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Abstract

Currently clustered rainfall models have been fitted using Generalized Method
of Moments (GMM), because typically they have intractable likelihood func-
tions. GMM fitting matches theoretical and observed moments of the process
and thus is restricted to models for which analytic expressions are available
for the moments. We show that Approximate Bayesian Computation (ABC)
can also be used to fit clustered rainfall models. We also validate that ABC
readily adapts to more general, and thus more realistic, variants of spatial-
temporal rainfall models.

ABC fitting compares the observed process with simulations and hence
places no restrictions on the statistics used for the comparison. This opens up
the possibility of fitting much more realistic stochastic rainfall models. The
penalty we pay for this increased flexibility is an increase in computational
time. Simulated Method of Moments (SMM) is used to initialize the ABC.
This can also be used to estimate the weights of the distance measure in
the ABC-MCMC setting. We found that our method requires much smaller
computation time in comparison with what previous authors have suggested
using a separate ABC step to estimate initialization.

A spatial-temporal rainfall model based on a cluster process is constructed
by taking a primary process, called the storm arrival process, and attaching
to each storm centre a finite secondary process, called a cell process. The
total intensity at a point in R2 × [0,∞) is the sum of the intensities of
all cells active at that point. Typically, the model parameters are interde-
pendent.This dependency produces complexity in model fitting procedures,
and has also restricted further extension of the model, particularly finding
theoretical expressions for the moments. Fortunately, ABC can be applied
without having analytical expressions for the moments. We reparameterized
the models and the parameters were log transformed to reduce dependence
and skewness, also simplifies the chain proposal in MCMC steps.

We also present two new stochastic spatial-temporal rainfall models that
yield with better representation of observed rainfall processes, and also cap-
ture the dependence between size and intensity for rain cells.

Keywords: Poisson cluster process, Bartlett-Lewis process, spatial-
temporal, spatiotemporal; rainfall, simulation, Generalized Method of
Moments, Simulated Method of Moments, Approximate Bayesian Compu-
tation, Markov Chain Monte Carlo.
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Chapter 1

Introduction

1.1 Objectives

Currently Poisson cluster rainfall models have been fitted using Generalized
Method of Moments (GMM). GMM fitting matches theoretical and observed
moments of the process and thus is restricted to moments for which we
have analytic expressions. However, we investigated whether Approximate
Bayesian Computation (ABC) could also be used to fit the Poisson clustered
rainfall models. ABC fitting compares the observed process with simulations
and hence places no restrictions on the statistics used for the comparison.
This opens up the possibility of fitting much more realistic stochastic rainfall
models.

We present two new stochastic spatial-temporal rainfall models. These
lead to better representations of observed rainfall processes and allow us to
study relationships between the cell intensity and the cell area.

These models may be used in conjunction with urban flood models to
determine and assess the flood risks, as we require rainfall data as input to
flood models.

1.2 Motivation

There is concern about how much rainfall can occur in a particular region over
time. Rainfall processes have high variability. Uncertainty and variability of
rainfall processes can be obtained through simulation using stochastic rainfall
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models.
Since technology has evolved over time, we have the privilege of obtaining

more accurate observed processes via radar. Radar provides high-resolution
rainfalls (for instance the rainfall processes may be recorded every 6 minutes
in time and 1 × 1 km square in space). Our goal has been to present high
resolution spatial-temporal models that capture some of the intense local-
ized patches of rainfall that are not uncommon in many storms. We fit the
models using likelihood-free simulation-based techniques such as Approxi-
mate Bayesian Computation, and ideally fitting these models require high
resolution data.

Poisson cluster processes are used to model both temporal and spatial-
temporal rainfall processes. A Poisson cluster rainfall model generates a
continuous rainfall process, which can easily be digitized in both time and
space. These model properties appealed us to focus on Poisson cluster rainfall
models, and facilitated the use of Approximate Bayesian Computation fitting.

A Poisson cluster process is constructed by taking a primary process,
called the storm arrival process, and then attaching to each storm centre
a finite secondary process, called a cell process. The total intensity at a
point in R2 × [0,∞) is the sum of the intensities of all active cells at that
point. Typically, the model parameters are interdependent. The dependency
produces complexity in model fitting procedures, and also restricts further
development of theoretical frameworks. Fortunately, ABC can be applied
without needing analytical expressions for the moments.

The existence of supercomputers, however, can allow us to simulate data
using these complex models relatively quickly. In simulations we can relax
those restricted conditions which do not allow us to develop realistic stochas-
tic rainfall processes. This opens up a new region of model fitting for Poisson
cluster rainfall models, and allows us to modify or develop better models.

1.3 Research Contribution

1.3.1 Previous Work

1. Temporal rainfall models

Rodriguez-Iturbe et al., 1987 [39] introduced two Poisson cluster pro-
cess models: Bartlett-Lewis (BL) and Neyman-Scott (NS) rainfall models.
They also provide the some theoretical expectations particularly first and
second order moments. Rodriguez-Iturbe et al., 1987 [41] applied the orig-
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inal Bartlett-Lewis rectangular pulse model to rainfall data from Denver,
Colorado, US.

Acreman, 1990 [1] and Onof & Wheather, 1994 [35] also fitted the BL
model at Farnborough and Elmdon, Birmingham to UK data sets respec-
tively. Onof & Wheather, 1994 [35] further studied the relationship between
cell arrival rate and cell durations.

Many modifications have been presented. One is a Generalized Point Pro-
cess Model, endorsed by Cowpertwait, 1994 [8]. The model allows different
types of rain cells to exist within the same storm. In particular, the two types
of cells are considered the short duration convective and long-duration strat-
iform cells. The refinement was applied in the Neyman-Scott rectangular
pulse model.

The second is the Bartlett-Lewis instantaneous pulse model, introduced
by Cowpertwait et al., 2007 [9]. The model has three Poisson processes,
generally, storm origins arrive in a Poisson process, each storm initiates a
number of cells in another Poisson process, and cell origins generate a number
of pulses in a Poisson process. Each pulse has intensity but no duration. The
observations of the model comprise a point process of pulses with marks as
intensity. This model has one parameter more than the original Bartlett-
Lewis rectangular pulse model.

A third modification is of the original Bartlett-Lewis model. The model
keeps the same structure as before, but randomizes the cell duration param-
eter, which follows an exponential distribution. The Modified Bartlett-Lewis
rectangular pulse model allows the cell duration parameter to vary randomly
between storms and also the cell arrival rate may vary. This model was in-
troduced by Rodriguez-Iturbe et al., 1988 [40]. The parameter of the cell
duration was randomized in the cell process in the Bartlett-Lewis models
studied by Rodriguez-Iturbe et al., 1988 [40] and in Neyman-Scott models
studied by Entelhabi et al., 1989 [15].

An other refinement is made by Kaczmarska et al., 2014 [25], who present
a Random Parameter Bartlett-Lewis Instantaneous Pulse model. Using an
instantaneous pulse shape allows us more variability in rainfall intensity over
short intervals, and also provides third order theoretical statistics.

Including a wide range of statistics in the fitting process may provide more
accurate estimation of parameters, and may help to reproduce the summary
statistics. We see all refinements are made with respect to whether we can
derive their theoretical expectations for the moments, because we need them
for fitting in the GMM. For instance if we used a gamma distribution for
the duration of a rain cell, rather than an exponential distribution, then we
would not be able to calculate the second order statistics of the BL model.
In this case, GMM is not available.
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Our focus in Chapter 2 hence is not on model refinements, but rather on
a new fitting technique that does not require explicit theritical expressions
for the moments.

2. Spatial-Temporal rainfall models

We have two sources of spatial-temporal rainfall data. The first consists
of multi-station rain-gauge data. The other comprises radar data that are
available from discrete points in space and time.

Some researchers focused on networks of rain-gauge data using different
rainfall models. For example Cowpertwait, 2002 [11] fitted the Neyman-Scott
rectangular pulse spatial-temporal model to rain-gauge data obtained from
9 sites in Arno Basin, Italy.

Various authors, Cowpertwait, 2006 [10], Burton et al.,2008, 2010 [6, 5],
Fower et al. 2002, 2010 [17, 18], Mehrotra & Sharma, 2007 [31] among
others, have used different spatial-temporal models such as Poisson clus-
tered based models, multi-site Markov chains, multivariate autoregressive
and generalized linear regression approaches, semi-Markov chain models, and
non-homogeneous Hidden Markov Models etc. Lovejoy & Schertzer [27, 26],
Gupta & Waymire [20, 21] and Seed et al. [42] use multifractal and cascade
process models. Similarly Beven and Hall, 2014 (Chapter 7) [4] and Fowler
et al., 2007 [16] discuss General Circulation Models that consider downscal-
ing methods for different climatic variables to study spatial-temporal rainfall
processes.

For radar data, there are fewer models to be used. Willems, 2001 [49]
used both network of rain-guage and radar images for rainfall processes.

Poisson cluster processes can be used on both a network of raingauges
and radar images. We further extend the Cox-Isham-Northrop model as well
focused on the radar data.

The Poisson cluster rainfall models generate a continuous rainfall pro-
cess, which can easily be digitized in both time and space. Particularly,
these models are useful to obtain upscaling rainfall, where General Circu-
lation Models are used to down scaling. The clustered rainfall models have
storm-cell structure. The storm-cell rainfall models may provide the localized
rainfall as rain cell occurrences. The rain cells are clustered to the storms in
space and time having random intensities that may also represent variability
in localized rainfall in space. The storm-cell spatial-temporal models may
also capture some of the intense localized patches of rainfall that are not
uncommon in observed rainfall processes.
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3. Fitting rainfall models using GMM.

Because it has an intractable likelihood function, in the past the BL
model has been fitted using the Generalized Method of Moments (GMM).
Wheater et al, 2005 [47] and Jesus & Chandler, 2011 [23] present details
for GMM fitting rainfall models to observed rainfall processes. We note that
other simulation-based model fitting approaches are available, in particular
the Simulated Method of Moments (SMM) of McFadden [30] and Pakes and
Pollard [36], but have not yet been implemented in rainfall model fittings.
Our focus remains on the ABC fitting, because the advantage of ABC over
SMM is that it gives access to all the advantages of Bayesian modelling.

