispersion of a particular mean and in such cases the representation of

particle size distribution need to be in a better and meaningful way.

There are many ways of representing the particle size distribution data of a partic-

ular sample. In the present analysis it is assumed that a particular multi modal

distribution of particle is a mixture of several mono modal distributions of parti-

cles. A mono modal distribution may follow the log-normal distribution with single

mode. Or, mathematically the combination of these mono-modal distribution can be

represented by the equation 2.1.

[h!]ϕ(x) =
1√
2π

∑ ai
σi

exp−
{
x− µ√

2σi

}2

(2.1)

where
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Figure 2.26: A typical report of particle size distribution by Laser scatter

ϕ = Volume density (%)

σ = Standard deviation

µ = Mean
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i = Mode representation (ith modal distribution)

a = volume fraction of particular modal distribution of particles

x = Logarithm of particle size

Figure 2.27: Representation of Multi-modal particle size distribution of AP coarse
particles

Mode 1 Mode 2 Mode 3
Mean size (µm) 43.95 270.43 365.04
Volume (%) 3.5 60 36.5
Standard Deviation 0.4 0.44 0.38

Table 2.6: Parameters of PSD of AP coarse shown in Figure 2.27

It is to be noted that all the three classes of ammonium perchlorate here are multi

modal and is not appropriate to represent the distribution with a single volume

weighted mean. Hence to make the representation more meaningful, a method of

representing the data in terms of volume fraction of particles with a particular mode

and standard deviation is proposed. Here the data is fitted to multiple log- normal

distribution fits (Gaussian fit) and merging all into one equation. In other words, the

results can be read as, the AP coarse particles contain 3.5%, 60% and 36.5% of three
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modes of particles with modes 43.94 , 270.43, 365.03 um. These modes of particle

have dispersion with standard deviations of 0.4, 0.44, and 0.38 respectively as shown

in Table 2.27.

Similarly, the results for AP Fine and AP Ultrafine are also shown in Figure 2.28 and

Figure 2.29 respectively and their corresponding interpretation in tables 2.7 and 2.8

Figure 2.28: Representation of Multi-modal particle size distribution of AP fine
particles

Mode 1 Mode 2
Mean size (µm) 33.12 54.60
Volume (%) 48 52
Standard Deviation 0.89 0.9

Table 2.7: Parameters of PSD of AP coarse shown in Figure 2.28

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
Mean size (µm) 0.37 5.47 44.70 244.69 164.02
Volume (%) 6 51 8 28 7
Standard Deviation 0.7 0.75 0.42 0.54 0.4

Table 2.8: Parameters of PSD of AP coarse shown in Figure 2.29
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Figure 2.29: Representation of Multi-modal particle size distribution of AP ultra-
fine particles



Chapter 3

Heterogeneous Quasi One

Dimensional (He-Qu-1D) model

and Ultrasonic Burning Rate

(UBR) technique

3.1 Heterogeneous Quasi One dimensional (He-Qu-

1D) model

As discussed in the introduction (chapter 1) a valid tool for solid propellant burn-

ing rate prediction is an advantage for a designer to develop a new solid propellant

composition. The heterogneous quasi one dimension model (He-Qu-1D) proposed by

Varunkumar et.al. [11, 10, 12] where there is no complex computational approach

which required huge time and resources, but take into account the diffusion process

accurately like [6, 7, 20]. In addition, to the adoption of concepts of Hermance [2]

and BDP [3] model, the He-Qu-1D model is also assumed that combustion process

is limited between: 1) the premixed flames around coarse AP particles and 2) the

premixed flame above very fine AP-binder mix.

This model consists of three parts 1) multi modal propellant geometry 2) 1D deflagra-

tion model for pure AP and homogenous propellant, 3) quasi 1D deflagraion model

for binder matrix coated AP particles.
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3.1.1 Multi modal AP geometry in propellant

Approximating the binder thickness

AP particles in propellant is distributed with different sizes di with corresponding

mass fractions fi, such that Σfi = SL, where SL is the total AP solid loading in the

propellant. Mass fraction of aluminum is fal and the mass fraction of binder matrix

is termed as fHTPB = 1-SL. From the work of Gross et al. [6] it is understood that as

the pressure increases the behaviour of smallest particle size in combustion changes

and diffusion effects starts to play a role. Hence a premixed limit diameter dpm is

the diameter below which diffusional effects are neglected and this is a function of

pressure as shown in Eq. 3.1. Similarly, the particles undergo local extinction due

to fuel rich pockets is also homogenized with binder and its limit is termed as dex.