1.3.2 Contribution

1. ABC for rainfall models applicable to both temporal and spatial-temporal
models

We identified that there is a need to implement a new fitting method that
is not only free from likelihood-based methods, but also free from requiring
theoretical expectations for moments. Using a wide range of statistics in
model fitting procedure may provide a better fit. Either we need to de-
rive a wide range of expectations including higher order moments and use
GMM or implement another method that has no prerequisite of theoretical
expectations.

GMM fitting matches theoretical and observed moments of the rainfall
process and thus is restricted to moments for which we have analytic ex-
pressions. On the other hand ABC fitting compares the observed process to
simulations and hence places no restrictions on the statistics used for com-
parison. Our research focused on ABC using Markov Chain Monte Carlo
for which we need only data (i.e. observed processes) and model suitable
simulations of the observed process. Moreover, this means that ABC can be
used for models for which GMM fitting is not available. Initially we aimed
to implement ABC to the simplest form of the Bartlett-Lewis model called
the rectangular pulse model. In order to successfully implement ABC, we
reparameterised the model, and showed that ABC can be used to fit the
Bartlett-Lewis rainfall model to real data.
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2. Develop two new models: ECST and LNCST models

We extended ABC fitting to a spatial-temporal rainfall model. After suc-
cessfully using ABC fitting to temporal and spatial-temporal rainfall models,
we are at the stage where we are not concerned whether or not our model has
theoretical expectations for the moments. We then developed two spatial-
temporal rainfall models that provide better representations of the observed
rainfall processes. These models may be used in conjunction with urban
flood models to evaluate flood risk.

3. Starting values for ABC-MCMC: using the Simulated Method of Mo-
ments

ABC fitting compares the observed process to simulations, and thus places
no restriction on the statistics used for comparison. The penalty we pay for
this increased flexibility is an increase in computational time. Starting points
become most important in both numerical optimization of the objective func-
tion for GMM and estimating posteriors from the ABC-MCMC algorithm.

For example, in GMM various writers use the Nelder Mead method to
identify a global optimal region and then apply a gradient base method to
estimate parameter by minimizing the objective function. Similarly, the
ABC-MCMC algorithm needs chain burn-in time. We estimate posteriors
for parameters removing burn-in time, because we expect the chain should
converge to a stationary distribution. Starting points may determine how
large burn-in time is needed for the chain to converge at stationary state.
If we supply a good starting point then we may have a very short burn-in
time. Having this in mind we use the Simulated Method of Moments (SMM).
The SMM is the simulation-based model fitting approach as an alternative
to GMM. Applying SMM gave us better starting points for chains. This
leads to the chain burn-in time being very short, even to the extent that we
may not need any burn-in time. This is a novel idea in ABC-MCMC fitting,
which works well for the rainfall models we study.

1.4 Thesis Summary

As discussed in § 1.1 two major objectives for the research were (1) to develop
a new methodology/technique when likelihood-based methods and General-
ized Method of Moments are not suitable for fitting stochastic rainfall models
to real data; (2) to develop new spatial-temporal rainfall models which can
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give better representations of the observed rainfall processes.
Chapter 2 has two aims: first we describe the new technique of fitting the

Bartlett-Lewis rainfall model using Approximate Bayesian Computation and
then we compare the results of the fitting with the results from Generalized
Method of Moments fitting.

The Bartlett-Lewis (BL) rainfall model is a stochastic model for the rain-
fall at a single point in space, constructed using a cluster point process. The
cluster process is constructed by taking a primary/parent process, called the
storm arrival process in our context, and then attaching to each storm point
a finite secondary/daughter point process, called a cell arrival process. To
each cell arrival point we then attach a rain cell, with an associated rainfall
duration and intensity. The total rainfall at time t is then the sum of the
intensities from all cells active at that time.

Following Rodriguez-Iturbe et al. 1987 [39], we suppose that the storm
arrival process is a Poisson process, and that the cell arrival processes are
independent Poisson processes, truncated after an exponentially distributed
time (the storm duration). Rain cells are all i.i.d., with independent expo-
nentially distributed duration and intensity.

Because it has an intractable likelihood function, in the past the BL model
has been fitted using the GMM. The purpose of this chapter is to show that
ABC can also be used to fit this model, and moreover that it gives a better
fit than GMM. GMM fitting matches theoretical and observed moments of
the process, and thus is restricted to moments for which we have analytic
expressions. ABC fitting compares the observed process to simulations, and
thus places no restrictions on the statistics used to compare them. The
penalty we pay for this increased flexibility is an increase in computational
time.

The ABC methodology supposes that we have an observation D from
some model f(·|θ), depending on parameters θ, and that we are able to
simulate from f . Let π be the prior distribution for θ and S = S(D)
a vector of summary statistics for D; then ABC generates samples from
f(θ|d(S(D∗), S(D)) < ε), where D∗ ∼ f(·|θ), θ ∼ π, and d is some distance
function. If S is a sufficient statistic, then as ε→ 0 this will converge to the
posterior f(θ|D).

The choice of good summary statistics is important to the success of ABC
fitting. To fit the BL model we used rainfall aggregated over six-minute and
hourly intervals, and then compared the mean, standard deviation, auto-
correlation at lags 1 and 2, probability of no rain, mean length of wet and
dry periods, standard deviation of wet and dry periods, and the total number
of wet and dry periods. We note that for GMM fitting we can only use the
first five of these statistics, because we do not have analytic expressions for
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the others. Using a simulation study we demonstrate that ABC fitting can
give less biased and less variable estimates than GMM. We also give an
application to rainfall data from Bass River, Victoria, July 2010. Again we
see that the ABC fit is better than the GMM fit.

An important advantage of ABC fitting over GMM fitting is that we can
use summaries of the data that capture useful information, whether or not
we have an expression for their expectation. Moreover, this means that ABC
can be used for models for which GMM fitting is not available. For example,
if we used a gamma distribution for the duration of a rain cell, rather than an
exponential distribution, then we would not be able to calculate the second
order statistics of the model, making GMM fitting impossible. However ABC
fitting would proceed as before, with the addition of a single parameter. This
opens up the possibility of fitting more realistic stochastic rainfall models.
We extend the ABC fitting to a spatial-temporal model in Chapter 3.

In Chapter 3, we study the fit of a stochastic spatial-temporal model
to high-resolution rainfall radar data for a single rainfall event. The Cox-
Isham-Northrop (C-I-N) rainfall model is used to model the ‘interior’ of a
rainfall event. The C-I-N model is stationary and is constructed using a
cluster point process. The cluster process is constructed by taking a primary
process, called the storm arrival process, and then attaching to each storm
center a finite secondary point process, called a cell process. To each cell
center we then attach a rain cell, with an associated area, duration and
intensity. The storm and cell centers all share a common velocity. The total
rainfall intensity at point (x, y) and time t is then the sum of the intensity
at (x, y) of all cells active at time t. Because it has an intractible likelihood
function, the C-I-N model has been fitted using the Generalized Method of
Moments.

This chapter has three aims: the first is to show that Approximate
Bayesian Computation can be used to fit a Bayesian version the C-I-N model.

The second aim is to extend the C-I-N model to obtain better modeling
of the ‘interior’ of a rainfall event. There are many ways in which the C-I-N
model can be extended. If we do so, however, the GMM is no longer suitable
for estimation, as it becomes too difficult to obtain analytic expressions for
the moments. Fortunately this does not apply to ABC, which can be applied
much as before. For the example we do not even have to modify the set
of summary statistics. We generalize the C-I-N model by considering the
following modifications:

• Randomised cell eccentricity.

• Rainfall intensity that decreases continuously from the centre to the
edge of each cell, rather than acting as a step function.
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• Heavy-tailed distributions for cell intensity and size.

• Correlated cell intensity and area.

We propose two new models. In the first model, we considered the first
two extensions and compare with existing the C-I-N model. This proposed
model does a better job for matching the observed process with the model
and reproducing the summary statistics. In the second model, we applied all
four extensions with the C-I-N model; this shows better representation of the
extreme values of rainfall and a negative correlation between cell intensity
and area.

Our third aim to obtain a better way of providing starting the ABC al-
gorithm. The Simulated Method of Moments is a variant of the Generalised
Method of Moments that uses Monte Carlo estimates of moments, rather
than analytic expressions (McFadden 1989, Pakes and Pollard 1989). Thus,
like ABC, using SMM we have much more freedom in the choice of moments
used to fit the model to the data. When applying ABC, we found it ad-
vantageous to ‘jump-start’ the algorithm by choosing the initial parameter
selection θ0 using a SMM fit, using the same summary statistics S that we
chose for the ABC fitting. If θ0 has very small posterior probability, then
ABC-MCMC requires a prohibitively large burn-in period. We found that
using SMM for θ0 requires much less computation time.

In Chapter 4, we extend the number of parameters to be estimated in
the ABC-MCMC process; only velocity considered a fixed component. Fol-
lowing Wheater et al., 2005 [47] the velocity of the event, the eccentricity and
orientation of cells are all estimated in an ad hoc manner using spatial auto-
covariance functions, and then fixed. We applied this approach in Chapter
three. We maximize the benefit of ABC fitting to estimate the parameters.

We also apply the ABC fitting to different rainfall events obtained from
different radar located at Melbourne, Australia and Wardon Hill, UK. The
ABC fitting gives consistent parameter estimation for the spatial-temporal
stochastic rainfall models .

In Chapter 5, we present conclution and future work. In previous
Chapters, we used ABC to fit a stochastic temporal rainfall model to high-
resolution rainfall rain-gauge data, and stochastic spatial-temporal rainfall
models to the radar data for rainfall events. We then showed that ABC read-
ily adapts to more general, and thus more realistic, variants of the model.
The Simulated Method of Moments was used to initialize the ABC fit.

For future work we recommend in the short term investigating further
modifications to the models, and in the long term integrating these models
with runoff-runon models to manage flood risk at urban drainage systems.

9



Chapter 2

Fitting the Bartlett-Lewis

rainfall model using

Approximate Bayesian

Computation

2.1 Introduction

There are numberous of studies of stochastic rainfall models. We consider
a stochastic rainfall model for a single point in space. Point process rainfall
models are focused on two type of Poisson cluster processes: the Bartlett-
Lewis process and the Neyman-Scott process.

Both the Bartlett-Lewis process and the Neyman-Scott process include
two components; primary and secondary processes. The primary process is
known as the parent process or, in our context, the storm arrival process.
With each parent there is associated a secondary process called the daughter
or cell arrival process.

The storm arrival process does not contribute to the rainfall amount. It
is the cell arrival process, associated with pulses of random durations and
random rainfall intensities, that produces rainfall. So, the total rainfall at
time t is the sum of intensities from all cells active at that time, see Figure
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2.2.
We study the Bartlett-Lewis rainfall process along with two different es-

timation approaches: Generalized Method of Moments and Approximate
Bayesian Computation techniques. The reason for studying these approaches
is that they are both useful if the likelihoods are either unavailable or not in
a nice form for theoretical expressions.

The Generalized Method of Moments uses theoretical moments instead
of likelihood functions, whereas the Approximate Bayesian Computation re-
places those moments with simulated data. Both techniques are suitable for
complex and well-defined models. Although there is no direct comparison
between them, we apply point estimation in both approaches to do so.

Each approach has its own advantages. For ABC, we can include any
summary statistics that we wish. This attribute is missing from GMM,
which requires theoretical expression for the moments. GMM needs less
computational time, whereas ABC takes much longer.

We try to establish answers to the two following questions. Is ABC suit-
able for point cluster process models? Does it have better performance than
GMM?

Because our primary goal is to compare GMM and ABC fitting, we re-
strict ourselves to a simple BL model, namely the rectangular pulse model
introduced by Rodriguez-Iturbe et al., 1987 [39]. Some more recent refine-
ments can be found in Cowpertwait et al., 2007 and Kaczmarska et al.,
2011 [9, 24].

2.2 Bartlett-Lewis Rectangular Pulse Model

Rodriguez-Iturbe et al., 1987 [39] introduced this model based on Poisson
cluster processes. Rectangular pulse models are both convenient mathemat-
ically and applicable to discrete rainfall time series (Northrop & Stone, 2005
Cowpertwait et. al., 2007 [34, 9]). The models can simulate continuous rain-
fall time series; they then offer a suitable approximation to discrete rainfall
time series that makes possible aggregation over any time intervals like 6
minute, hourly or daily (Cowpertwait et al., 2007, Gyasi-Agyei & Willgoose,
1997 [9, 22]).

The Bartlett-Lewis rainfall model is a cluster-based model, in which rain
events have cluster centres known as storm origins. The rain cells known as
clusters are associated with their cluster centres. Each rain cell consists of
a pulse with a random duration and a random intensity. The intensity is
constant throughout a cell’s lifetime.
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Assume that a rainfall event is a Poisson cluster process. Here an event
means whole rainfall process. So first, storms originate as the Poisson process
at rate λ per unit time. Here λ is constant for a homogeneous Poisson process,
because we assume that storms arrive as constant rate. (Note that the storm
process could be inhomogeneous, in which case λ would be a function of
time.) Each storm origin generates a number of rain cells. The numbers are
known as the cluster size and cluster members are represented by rain cells.
Second, the rain cells occur as another Poisson process at rate β per unit
time. The cell process is stopped after a random time called storm duration.

The rain cells are associated with the storm origins. This process starts
at storm arrival times T1, T2, . . . , Tn and continues with storm durations
D1, D2, . . . , Dn. Moreover, the cells are allocated according to interarrival
time over the interval between the storm origins and the storm termination
points ( Cox & Isham, 1980 [12]) see Figure 2.1a. Like the parent process
(storm process), the rain cells arrival process is homogeneous in time as β is
constant. Each rain cell produces rainfall as random depths during its lifetime
and it then terminates. Storm may continue after the cell termination point
and there may be no rain in the middle of the storm (Rodriguez-Iturbe et.
al., 1987 [39]).

We suppose that the storm duration, cell duration and cell intensity follow
exponential distributions with rates γ, η and mean µx respectively. The cell
intensity is also considered to be constant during a cell’s lifetime. Durations
and intensities of the cells are mutually independent.

The cell arrival times are Ti +Si1, Ti +Si2, Ti +Si3, , . . . , Ti +Sik for storm i
occuring after time Ti before the point Ti +Di. Cells have random durations
Li1, L

i
2, L

i
3, , . . . , L

i
k and random intensities X i

1, X
i
2, X

i
3, , . . . , X

i
k. The overall

intensity Y (t) of rainfall at time t is the sum of all intensities from active
rain cells:

Y (t) =
∑
i

∑
j

1Ti+Sij<t≤Ti+Sij+Lij X
i
j , where 1 is one if a cell is active at t, otherwise zero.

(2.1)

2.2.1 Moments

Rain cells have constant intensities and are i.i.d. as X throughout their
lifetimes. Let Xs(u) be the random intensity of a cell originating at time s
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Figure 2.1: Constituent parts of a Bartlett-Lewis process: a) Storm process and
cell processes b) Storm durations, cell durations, and cell intensities

measured at time s+ u. Then

Xs(u) ∼ X 1(L>u); (2.2)

where L, exponentially distributed with parameter η, denotes a cell duration.

Then the total intensity at time t, the sum of the intensities of all cells
born before time t and surviving until that time is given by

Y (t) =

∫ ∞
u=0

Xt−u(u) dN(t− u). (2.3)

where N(·) counts the occurrences of cell origins in the Bartlett-Lewis process
and

dN(s) =

{
1 if there is a cell origin at s;
0 Otherwise.

The intensity of N(·) of the Bartlett-Lewis process of cell occurrences
is λµc, where µc = β

γ
is the mean number of offspring (cells) per storm

(Rodriguez-Iturbe et al. 1987 [39]). Hence, from equation (2.3), the expec-
tation of Y (t) for the Bartlett-Lewis process is found to be
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E[Y (t)] =

∫ ∞
u=0

E{Xt−u(u)} E{dN(t− u)}

=

∫ ∞
u=0

E{Xe−ηu} λµc du

= λµcµx
1

η
, where µx = E[X].

Y (t) inherits stationarity from the storm arrival process. The auto-
covariance at lag τ is given by

cY (τ) =

∫ ∞
u=0

∫ ∞
v=0

E{Xt−u(u) Xt+τ−v(v)} cov{dN(t− u), dN(t+ τ − v)}.

(2.4)

(see, for example Cox & Miller, 1965 [14] § 9.5 and Rodriguez-Iturbe et.
al. 1987 [39] eq. 3.2 ). We need to evaluate the covariance
cov{ dN(t), dN(t + τ) } first. Cox & Isham, 1980 [12], page 33 described
the covariance of a stationary point process as follows:

For τ > 0,

cov{N(t, t+ δ1), N(t+ τ, t+ τ + δ2)}
= E{N(t, t+ δ1)}E{N(t+ τ, t+ τ + δ2)|N(t, t+ δ1)}
− E{N(t, t+ δ1)}E{N(t+ τ, t+ τ + δ2)

= Pr{N(t, t+ δ1) = 1}Pr{N(t+ τ, t+ τ + δ2) = 1|N(t, t+ δ1) = 1}
− Pr{N(t, t+ δ1) = 1}Pr{N(t+ τ, t+ τ + δ2) = 1}+O(δ1δ2)

for δ1, δ2 > 0 small; let h(τ) = Pr{ N(t+ τ, t+ τ + δ2) = 1|N(t, t+ δ1) = 1} .

cov{N(t, t+ δ1), N(t+ τ, t+ τ + δ2)} = λµc h(τ)δ1δ2 − λ2µ2
cδ1δ2;

since the intensity of cell process is λµc.

Therefore, for τ ≥ 0

cov{dN(t), dN(t+ τ)} = λµc{δ(τ) + h(τ)− λµc}dtdτ.
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where δ is the Dirac delta function defined by

∫ x

−∞
δ(τ)dτ =

{
0 if x < 0,
1 if x ≥ 0.

Cox & Isham, 1980 [12], pages 77 & 78 presented the conditional inten-
sity function h(·) for Poisson cluster processes. Two cells arriving at time t
and t+ τ in the Bartlett-Lewis process has two possibilities. They may come
from separate storms. In this case the rate of cell arrival is λµc. The other
possibility is that they may come from the same storm. Cell arrival rate
within storm duration is β and storm survival probability e−γτ . Recall that
storm durations follow an exponential distribution with rate γ. The prob-
ability that both cells belong to the same storm is βe−γτ . The conditional
intensity is thus h(τ) = λµc + βe−γ|τ | . Therefore,

cov{dN(t), dN(t+ τ)} = λµc{δ(τ) + βe−γ|τ |}dtdτ. (2.5)

From equation (2.4) and (2.5), we then get

cY (τ) =

∫ ∞
u=0

∫ ∞
v=0

E{Xt−u(u) Xt+τ−v(v)} λµc{δ(τ + u− v) + βe−γ|τ+u−v|}dudv.

= λ
1

η
µc{E[X2] + βγ(γ2 − η2)−1µ2

x} e−ητ − λβµc(γ2 − η2)−1µ2
x e
−γτ .

And the variance of the stationary quantity Y (t)

var
(
Y (t)

)
=λ

1

η
µc{E[X2] + β(γ + η)−1µ2

x}. (2.6)

For details see Rodriguez-Iturbe et al. 1987 [39].

2.2.2 The Time Aggregation Process

Rainfall data is usually available in the form of time aggregation. We there-
fore consider the accumulated rainfall over a fixed time interval. Let Y

(h)
i

be the rainfall intensity for i-th interval. The intervals have length h. The
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Figure 2.2: a) Total intensity at time t. b) An observed data per h time length.

aggregated process is defined by

Y h
i =

∫ ih

(i−1)h

Y (t) dt.

The first and second order-moments can be obtained by

E{Y h
i } = hE{Y (t)}

= hλµcµxη
−1, where µc = β γ−1. (2.7)
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Var{Y h
i } = 2

∫ h

0

(h− τ)cY (τ)dτ,

= 2hλµc
1

η2

{
E(X2) + βµ2

x

1

γ

}
+ 2λµcµ

2
xβ(1− e−γh)γ−2(γ2 − η2)−1

− 2λµc
1

η3

[
E(X2) + βγµ2

x(γ
2 − η2)−1

]
(1− e−ηh). (2.8)

And

Cov{Y h
i , Y

h
i+k} =

∫ h

−h
(h− |τ |)cY (kh+ |τ |)dτ, k = 1, 2, ...