All put together this mixture of HTPB, aluminium, critical premixed particles and

extinct particles is termed as binder matrix.

dpm = 16.7 exp0.02p (3.1)

The thickness tbm of the binder matrix coated around the AP particles is determined

from the Eq. 3.2. LHS of this equation is the total volume of the binder matrix and

RHS is the same volume coated uniformly over the rest of the AP particles.

fHTPB

ρHTPB

+
fpm + fex
ρAP

+
fAl

ρAl

=
n∑

i=1

fi[(1 + 2tbm/di)
3 − 1]

ρAP

(3.2)

Statistical particle path

Consider a random line drawn through a propellant pack. This line will intersect with

AP particles of different sizes. The average length fraction (l′i) of this random line

that will intersect with AP particles of size di is equal to the corresponding volume

fraction (Vi), as shown in [22]. Therefore the average number of AP particles of size

di along a line will be ni = li/di = Vi/di. With each particle coated with binder-

matrix of thickness tbm the diameter of every particle increases by 2tbm; that is it

changes from di to di + 2tbm. Therefore, the length occupied by the particle of size

di increases from nidi to ni(di + tbm). Since the number of particles are same before
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and after binder-matrix coating, the modified length occupied by the particle will be

Vi(di +2tbm) = di and the total length of the line will be P ΣVi(di +2tbm) = di. Using

this the line average intersection li for binder-matrix coated AP particle of size di is

calculated using Eq.3.3.

li =
Vi(1 + 2tbm/di)∑n
i=1 Vi(1 + 2tbm/di)

(3.3)

Using this li obtained from Eq. 3.3 the propellant burning rate of ṙ can be expressed

in Eq.3.4

ṙ = [
n∑

i=1

li
ṙi

] (3.4)

3.1.2 Pure AP 1D deflagration

The ṙi in Eq. 3.4 is to be found to determine the propellant burning rate. Hence the

deflagration of pure AP is modelled using heat flux balance as shown in Figure 3.1

Figure 3.1: Pure AP combustion

The deflagration of AP is considered 1D with a thin premixed flame transferring heat

to the surface of condensed phase. AP combustion mechanism consists of two steps 1)

exothermic decomposition of AP at propellant surface 2) gas phase reeaction between
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AP decomposition products. Surface heat balance is represented in Eq.

k

[
∂T

∂x

]
0−

= ρP ṙHs + kg

[
∂T

∂x

]
0+

(3.5)

Thus by solving the above equation and Arrhenius type pyrolysis law as given in [12]

with boundary conditions, we get a final Eq.3.6 to determine the ṙ.

ρpṙ =

√√√√kg
cp
Krpnr ln

[
1 +

Tf − Ts
Ts − T0 − Hs

cp

]
(3.6)

where

p = propellant density

ξ = non dimensional number of x

kg = gas phase thermal conductivity

cp = condensed phase specific heat at constant pressure

Kr = gas phase reaction rate

p = pressure

nr = gas phase reaction rate order

Tf = adiabatic flame temperature

Ts = surface temperature

T0 = initial temperature

Hs = net enthalpy change at surface due to phase change

It is assumed that binder matrix thickness of all sized particles is same. This leads to

a phenomenon of local extinction because for smaller particles the thickness of binder

matrix is large and thus the surface temperature is decreased and below a limit under

which the deflagration of the AP cannot exist and are quenched. This limit is termed

as low pressure deflagration limit(LPDL) and this phenomenon is termed as local

extinction. At some instances the binder being a polymer is decomposed and pro-

duce high molecular weight fragments and thus block the heat feedback to the burn

surface. This in turn does not allow the binder to vaporise and thus a melting effect

is witnessed. This is termed as binder melt. Further the equations and boundary

conditions application and other aspects of this model is detailed in [11] and [10].
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3.1.3 Quasi 1D deflagration of binder matrix coated AP par-

ticles

Most practical propellants contain binder-matrix which has solid loading lower than

30%. Binder-matrix with such low loading cannot undergo self-sustained deflagration

which implies that the flame above the deflagrating AP particle surface transfers heat

only to the central core of the binder-matrix coated AP particle. Therefore, geometric

factor, gf , which takes care of aforementioned fact, is taken as the area ratio of the

mid plane of the AP particle and binder-matrix coated AP particle which can be

written mathematically as:

gf =

(
di

di + 2tbm

)

Extent of lateral diffusion and effective flame temperature

The effective temperature of heat transfer to the particle is dependent on the extent

of lateral diffusion of AP and binder decomposition products into each other. Hence

an lateral diffusional distance is a function of pressure and binder matrix thickness.