=λµc
1

η3
{E(X2) + βγµ2

x(γ
2 − η2)−1}(1− e−ηh)2e−η(k−1)h

− λµcµ2
xβ(1− e−γh)2e−γ(k−1)hγ−2(γ2 − η2)−1. (2.9)

Let ωh be the probability of zero rainfall throughout [0, h]. (Rodriguez-
Iturbe et al., 1987 [39], eq. 4.10) gives the following expression for ωh :

ωh = exp{−λ(h+ µT ) + λG∗(0, 0)[(γ + βe−(β+γ)h(β + γ)−1]}. (2.10)

where µT and G∗(., .) are defined and calculated in Rodriguez-Iturbe et al.,
1987 [41] as

µT ' γ−1{1 + γ(β + γ)η−2 − 1

4
γ(β + γ)(β + 4γ)η−3 +

1

72
γ(β + γ)(4β2 + 27γβ + 72γ2)η−4}

and

G∗(0, 0) ' γ−1
[
1− (β + γ)η−1 + (

3

2
βγ + γ2 +

1

2
β2)η−2

]
.

2.2.3 Generalized Method of Moments

Although likelihood based techniques have been attempted to fit BL process
models, it is neither feasible nor desirable because of the model’s complex
structure. Furthermore, the intensity is recorded as cumulative rather than
instantaneous. The model fitting therefore should carry out using likelihood-
free techniques.GMM and ABC are strong candidates because they are like-
lihood free. This is the first time someone has implemented ABC for the BL
model. We will discuss ABC in detail in § 2.3. Presently BL process models
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are usually fitted using GMM. Using ABC is new.
The Generalized Method of Moments estimation requires the number

of conditions in the objective function to be greater than or equal to the
number of model parameters. It is precisely desired because we want some
time-aggregated summaries to include in fitting. This results that they are
more than the number of model parameters. The GMM is often used in
econometric literature. We follow the method presented by Wheater et al,
2005 and Jesus & Chandler, 2011 [47, 23].

Let V = (V1, ..., Vk)
′ be a vector of summary statistics computed from

data. The corresponding expected values of V under the model is denoted
by a vector τ(θ) = (τ1(θ), ..., τk(θ))′. Estimation of the unknown parameter
vector θ is obtained by

θ̂ = argminθ G(θ; V)

= argminθ (V − τ(θ))′ W (V − τ(θ)).

where W is a positive definite weighting matrix. We will assume W to
be a diagonal matrix. Note that the optimal weights are in fact obtained
by taking W equal to the inverse of the covariance matrix, and the diagonal
elements of the covariance matrix are the variances. So our weight matrix
is an approximation to the optimal choice, where we put all the covariances
equal to zero before taking the inverse. In practice the covariance matrix is
often very close to singular, so that its inverse is unstable. Therefore, the
objective function G(θ; T) can be written as

G(θ; V) =
k∑
i=1

ωi[Vi − τi(θ)]2. (2.11)

In theory, the optimal weights ωi are equal to 1
V ar(Vi)

.

To estimate Var(Vi), first, we may partition the given time series data. If it
is possible to estimate summary statistics from partitioned data separately,
then for m > 1, the fitting properties V(1), ...,V(m) can be calculated for each
partitioned dataset. Then V = 1

m

∑m
i=1 V(i).

Hence, V̂ ar(V) =
1

m(m− 1)

m∑
i=1

(V(i) −V)(V(i) −V)′. (2.12)
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The objective function must be solved by numerically. Note that the
required minimization procedure can be complicated. So need to take care
because local minima often present. Therefore, the starting values are vital;
reason for that gradient based algorithm can fail to reach global minima if
starting points are not close enough to promising regions of the parameters
Wheater et. al., 200 [47]. So, various writers first used the Nelder-Mead
simplex algorithm. Because Nelder-Mead method is more robust and good
for identifying promising regions for the parameter space. We tried several
different starting points to obtain where the global minima may lie by using
the Nelder-Mead simplex algorithm. Once the promising region is identified,
then we use Newton-type method, which is a gradient based algorithm. The
gradient method is more powerful when having good starting points (Kacz-
marska et. al., 2011 [24]).

2.3 Approximate Bayesian Computation

The fundamental difference between Bayesian statistics and frequentist tech-
niques lies in how the parameters θ are conceived (Turner & Zandt, 2012
[45]). In the Bayesian context, parameters are treated as random quantities
along with the data. Inferences about parameters are based on the proba-
bility distributions of the parameters after some data are observed (Lunn et.
al., 2012 [28]).

ABC was introduced by Pritchard e. al., 1999 [38]. The ABC algorithm,
which uses summary statistics, as defined in algorithm 1. In this algorithm,
S refers to statistics that are expected to be sufficient, but in many cases
they are not. d is a metric function and ε > 0 is a tolerance level.

Algorithm 1 ABC using summary statistics

for i=1 to N do
repeat

Generate θ∗ from the prior distribution π(·)
Simulate data D∗ from the likelihood f(·|θ∗)

until d(S(D∗), S(D)) ≤ ε
Set θi = θ∗.

end for

The ABC methodology supposes that we have observations D from some
model f(·|θ) that depends on parameters θ, and that we are able to simulate
from f . Let π be the prior distribution for θ and S = S(D) a vector of sum-
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mary statistics forD; then ABC generates samples from f(θ|d(S(D∗), S(D)) <
ε), where D∗ ∼ f(·|θ∗), θ∗ is a proposal for θ distributed according to π, and
d is some distance function. If S is a sufficient statistic, then as ε → 0 this
will converge to the posterior f(θ|D).

2.3.1 ABC Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) can be easily embedded within ABC
algorithms. ABC was extended to incorporate Markov Chain Monte Carlo
(MCMC) by Marjoram et al. 2003 [29], or alternatively Sequential Monte
Carlo (SMC) (Sisson et al. 2007, Sisson et al., 2009 and Beaumont et at.,
2009 [43, 44, 2]). We will use the ABC-MCMC methodology of Marjoram et
al. 2003 [29]. Wegmann et al., 2009 [46] provide some practical advice on im-
plementing ABC-MCMC, and give a proof of the central result in Marjoram
et al., 2003 [29].

In this approach, we supply a prior distribution (π) and parameter val-
ues are proposed by a proposal distribution q. It then compares summary
statistics (S) of simulated and observed data applying a distance function
(d).

The algorithm 2 is known as ABC-MCMC without likelihoods. If the
proposal distribution is symmetric, α will depend only on the prior.

Algorithm 2 ABC MCMC without likelihood

for i = 1 to N do
Given current state θi, propose a new state θ∗ using a transition

kernel q(θ∗|θi)
Put α = min

(
1, π(θ∗)q(θi|θ∗)

π(θi)q(θ
∗|θi)

)
.

if U(0, 1) < α, then
simulate data D∗ ∼ f(·|θ∗)
if d(S(D∗), S(D)) ≤ ε, then

set θi+1 = θ∗

else
set θi+1 = θi

end if
else

set θi+1 = θi
end if

end for
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Note that MCMC rejection comes before the ABC comparison of simu-
lated and observed data, so as to avoid the unnecessary simulation; this saves
computational time. Further, the proposal is accepted only if the proposed
θ∗ satisfies both conditions.

Note that ABC-MCMC has a higher acceptance rate than ABC, but it
introduces correlation into the sample. ABC-MCMC is more efficient than
ABC. To properly compare the two, we need to look at the effective sample
size we obtain for a fixed simulation effort. We rather focus on implementing
the ABC technique to cluster rainfall models in this chapter.

2.3.2 ABC-MCMC Linear Regression Adjustment

Beaumont et al., 2002 [3] introduced a post-estimation scheme of ABC out-
put. This technique provides an adjustment of the posterior density by using
local linear regression. The explanatory variables are distances of all sum-
mary statistics. Suppose θi are samples of the posterior distribution esti-
mated by ABC-MCMC, and Di the simulation. If we assume that the local
linear regression consists of the form,

θi = β0 + (S(Di)− S(D))Tβ1 + δi, i = 1, 2, ...,m;

where β0 refers intercept, β1 is a vector of regression coefficients and δi are
uncorrelated with mean zero and common variance.

We apply weighted local regression to approximate the posterior distri-
bution, then we can correct θi to get

θ∗i = θi − (S(Di)− S(D))T β̂1;

where β̂1 is the estimate.

β̂0, β̂1 = argminβ0,β1
∑m

i=1

{
θi−β0−(S(Di)−S(D))Tβ1

}2
Kε(||S(Di)−S(D)||).

where Kε(x) is the Epanechnikov kernel given by

Kε(x) =


(1− (x

ε
)2); |x| ≤ ε,

0 |x| > ε.

ABC allows us to include a range of summary statistics. Including un-
necessary statistics will reduce the performance of the ABC estimator, essen-
tially by introducing noise that makes it harder to distinguish between good
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and bad simulations. This can be mitigated somewhat using the regression
adjustment method. We have shown comparison in Tables 2.2 and 2.3.

2.4 ABC-MCMC for the BL Model

ABC-MCMC suffers from having dependent parameters. The model param-
eters are highly dependent. We reparameterise the model parameters to re-
duce the dependency. This leads us to be successful in applying ABC-MCMC
to fitting the BL model to rainfall data.

2.4.1 Reparameterization and Prior Distribution

The total intensity at time t has mean IT = λ×γ−1×β×η−1×µx. Different
combinations of parameters can lead to the same total intensity. For instance,
low storm arrival rate and long storm duration vice versa. Likewise cell
parameters may have different configuration. Firstly we reparameterise the
model in order to reduce the dependence between the parameters. In addition
we use a log transformation to map their domain from R+ to R, this simplifies
the proposal chain.

We chose first three parameters directly relatable to the observed rainfall,
the total intensity at time t has mean IT = λγ−1βη−1µx, the percentage of
time covered by storms has mean roughly proportional to λγ−1, and the
percentage of a storm covered by rain cells has mean roughly proportional
to βη−1. The final two parameters were chosen to be roughly orthogonal to
these three, with respect to the posterior. Our new parameters are

θ(1) = log(IT ),

θ(2) = log(λγ−1),

θ(3) = log(λγ),

θ(4) = log(βη−1),

θ(5) = log(βη).

These parameters are still dependent, for example a low storm arrival rate
and long storm duration can give the same total intensity as a high storm
arrival rate and short storm duration. Nonetheless we found that this repa-
rameterisation improved estimation. We also found that IT is much easier to
estimate than µx.
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Vague normal priors are used for all the θ(i); that is π(θ) ∼ N(0, σ2I) for
σ2 large. Note that σ2 may vary between θ(1), θ(2), . . . θ(5).

2.4.2 Summary Statistics, Distance Metric and

Weighting

We discussed some theoretical moments of the BL model in § 2.2.2. GMM
fitting requires moments with analytical expressions, and we used mean,
standard deviation, auto-correlation of lag 1 and lag 2 and probability of
zero rainfall in an interval for 6-minute and hourly aggregation, giving a
total of 9 summary statistics. The hourly mean was not included because
it does not give any additional information other than just aggregation of
rainfall amount of 6-minute data. For our ABC-MCMC fitting, in addition
to these summary statistics, we used mean length of wet and dry periods,
standard deviation of wet and dry periods and sum of number of wet and dry
periods. There are therefore 19 summary statistics for ABC-MCMC fitting.

The distance measure of the summary statistics we used is the weighted
Euclidean distance between observed and simulated data summary statistics.
Weights are crucial to the success of ABC-MCMC fitting. The weight is
estimated using a sample generated from the model. Particularly the way
we have chosen weights for summary statistics is that we simulated the data
from the model using initial parameter values. For each simulation we take
the difference between the observed and simulated summary statistics, and
repeat this 105 times. We then normalise the distance measure using the
reciprocal of the standard deviation of distance values between the observed
and simulated summary statistics. The most disperse distance has least
weight. Equivalently, the narrower distances between summary statistics has
the higher weight. This yields equal importance to all summary statistics.

We could provide larger weights for the statistics that have most informa-
tion about the parameters. However it is impossible to decide a-priori which
has the most information for parameters. We included first all 19 summary
statistics in ABC-MCMC fitting. We then experimented using small set of
summary statistics. We found that the fitting consisting of all the summary
statistics is better. We therefore kept all 19 summary statistics and estimated
posterior distribution of the parameters.
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2.4.3 Proposal Chain, Acceptance Rate and Effective

Sample Size

As discussed in § 2.3.1, the proposal chain is arbitrary. We considered random
walk. We have experienced 1.5 to 10 percent acceptance rate for the ABC-
MCMC algorithm provides a good approximation of posterior distributions.
Although there is low effective sample size, we obtained good posterior dis-
tributions. There is an efficiency of 0.003 (effective sample size over number
of simulations).

2.5 Simulated Data Study

In this section, we estimate posteriors using the ABC-MCMC algorithm, and
point estimates from the GMM. The chosen simulation time is 2 weeks, we
used 6-minute and hourly aggregation data for the simulation study.

2.5.1 ABC-MCMC

We consider two types of rainfall events as storm levels. One is that the
rainfall process has frequent storm arrivals and short storm durations. The
second is that it has few storm arrivals but relatively long storm durations.
Each case has 8 combination sets of parameters. Table 2.1 shows the combi-
nation of parameters and their respective values.
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Parameter values
(λ, γ−1, β, η−1, µx) λ γ−1 β η−1 µx

(0.04, 10.00, 1.00, 1.00, 3.00) + + + + +
(0.04, 10.00, 0.50, 1.00, 1.50) + + - + -
(0.04, 05.00, 1.00 ,0.50, 3.00) + - + - +
(0.04, 05.00, 0.50, 0.50, 1.50) + - - - -
(0.02, 10.00, 1.00, 0.50, 1.50) - + + - -
(0.02, 05.00, 0.50 ,1.00, 3.00) - - - + +
(0.02, 10.00, 0.50, 0.50, 3.00) - + - - +
(0.02, 05.00, 1.00, 1.00, 1.50) - - + + -

(0.014, 48.00, 1.00, 1.00, 3.00) + + + + +
(0.014, 48.00, 0.50, 1.00, 1.50) + + - + -
(0.014, 24.00, 1.00, 0.50, 3.00) + - + - +
(0.014, 24.00, 0.50, 0.50, 1.50) + - - - -
(0.007, 48.00, 1.00, 0.50, 1.50) - + + - -
(0.007, 24.00, 0.50, 1.00, 3.00) - - - + +
(0.007, 48.00, 0.50, 0.50, 3.00) - + - - +
(0.007, 24.00, 1.00, 1.00, 1.50) - - + + -

Table 2.1: Experimental design of parameter values. + represents high value
and − refer to low value.

As discussed in § 2.4.2, we used 19 summary statistics and a weighted
Euclidean distance function. We would like to have tolerance level ε as small
as possible. We call θ0 the true value, and it is what we intend to estimate.

Selecting ε is a difficult process. Theoretically we want ε to be small.
However in practice it is more challenging, because with too small a chain
could get stuck in low probability parameter space. On the other hand, large
ε can distort posterior approximation. We first ran a short chain with about
10K iterations with large ε. We then investigated chain mixing, acceptance
rate and distance of summary statistics etc. We gradually reduced ε making
sure chain does not get stuck. Once we found reasonable ε, we ran a long
chain of 100K iterations. We exploited Parallel Programming using the pro-
gramming language called “Julia”. We started a chain as the same initial
value i.e. true value but on different computer cores. This gives a different
random walk on each core. For instance, we used a PC with 8 cores. We ran
one chain in each core (just used 7 cores). There were the 7 distinct chains
running in the same time having different random paths. We then collected
all chains together.
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Figure 2.3 indicates that the posterior distribution of log parameters as
discussed in § 2.4.1 converges to the stationary distribution.

The simulation time is 2 weeks. Threshold is ε = 2.5 and acceptance rate
is 3%. There is no need the burn-in time because we start from the true
values. Note that to fairly compare methods, the true values where used as
stating points for both GMM and ABC-MCMC methods.

We have transformed those log parameters to the original model param-
eters using exponentials as follows:

λ = exp
(θ(2) + θ(3)

2

)
,

γ−1 = exp
(θ(2)− θ(3)

2

)
,

β = exp
(θ(4) + θ(5)

2

)
,

η−1 = exp
(θ(4)− θ(5)

2

)
,

µx = exp
(
θ(1)− θ(2)− θ(4)

)
.

26



Figure 2.3: Chains for θ(1)-top left, θ(2))-top right, θ(3)- middle left, θ(4)-middle
right, θ(5)- bottom; simulation length = 2 weeks.

The below graphs in Figure 2.4 ( before linear adjustment) and 2.5 (after
linear adjustment) show the posterior densities of the parameters. We can
see that applying the local linear adjustment on the post-estimation process
as discussed in § 2.3.2 improves the posteriors because the posterior densities
are tighter and the variances of the posteriors are reduced. We also used the
weight based on summary distances to estimate the posterior mean shown in
Figure 2.5 .

Figure 2.6 shows the joint distributions of the posteriors. We can see
there is still some relation between parameters as expected. Lower panel
plots are of pairs of posteriors, where the intensity values are the counts of
samples in the posterior distributions within a particular area. Lines (red)
are the true values of respective the true parameters. The figure is produced
using “IDPmisc” package in R.
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Figure 2.4: Posterior densities of the storm rate (λ) (top left), storm duration
(γ−1) ( top right), cell rate (β) (middle left), cell duration (η−1) (middle right)and
cell intensity(µx) (bottom). Red lines are true values and black lines are posterior
means.

Figure 2.5: Posterior densities of parameters after linear adjustment. Storm rate
(λ) (top left), storm duration (γ−1)- (top right), cell rate (β) (middle left), cell
duration (η−1) (middle right)and cell intensity (µx) (bottom). Red lines are true
values and black lines are weighted posterior means.
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Figure 2.6: From top, diagonal plots are respectively posterior distribution of
λ, γ−1, β, η−1 and µx . The true values are (0.05, 5.0, 1.0, 1.0, 1.0). Lower panel
plots are pair of posteriors, where intensity values are the count of samples in the
posterior distribution sets within a particular area. Lines (red) are the true values
of respective parameters.

2.5.2 Comparison

We have estimated the parameters from 16 different combinations of both
cases shown as Table 2.1. For comparison study, we used the simulated data.
First, we simulated the data using the model with known parameter values.
We then considered the simulated data as the observed data. Second, we
estimated parameter values using both GMM and ABC-MCMC techniques.
As we know GMM gives point estimates. We also calculated posterior means
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and medians from posterior distributions as outcomes of the ABC-MCMC
algorithm. We repeated the process 100 times. True values, bias, mean
squared error and 95% confident intervals of GMM estimation and posterior
mean and median are shown in Tables 2.2 and 2.3. The simulation study
shows that the posterior means are better estimates than the posterior me-
dians, because they have smaller bias than the posterior medians and also
have narrow in confidence interval for the parameters.

Figure 2.7 compares bias of parameter estimation. As we discussed above
we simulated the data from given parameter values. We then used the sim-
ulated data to estimate parameters using both ABC and GMM. We repeat
this 25 times for Figure 2.7. Points are the difference of estimated and true
values. X-axis values are number of repetition using the same parameter
value. Left figures are estimation from GMM likewise right figures are that
from ABC-MCMC. Black lines are zero-bias and blue lines are mean dif-
ference. This graphs clearly indicate the ABC-MCMC is better estimation
than GMM in simulation study because their mean bias difference is close
to zero-bias . The same result is obtained from Table 2.2 and 2.3. Because
ABC-MCMC mean square errors are smaller than that of GMM and has
small 95% confident interval. There is not clear preferance between posterior
means and medians.
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Figure 2.7: From Top to Bottom, plots of average bias of parameters λ, γ, β, η
and µx respectively. The parameter true values are (0.04, 0.20, 0.50, 2.00, 1.50).
Points are difference of estimated and true values. X-axis values are number of
repetition using the same parameter value. Left figures are estimates from GMM,
right figures are those from ABC-MCMC. Lines (black) are zero-bias and dotted
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2.6 Application to Real Data

2.6.1 Data

We obtained the rain gauge data from the Bureau of Meteorology, Australia.
The data is from one station (tipping bucket) point data for a month. It is
every 6-minute time resolution in July 2010. The rainfall amount resolution
is 0.2 mm. Any rainfall less than 0.2 was considered as no-rainfall. The time
series data plot is shown in Figure 2.8. The location of the rainfall station is
Bass River, Victoria as displayed in Figure 2.9.

Figure 2.8: Rainfall measurements from Bass River, Victoria, July, 2010. The x-
axis is measured in days and the y-axis in mm. Data obtained from the Australian
Bureau of Meteorology.
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Figure 2.9: Rain gauge data station (Bass River, Melbourne).