Finally by replacing the temperatures with effective temperatures and including the

geometric factor in Eq. 3.6 we get the final burning rate of the binder matrix coated

AP particles.

3.1.4 Effect of burning rate modifiers

Burning rate modifiers can be used to either enhance or decrease the burning rate

as per the requirement and choice. Iron oxide (IO), Copper Chromite (CC) and ac-

tivated carbon (ACR) are the most common catalysts. Catalysts enhance the burn

rate, predominantly by acting on the gas phase reaction between the decomposition

products of HTPB and AP, since they are mixed with the binder during processing.

The fact that the pressure index is only marginally affected by addition of catalyst

is indicative of the predominant gas phase effect. This can be accounted for in the

current framework by suitably modifying the activation energy of the gas phase re-

action. The extent to which the activation energy must be decreased, which will be

a function of the catalyst concentration, can be estimated from the measured burn

rate enhancement of fine AP/HTPB premixed propellant with increasing fraction of
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catalyst. Information on the saturation limit of catalysis can also be obtained from

the same data.

Note: The detailed explaination with equations and figures of the He-Qu-

1D model is given in [11, 10, 12]
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3.2 Ultrasonic burn rate (UBR) technique

A new technique of measuring the burning rate of solid propellant developed by

Jeenu et. al. [23] in VSSC and is being used for the characterization of all the

solid propellants of ISRO. This is based on the pulse echo ultrasonic technique. The

specimen quantity required is as small as 60 grams as shown in Figure 3.2

Figure 3.2: Propellant specimen of UBR bonded in specimen holder.

The test set up used for the measurement of all the propellant formulations to be

discussed later in this thesis is shown below in Figure 3.3. Further the technique of

testing and procedure is clearly elaborated in [23].

Figure 3.3: Ultrasonic burning rate test set up



Chapter 4

Model predictions and

experimental data of composite

solid propellant compositions

The attempt was to validate the He-Qu-1D model for the ISRO solid propellant for-

mulations and thus make this as a predictive tool so that it would be useful tool

for future new formulations which would emerge out with minimum tests required

for qualification. The model equations presented in [12] and [10] are implemented

in MATLAB. In the present study, 6 compositions were taken into consideration for

validation of the model as shown in the Table 4.1. Using the model (updated MAT-

LAB code) the burning rates of different propellant compositions were predicted and

compared with experimental results of UBR. Particle size distribution of ammonium

perchlorate measured using laser diffraction technique in Malvern Mastersizer 3000

located in Rocket Propellant Plant (RPP) / VSSC were used for the model predic-

tion. All the experimental results are measured by ultrasonic burning rate facility in

Propellant Engineering Division (PED) / VSSC

4.1 Results and Discussion

Out of these siz compositions, two compositions (type 1 and type 2) were taken with-

out catalyst and remaining all are of catalysed formulations for the present study.

However, all the compositions taken into consideration consists of aluminium at dif-

ferent concentrations. The following are the predictions and its experimental results

plotted.
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Composition Burning
rate
class

Approx.
Burning
rate @ 40
kgf/cm2

Catalyst AP dis-
tribution
(C:F:UF)

Pressure
index
(n)

Type 1 Slow 5.6 mm/s None (0%) 4:1:0 0.37
Type 2 Slow 5.8 mm/s None (0%) 3:1:0 0.36
Type 3 Medium 8.3 mm/s CC (0.25%) 2:1:0 0.43
Type 4 High 13.0 mm/s CC (1%), IO

(1%)
0:1:0 0.43

Type 5 High 16.3 mm/s CC (1%),
Fe2O3 (1%)

2:3:1 0.437

Type 6 High 11.0 mm/s CC (1%) 1:1.2:0 0.385

Table 4.1: Different compositions taken for the prediction

Figure 4.1: Prediction and Experimental data of Type 1 propellant composition

Predictions of all these formulations as shown in Figures 4.1 to 4.6 are found to be

in good agreement with the experimental results. However, it is to be noted that the

activation energy has been taken as a linear fit between the two limiting conditions of

1) composition of without any catalyst and 2) composition with catalyst concentration

added up to the saturation limit, beyond which catalyst cannot influence the burn

rate.

In order to study the effect of catalyst in the propellant composition and to validate

the same with predictions, propellant type 3 in Table 4.1 has been chosen and new mix
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Figure 4.2: Prediction and Experimental data of Type 2 propellant composition

Figure 4.3: Prediction and Experimental data of Type 3 propellant composition

was processed by removing the catalyst and compensating the catalyst concentration

(0.25%) with equal amounts of AP coarse and AP fine in the same proportions. The

experimental and predictions are shown in Figure 4.7

From the Figure 4.7 it is observed that the catalyst effect has been clearly captured

by the model. However, there is a little difference between the experimental and

prediction results, but marginal.