2.6.2 Real Data: Fitting the BL Model using ABC

As in section 2.4.1, we chose five parameters log(IT ), log(λ× γ−1) , log(λγ),
log(β × η−1), and log(βη) for the model.
The prior distribution of these parameters is normal with mean zero and σ2

variance. Various choices for the prior standard deviation were considered.
We selected 3.0 because this choice could be seen to have no appreciable effect
on the bulk of the posterior, while providing mild regularisation to keep the
posterior tails in check. We chose steps of proposal chain via N(0, 0.22I).
Note that each parameter can have any distribution. Moreover, it can have
the same mean but different variance.

2.6.3 Posterior Distribution

The trace-plots in Figure 2.10 show that the posterior distribution converges
to a stationary distribution. It is clear that the parameter values oscillate
in the parameter space. We can see that there is effective mixing. Plots
in Figure 2.11 show the posterior density of log-parameters. The vertical
lines are the posterior means of respective parameters. Posterior density
functions for log-parameters are good as expected. Figure 2.12 shows the
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marginal posterior density in the diagonal and pairwise posterior density
in sub-diagonal panels, where the color intensity values reflect the count
of samples in the posterior distribution sets within a particular area. We
can see correlation between some parameters as expected. These diagnostic
plots clearly indicate that the ABC-MCMC algorithm outcomes produce
good posteriors for the parameters of the Bartlett-Lewis rainfall model.

Figure 2.10: Chain values of θ(1)-top , θ(2)- middle left, θ(3)- middle right,
θ(4)-bottom left, θ(5)- bottom right.
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Figure 2.11: Posterior density of θ(1)-top , θ(2)- middle left, θ(3)- middle right,
θ(4)-bottom left, θ(5)- bottom right. Vertical lines are the posterior means.

Figure 2.12: Diagonals are the posterior distributions for θ(i), i = 1, 2, ..., 5.
Lower panel plots are pairs of posteriors, where the intensity values reflect the
count of samples in the posterior distribution sets within a particular area. Blue
dotted curves are priors.

37



Figure 2.13: Posterior distributions for λ, γ−1, β, η−1 and µx, from the BL model
fitted to the Bass River data

2.6.4 Fitting the BL Model using GMM

As in section 2.2.3, we optimised the objective function at equation (2.11)
using Nelder-Mead and quasi-Newton algorithms implemented in R. Figure
2.14 shows that the theoretical and empirical moments matched closely. The
estimated parameter values are λ = 0.0950, γ = 0.3709, β = 0.1911, η =
0.7091, and µx = 1.3957. In these graphs, we used the estimated parameter
values to find theoretical summary statistics for different time. Moreover we
show theoretical and observed summary statistics at 6-minute, hourly and
every hour up to 6-hour time aggregation.
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Figure 2.14: Lines (red) are theoretical summary statistics and doted lines (blue)
are real data summary statistics.

2.6.5 Parameter Estimation Values

Table 2.4 presents estimated parameter values from both GMM and ABC-
MCMC. The ABC and GMM estimates for λ and γ−1 roughly similar, and if
we take the mean storm coverage i.e. storm rate multiplied by mean duration
(λγ−1), we obtain an even closer match, with 0.226 using ABC posterior
means and 0.256 for the GMM fit. The estimates for cell parameters β, η−1,
and µx are quite different, however if we take the mean storm intensity i.e.
(βη−1µx) , we have fairly similar 0.054 using the ABC posterior means and
0.038. Formally, storm coverage and storm intensity are essentially directly
observable quantities, making their means easier to estimate.

39



Parameters GMM ABC-MCMC 95 % credible interval ABC-MCMC
(per hour) (Posterior mean) (ABC-MCMC ) (Posterior median)

λ 0.0095 0.0071 (0.005, 0.010) 0.007
γ−1 26.9615 32.354 (18.570 , 56.380) 30.728
β 0.0191 0.097 (0.056, 0.156) 0.095
η−1 14.1024 0.279 (0.057, 0.634) 0.256
µx 0.1396 1.994 (0.699, 6.450) 1.531

Table 2.4: Parameter estimates for the BL model fitted to the Bass River data.
All estimated parameter values are per six minutes except µx, which is mm per
six minutes.

2.6.6 Comparison between Simulated and Observed

Statistics

In this section, we compare the model fitted using ABC and GMM. We use
simulation to generate 95% preditive intervals for summary statistics.

In Figure 2.15, we calculate 95% predictive intervals for summary statis-
tics at different levels of temporal aggregations using simulation. For this,
we use 3000 samples from the posteriors selecting every 1000th iterations.
We can see that almost all observed summary statistics are within the 95%
predictive intervals. Only autocorrelation lag 1 and lag 2 for 6-minute and
hourly and standard deviation of wet periods for 6-minute are outside of 95%
predictive interval. Standard deviation for 5 and 6 hours aggregation crossed
the upper bound, but it is completely within the predictive interval when we
use posterior means (see Figures 2.16).

For Figures 2.16 and 2.17, we use posteriors means and medians respec-
tively. The summary statistics are calculated using rainfall aggregated over
internals of 0.1, 1, 2 , 3 ,4 ,5, and 6 hours, and are obtained from 100 indepen-
dent simulations. Using different posterior points seems better to estimate
95% predictive interval for the summary statistics.

Similarly for Figure 2.18, we use the GMM estimates to to compute the
predictive intervals. We first generate 100 independent simulations, then es-
timate 95% predictive intervals for various summary statistics. The figure
shows that some observed summary statistics are within the 95% predictive
intervals. We see that the GMM fitted model only gives a good correspon-
dence between the fitted model and the data for those summary statistics
used in the GMM fit. However the ABC fitted model gives a good correspon-
dence for all the summary statistics considered. Therefore the extra summary
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statistics such as the number of wet/dry
periods, has supported ABC to distinguish cell parameters β, η−1, and µx
more successfully than GMM.
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Figure 2.15: 95% predictive intervals for various summary statistics from ABC-
MCMC estimates. For each plot, the summary statistics are calculated using
rainfall aggregated over intervals of 0.1, 1, 2, 3, 4, 5, 6 hours, and are calculated
from 3000 independent simulations using the same number of posterior points.
The solid blue lines give the observed summary statistics.

41



0 1 2 3 4 5 6

0.
0

0.
6

1.
2

Mean

hours

0 1 2 3 4 5 6

0.
0

1.
0

2.
0

Standard deviation

hours

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

Auto−correlation−lag 1

hours

0 1 2 3 4 5 6

−
0.

2
0.

0
0.

2

Auto−correlation−lag 2

hours

0 1 2 3 4 5 6

0.
0

0.
4

0.
8

dry probability

hours

0 1 2 3 4 5 6

10
0

30
0

number of wet and dry period

hours

0 1 2 3 4 5 6

1.
5

2.
5

mean wet periors

hours

0 1 2 3 4 5 6

0.
5

1.
5

2.
5

SD wet periors

hours

0 1 2 3 4 5 6

0
20

40
60

mean dry periors

hours

0 1 2 3 4 5 6

0
50

10
0

SD dry periors

hours

Figure 2.16: 95% predictive intervals for summary statistics from posterior means.
For each plot, the summary statistics are calculated using rainfall aggregated over
intervals of 0.1, 1, 2, 3, 4, 5, 6 hours, and are calculated from 100 independent
simulations used posterior means. The solid blue lines give the observed summary
statistics.
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Figure 2.17: 95% predictive intervals for summary statistics from posterior medi-
ans. For each plot, the summary statistics are calculated using rainfall aggregated
over intervals of 0.1, 1, 2, 3, 4, 5, 6 hours, and are calculated from 100 independent
simulations. The solid blue lines give the observed summary statistics
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Figure 2.18: 95% predictive intervals for summary statistics from the GMM es-
timates. For each plot, the summary statistics are calculated using rainfall ag-
gregated over intervals of 0.1, 1, 2, 3, 4, 5, 6 hours, and are calculated from 100
independent simulations. The solid blue lines give the observed summary statistics

44



2.6.7 Improvement of Parameter Estimation

Figure 2.13 shows correlation between cell duration and intensity. We set
the lower bound for cell duration. We assume that cell duration is at least
one minute. Once η is restricted, we adjust the priors and proposals. We set
priors for log(βη−1) and log(βη) are zero if the cell duration is less than one
minute. Similarly we modify the proposal steps for these two parameters.

Because the temporal resolution of our data was six minutes, there is
clearly little information available on rain cell durations less than this. We
chose a lower bound of one minute for cell durations, because values less
than this would be largely unreliable, and because we found it helped with
the model fitting generally. Note that even without this bound there is very
little posterior mass assigned to cell durations less than one minute, so the
bound is only mildly informative.

We used a truncated normal prior distribution for θ(4) and θ(5). The rest
remain the same as before. From the posteriors obtained in Section 2.6.2 we
know that our bounds on θ(4) and θ(5) are only mildly informative, but they
none-the-less helped improve the overall model fitting in this section.

There is a good mixing (see Figure 2.19). Figure 2.20 shows the posterior
distribution in diagonal and posterior pair for the parameters φ(i). Figure
2.21 shows that the correlation between cell parameters is reduced from what
is shown in 2.13.

This sums up there is some improvement in the estimation once we re-
strict the origin parameter cell duration. We see that there is very little
pairwise correlation between the parameters in the posterior. Figure 2.21
gives posteriors for the original parameters λ, γ−1, β, η−1 and µx.
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Figure 2.19: Chains for θ(1)-top, θ(2)-middle left, θ(3)-middle right, θ(4)-bottom
left, θ(5)-bottom right.
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2.7 Discussion

Using both a simulation study and real data, we have seen that ABC-MCMC
gives better fits than GMM of the Bartlett-Lewis rainfall model. An impor-
tant advantage of ABC fitting over GMM fitting is that we can use summaries
of the data that capture useful information, whether or not we have an ex-
pression for their expectation. Moreover, this means that ABC can be used
for models for which GMM fitting is not available. For example, if we used
a gamma distribution for the duration of a rain cell, rather than an expo-
nential distribution, then we would not be able to calculate the second order
statistics of the {Y h

i }, making GMM fitting impossible. However ABC fitting
would proceed as before, with the addition of a single parameter. This opens
up the possibility of fitting much more realistic stochastic rainfall models.

Finally we note that unlike GMM, ABC fitting provides credible intervals
and not just point estimates.
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Chapter 3

Fitting Spatial-Temporal

Rainfall Models using

Approximate Bayesian

Computation

3.1 Introduction

We studied a stochastic model for rainfall processes at a single point in space
in Chapter 2. We considered the Bartlett-Lewis (BL) rainfall model, because
our primary goal was to compare two likelihood-free fitting techniques: GMM
and ABC. We found ABC fitting has advantages over GMM. In this Chapter
we extend the study to spatial-temporal rainfall processes.

One way of modelling rainfall processes in a space-time is via a stochastic
mechanistic approach. Stochastic models based on Poisson cluster processes
are used to model rainfall processes. The cluster process is constructed by
taking a primary process, called the storm arrival process, and then attach-
ing to each storm centre a finite secondary point process, called a cell pro-
cess. The Cox-Isham-Northorp (C-I-N) model is a spatial-temporal stochas-
tic model for a rainfall event, constructed using a cluster point process. In
this Chapter we fit the C-I-N model and two new spatial-temporal rainfall
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models to high-resolution rainfall radar data for a single rainfall event.
There are many ways in which the Cox-Isham-Northorp spatial-temporal

model can be generalized. We present two new spatial-temporal rainfall
models with the following modifications:

• Randomized cell eccentricity1.

• Rainfall intensity that increases continuously from the edge to the cen-
tre of each cell, rather than acting as a step function.

• Heavy-tailed distributions for cell intensity and size.

• Correlated cell intensity and area.

3.2 Spatial-Temporal Rainfall Model

We study spatial-temporal rainfall models that are stationary and are used to
model the interior of a rainfall event. We assume that we have observations
of the rainfall in some finite space-time window A× [0, T ], where T is chosen
so that the leading and trailing edges of the rainfall event are not observed
and A ∈ R2. Remember that to model an actual event we need a separate
model for the duration and extent of the event. For example see the approach
of Wheater et al., 2005 (§9.3) [47].

The building blocks of Poisson cluster-based spatial-temporal rainfall
models are:

• The temporal process of rainfall at a single point in space introduced
by Rodriguez-Irurbe et al., 1987 [39].

• The spatial-temporal process of rainfall introduced by Cox & Isham,
1988 [13].

• The Cox-Isham spatial-temporal model for rainfall generalized by Northrop,
1998 [32].

1Eccentricity (e) indicates how much the cell shape deviates from being circular. Ec-

centricity of an ellipse equals
√

1− b2

a2 , where a and b are semi-major and semi-minor axes

of the ellipse.

50



3.3 Cox-Isham (C-I) spatial-temporal rainfall

model

The Cox-Isham (C-I) spatial-temporal rainfall model has the same temporal
structure as the Bartlett-Lewis rectangular pulse model. The model was
introduced by Cox & Isham, 1988 [13].

The C-I spatial-temporal rainfall model, based on cluster processes is as
follows:

• Storms arrive as a homogeneous Poisson process in R2 and time.

• The storm centres move with velocity v = (vx, vy).

• Each storm is attached to a finite rain cell process. Each cell centre
has the same spatial location as the storm centre, and moves with the
same velocity .

• The cell arrival process terminates after the storm duration, which
follows an exponential distribution.

• Each cell has a random duration, a random intensity, and a random
area having circular shape in space.

• The total rainfall intensity at a point in space-time is the sum of in-
tensities from all cells active at that point.

3.4 Cox-Isham-Northop (C-I-N) Spatial-Temporal

Rainfall Model

The Cox-Isham-Northop (C-I-N) model is an extension of the C-I model,
due to Northrop 1998 [32]. It is a spatial-temporal stochastic model for the
interior of a single rainfall event, constructed using a cluster point process.
The cluster process is constructed by taking a primary process, called the
storm arrival process in our context, and then attaching to each storm center
a finite secondary point process, called a cell process. To each cell centre we
then attach a rain cell, with an associated area, duration and intensity. The
rain cell process is observed, whereas the storm process is unobserved. What
that means is a storm generates rain cells, rain cells produce rainfall with a
random intensity over their lifetime within the cell area.
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The storm and cell centers all share a common velocity. The total rainfall
intensity at point(x, y) and time t is then the sum of the intensity at (x, y)
of all cells active at time t.

The model description is outlined as follows:

• The arrival process of storm centres is taken to be a Poisson process in
R2 × [0,∞) with homogeneous rate λ. Let v = (vx, vy) be the velocity
of the rainfall event, so if a storm center arrives at (u, s) then at time
s+ t it will be at (u + tv, s+ t). Storm durations are random. Recall
that storm durations follow an exponential distribution with rate γ.

• While a storm is active it produces cells at a rate β in time, starting
with a cell at the moment the storm center begins. The cell process
follows a finite homogeneous Poisson process. If the storm arrives at
(u, s) and produces a cell at time s + t, the cell will be centered at
u+ tv+w, where w comes from a bivariate Gaussian distribution with
mean 0 and covariance

Σ =

(
σ2
x ρ σxσy

ρ σxσy σ2
y

)
.

The cell centre then also moves with velocity v.

• Each cell is elliptical with a semi-major axis of random length Mc.

• Each cell deposits rain at a constant intensity X on all points in space
covered by its defining ellipse during its duration L.

• Assume that each rain cell is a scaled version of the cell displacement
density contours of the storm within which it is born i.e each has the
same eccentricity e and orientation Θ, so that e and Θ are fixed given
Σ.

• Assume that Mc, L and X are mutually independent between cells as
well as independent of Σ.

• Assume that cell clusters belonging to distinct storms are independent.

The total rainfall intensity at spatial location u and at time t is the sum
of intensities from all cells covering at the point (u, t).

The model is stationary in time and homogeneous in space. The distri-
bution of cell and storm areas and cell intensity are more flexible than the
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durations. The cell area may follow a gamma distribution with two parame-
ters, but the cell intensity X is assumed to be exponentially distributed with
mean µx. The schematic diagram of spatial structure of the C-I-N model is
shown in Fugure 3.1.

⊗

?

?

?

?

Figure 3.1: Schematic diagram of the spatial structure of the C-I-N model for
event interiors. The red point is storm centre at time t in space. Blue start points
are cell centres. Lines indicate the cell centres, which are placed from the storm
centre. Dotted elliptical area is the storm area. Dashed curves are ellipsoidal cell
intensities.

Let cells be elliptical, then the cell, which has semi-major axis (Mc) and
semi-minor axis (Mminc), and eccentricity (e), has expected area

E[CellArea] = E[πMc Mminc ]

= πE[Mc Mminc ]

= π
√

1− e2 E[M2
c ],

If Mc ∼ Γ(α1, α2) then the mean cell area is given by

E[A] =
π
√

1− e2 α1(1 + α1)

α2
2

. (3.1)

It is assumed that velocity, eccentricity and orientation are common to
all storms and cells within the rainfall event.
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3.4.1 Mean

We define

1(u, t ; u + u′, t+ t′) =

{
1 if a cell born at (u, t) covers (u + u′) at t+ t′;
0 otherwise.

The total intensity at (u, t) is the sum of intensities of all active cells. It
is denoted by Y (u, t) and given by

Y (u, t) =

∫ t

τ=−∞

∫
w∈R2

1(w, τ ; u, t)X(w, τ) dN(w, τ).

where X(w, τ) is the random depth of the cells originating at (w, τ) and N
counts cell origins.

Suppose µc is the mean number of cell per storm. The intensity of cell
occurrences, is therefore λµc. Let the survivor probability of cells be FL(·).
The mean of the process is given by

E[Y (u, t)] =

∫ t

τ=−∞

∫
w∈R2

EX,L,A[1(w, τ ; u, t)X(w, τ)dN(w, τ)]

=

∫ t

τ=−∞

∫
w∈R2

EX,L,A[1(w, τ ; u, t)X(w, τ)] [dN(w, τ)]

=

∫ t

τ=−∞

∫
w∈R2

EX,L,A[1(w, τ ; u, t)X(w, τ) ]λµc dw dτ,

since N,X, L and A are independent,

=λµc

∫ t

τ=−∞

∫
w∈R2

EX,L,A[1(w, τ ; u, t)X(w, τ) ] dw dτ

=λµc E(A)

∫ t

τ=−∞
E[X] FL(t− τ) dτ

where E(A) is expected cell area,

=λµc E(A)E[X]

∫ t

τ=−∞
FL(t− τ) dτ

=λµc E(A)E[X]E[L].

(3.2)
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We assume that the cell duration is exponentially distributed with parameter
η, E[X] = µx and E(A) = µA. Then

E[Y (u, t)] = λ γ−1 β η−1µx µA.

The semi-major axis of a cell follows a gamma distribution with parameters
α1 and α2. The expected cell area was given in equation (3.1) and then

E[Y (u, t)] = πλ γ−1 β η−1µx
√

1− e2 α1(1 + α1) α−2
2 .

3.4.2 Covariance

Suppose that cells are circular with radius R. We suppose two cells originate
at (w1, τ1) and (w2, τ2). The covariance between two points in space and
time is given by

cov{Y(0, 0),Y(u, t))} =

∫ 0

τ1=−∞

∫
w1∈R2

∫ t

τ2=−∞

∫
w2∈R2

×E[1(w1, τ1 ; 0, 0)X(w1, τ1)1(w2, τ2 ; u, t)X(w2, τ2)]

× cov[dN(w1, τ1), dN(w2, τ2)]. (3.3)

( see Cox & Miller, 1965, §9.6 [14] and Cox and Isham, 1988, equation
(9) [13].)

Before we evaluate covariance function, we first obtain the covariance
density cov[dN(w1, τ1), dN(w2, τ2)]. The point process N as before is the
cluster process for cell centres.