Type 5 propellant consists of 20 % ultrafine AP in addition to 30% and 20% fine
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Figure 4.4: Prediction and Experimental data of Type 4 propellant composition

Figure 4.5: Prediction and Experimental data of Type 5 propellant composition

and coarse AP respectively. Measurement of PSD of these ultrafine particles using dry

method gives a bi modal distribution in which the coarser mode of the distribution

corresponds to agglomeration of the ultrafine particles. In view of this, predictions

were generated with and without the agglomeration data as shown in Figure 4.5.

These two predictions are marginally different and lie in the dispersion range of the

propellant burn rate. For type 6 propellant we observe that there is a change in

slope in the prediction data with respective to experimental. There was limited data
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Figure 4.6: Prediction and Experimental data of Type 6 propellant composition

Figure 4.7: Predictions and experimental results of Type 3 propellant with and
without catalyst.

available on this composition and hence it has to be studied in details with more data

generation.
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4.2 Comparison of predictions with PSDs from wet

and dry method of laser scatter

From the analysis of particle size distribution in the chapter 2, it was concluded

that dry method of laser scatter technique is more easy and accurate method of

measurement. However to account the effect of the variation of PSD by both wet and

dry method, predictions were generated using both and is compared with experimental

results for Type 1, Type 2, Type 4 and Type 5 as shown in Figures 4.8,4.9, 4.10 and

4.11 respectively.

Figure 4.8: Comparison of prediction with PSDs measured by laser scatter wet
method and dry method and experimental results of Type 1 propellant

From these results it is quite evident that laser scatter dry method is truly representing

the particle size distribution of AP in the propellant mix as far as this model is

concerned. The PSD of both the methods are plotted in Figure 4.12 and the Figure

4.13 shows the difference of the PSDs of both the dispersion techniques when all the

classes of AP is considered. The master curves shown in Figure 4.13 shows that fine

fraction of AP is higher when the same material is analysed by Laser scatter wet

method as compared to dry method.
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4.2 Comparison of predictions with PSDs from wet and dry method of

laser scatter

Figure 4.9: Comparison of prediction with PSDs measured by laser scatter wet
method and dry method and experimental results of Type 2 propellant

Figure 4.10: Comparison of prediction with PSDs measured by laser scatter wet
method and dry method and experimental results of Type 4 propellant
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Figure 4.11: Comparison of prediction with PSDs measured by laser scatter wet
method and dry method and experimental results of Type 5 propellant

Figure 4.12: Comparison of PSD of all classes of AP measured by both Laser scat-
ter wet and dry methods
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4.2 Comparison of predictions with PSDs from wet and dry method of

laser scatter

Figure 4.13: Comparison of master PSD curve of AP by integrating all the classes.



Chapter 5

Conclusion and future work

From all the above analysis covering different types of measurement techniques of

particles size distribution in particular of ammonium perchlorate the following con-

clusions can be made.

• The whole exercise or study carried out was to evolve a definite and accurate

methodology for the measurement of PSD of AP all classes repeatedly.

• AP needs to considered special case of material being moisture sensitive and

fragile in nature.

• Dry method of laser scatter is found to be more reliable, repeatable and faster

method to analyze particle size distribution.

• Comparison with sieve and microscopic analysis with laser scatter-dry method

showed good agreement.

• Aspect of clustering of the particles also has to be considered especially in the

case of AP ultrafine. The information of the extent of clustering in ultrafine

AP particles is available in the dry analysis.

The heterogeneous quasi one dimensional burn rate prediction model is used to com-

pare with the experimental results of about six compositions and had shown com-

parable predictions compared to the experimental results for all the formulations

considered. However, few aspects are to be still fine-tuned and incorporated in the

model to make it still stronger and universal so as to be used as a predictive tool by

the designer of the solid propellant. In this context the following studies are being

proposed for future.
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1. Prediction and its experimental results of a standard solid propellant compo-

sition of 86% AP 14% HTPB without any aluminium or catalyst to evaluate

catalyst effects. The following are the recommended compositions

2. With the standard formulation said above it is proposed to add catalyst at

different concentration and use this data in the model.

3. Taking into account the binder melt in compositions in particular where the

concentrations of fine AP powders are dominating. This may further fine tune

and enhance the predictive capability of this model.
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