There are three possible contributions to cov[dN(w1, τ1), dN(w2, τ2)].
The first contribution is from within cells. The second contribution is from
distinct cells belonging to the same storm. The third contribution is from
distinct cells belonging to distinct storms. However this third contribution is
zero because the cells from distinct storms are independently placed. Hence
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cov[dN(w1, τ1), dN(w2, τ2)] is the sum of two terms.
The first term (contribution within cells) of cov[dN(w1, τ1), dN(w2, τ2)]

is

λµcδ(w1 −w2)× δ(τ1 − τ2)dw1dw2dτ1dτ2. (3.4)

The second term (contribution from ‘between’ distinct raincells from the
same storm) of cov[dN(w1, τ1), dN(w2, τ2)] is derived as follows. We sup-
pose a storm has two cells originated at (w1, τ1) and (w2, τ2) with the storm
centred at (w, τ0). Cell arrivals occur at rate β and the storm duration follows
an exponential distribution with mean γ−1 , so the probability is βe−γ|τ2−τ1|

the same as for the BL process in time (see chapter 2 §2.2.1). Suppose the
cells are displaced according to bivariate normal distribution in space. Then
the second term equals

λµcβe
−γ|τ2−τ1|

∫
w∈R2

EΣ

{[ 1

2π|Σ| 12
e

{
− 1

2

(
(w1−w)TΣ−1(w1−w)

)}]
[ 1

2π|Σ| 12
e

{
− 1

2

(
(w2−w)TΣ−1(w2−w)

)}]}
dw. (3.5)

By integrating (see detail in Northrop(1998) [32]), we get

λµcβe
−γ|τ2−τ1|EΣ

[ 1

4π|Σ| 12
e

{
− 1

4

(
(w1−w2)TΣ−1(w1−w2)

)}]
. (3.6)

Since the cov[dN(w1, τ1), dN(w2, τ2)] has two terms, the covariance function
(3.3) is the sum of two parts. Assume that rain cell depths X are iid random
variables. Likewise a cell duration L is also independent of R and v. The
first part, from (3.3) and (3.4), is

I = λ µcE[X2]

∫ 0

τ=−∞

∫
w∈R2

FL(t− τ)

×E[1(||(0−w)− v(0− τ)|| ≤ R)1(||(u−w)− v(t− τ)|| ≤ R]dwdτ.

(3.7)

Let R1 and R2 be radii of two distinct cells, born within the same storm
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and centred at (w1, τ1) and (w2, τ2). The second part, from (3.3) and (3.6), is

II = λ µcE[X]2
∫ 0

τ1=−∞

∫ t

τ2=−∞

∫
w1,w2∈R2

FL(0− τ1)FL(t− τ2)β e−γ|τ2−τ1|

×E[1(||(0−w1)− v(0− τ1)|| ≤ R1)1(||(u−w2)− v(t− τ2)|| ≤ R2]

×EΣ

[ 1

4π|Σ| 12
e

{
− 1

4

(
(w1−w2)TΣ−1(w1−w2)

)}]
dw2dw1dτ2dτ1. (3.8)

We start by evaluating (I ). Recall we are assuming to begin with the
circular cell. Let C(d) the area of overlaps of two unit circles with centres
distance d apart, then

C(d) =

{
2 cos−1(d

2
)− 1

2
d
√

4− d2, 0 ≤ d ≤ 2;
0, d ≥ 2.

≈(π − k d)+, for 0 < k ≤ π

2
; where (·)+ = max(·, 0).

We know that the raincell duration follows an exponential distribution
with parameter η. The survivor probability FL(t− τ) = e−(t−τ)η.
The first term becomes

I =λ µcE[X2]

∫ 0

τ=−∞
FL(t− τ)E[R2C(||u− vt||/R)]dτ

=λµc E[X2]
e−tη

η
E[(πR2 − kR||u− vt||)+]. (3.9)

If R ∼ exp(s) and ||u− vt|| = x then
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E[(πR2 − kR||u− vt||)+] =

∫ ∞
0

(πr2 − krx)+dF

=

∫ ∞
0

(πr2 − krx)+se−srdr

=

∫ ∞
kx/π

(πr2 − krx)se−srdr

=
2π

s2

(ksx
2π

+ 1
)
e−skx/π; for k > 0.

(3.10)

We suppose a storm has two cells with origins at (w1, τ1) and (w2, τ2)
with the storm centered at (w, τ0). Let R1 and R2 be radii of two distinct
cells within a storm. The second part (II ) of the covariance function in
equation (3.3) can be written as

II =λ µcE[X]2
∫ 0

τ1=−∞
FL(0− τ1)

∫ t

τ2=−∞
FL(t− τ2)β e−γ|τ2−τ1|∫

w1,w2∈R2
E[1(||(0−w1)− v(0− τ1)|| ≤ R1)1(||(u−w2)− v(t− τ2)|| ≤ R2]

EΣ

[ 1

4π|Σ| 12
e

{
− 1

4

(
(w1−w2)TΣ−1(w1−w2)

)}]
dw2dw1dτ2dτ1.

This can be first estimated for v = 0.

λ µcE[X]2
∫ 0

τ1=−∞
FL(0− τ1)

∫ t

τ2=−∞
FL(t− τ2)β e−γ|τ2−τ1|∫

w1,w2∈R2
E[1(||(0−w1)|| ≤ R1)1(||(u−w2)|| ≤ R2]dw2dw1dτ2dτ1.

The temporal integration gives
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∫ 0

τ1=−∞
FL(0− τ1)

∫ t

τ2=−∞
FL(t− τ2)β e−γ|τ2−τ1|dτ2dτ1

= β

∫ 0

τ1=−∞
eητ1

∫ t

τ2=−∞
e(t−τ2)η e−γ|τ2−τ1|dτ2dτ1

= β
[γe−ηt − ηe−γt
η(γ2 − η2)

]
. (3.11)

The spatial integration gives∫
w1,w2∈R2

E[1(||(0−w1))|| ≤ R1)1(||(u−w2))|| ≤ R2]dw2dw1

=

∫
|w1|≤R1

∫
|u−w2|≤R2

EΣ

[ 1

4π|Σ| 12
e

{
− 1

4

(
(w1−w2)TΣ−1(w1−w2)

)}]
dw2dw1

=
1

4π
ER1,R2,σ2

[ ∫
|w1|≤R1

∫
|u−w2|≤R2

1

σ2
e

{
− 1

4σ2

(
(w1−w2)T (w1−w2)

)}]
dw2dw1;

where ER1,R2,σ2 is expectation over R1, R2, σ
2. And suppose Σ = σ2I ,

which gives |Σ| = σ4.

(3.12)

Therefore the second part of the covariance function for v = 0 and circu-
lar cells is

λµcβ(γe−ηt − ηe−γt)
4πη(γ2 − η2)

ER1,R2,σ2

[ ∫
|w1|≤R1

∫
|u−w2|≤R2

1

σ2
e

{
− 1

4σ2

(
(w1−w2)T (w1−w2)

)}]
dw2dw1.

(3.13)

Let g(u) = ER1,R2,σ2

[ ∫
|w1|≤R1

∫
|u−w2|≤R2

1

σ2
e

{
− 1

4σ2

(
(w1−w2)T (w1−w2)

)}]
dw2dw1.

(3.14)

Assuming σ2 has inverse chi-squared distribution, Northrop, 1996 [33] es-
timated g(u), first expectation over σ2 and secondly approximate using a
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Taylor series expansion of the integrand (see details Northrop, 1996 page 96
[33]).

Thus the covariance for Cox-Isham-Northorp model with circular cells is

c(u, t) = λµcE[X2]
{e−tη

u
ER

[
R2 c(u/R)

]
+
β(γe−ηt − ηe−γt)

4πη(γ2 − η2)
g(u)

]}
;

where u = |u| =
√
u2
x + u2

y. (3.15)

We now suppose the cells are elliptical and semi-major axis (Mc). Let
v = (vx, vy) be the velocity. Then

E[M2
cC(||u− vt||/Mc)] = E[(πM2

c − kMc||u− vt||)+]

We now consider that distinct elliptical cells have common eccentricity
(e) and orientation (Θ). Mc1 and Mc2 denote semi-major axises of distinct
cells. Put

u∗x = (ux − vxt) cos Θ + (uy − vyt) sin Θ.

u∗y = {(uy − vyt) cos Θ + (ux − vxt) sin Θ}/
√

1− e2.

And let δ =
√

(u∗x
2 + u∗y

2), then it can be shown that the covariance c(u, t) =

cov[Y (0, 0), Y (u, t)] between two points separated by time t unit and u =
(ux, uy) in space is given by

c(u, t) = λµcE[X2]
{e−tη

η
EMc,V,e,Θ

[
M2

cC(δ/Mc)
]

+
β(γe−ηt − ηe−γt)

4πη(γ2 − η2)
EV,e,Θ

[
g(δ)

]}
.

(3.16)

(See Northrop, 1998 [32]). Note that the temporal correlation was wrong in
Northrop, 1998 [32].

3.4.3 Aggregation of Properties over Space

Radar images give spatial aggregation over pixels. The average rainfall in-
tensity over pixel (i, j), of dimensions l km by l km at time t, is given by:
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Y
(l)
i,j (t) =

1

l2

∫ il

(i−1)l

∫ jl

(j−1)l

Y (u, t) dux duy. (3.17)

Therefore, the first and second order properties are given by

E[Y
(l)
i,j (t)] = E[Y (u, t)]. (3.18)

var[Y
(l)
i,j (t)] =

1

l4

∫ l

−l

∫ l

−l
(l − |ux|)(l − |uy|)c(u, t) dux duy. (3.19)

c(l)(lx, ly, t) = cov[Y
(l)
i,j (0), Y

(l)
i+lx,j+ly

(t)]

=
1

l4

∫ l

−l

∫ l

−l
(l − |ux|)(l − |uy|) c

(
ux + l lx, uy + l ly, t

)
dux duy.

(3.20)

The autocorrelation function is given by

ρ(l)(lx, ly, t) = corr[Y
(l)
i,j (0), Y

(l)
i+lx,j+ly

(t)]

=
c(l)(lx, ly, t)

var[Y
(l)
i,j (t)]

. (3.21)

3.5 Ellipsoidal Cell Spatial-Temporal

Rainfall Model

We present a more flexible model that offers a better chance of capturing the
real form of spatial-temporal rainfall. A visual comparison will be presented
in section 3.11.5. We can see that the cell eccentricity varies in the observed
process. We therefore assume the eccentricity is a random variable in the
new model. It follows a Truncated Normal distribution from zero to one. In
our new model, we assume storms have the same eccentricity and orientation.
However cells have a random eccentricity, but the same orientation as the
storms.

We can also see that the intensity of rainfall is high at the center of
observed cells and the intensity reduces with the distance from the centre
to the edge of a cell. We assume the intensity of cells is constant over their
lifetime but spread in space according to ellipsoid function. Let a and b are

61



semi-axes of an ellipse. For |x| ≤ |a| and |y| ≤ |b|, the rainfall intensity at
(x, y) is given by

Ic(x, y) = X

√
1− (x− c1)2

a2
− (y − c2)2

b2
, (3.22)

where X is intensity at the ellipse centre (c1, c2).

(a) (b)

X X

Mc Mc

Figure 3.2: Intensity of (a) Elliptic cylindrical cell (b) Ellipsoidal cell. Mc is a
major semi-axis of an ellipse.

We propose a new model, which accommodates these two extensions, (1)
randomized cell eccentricity and (2) the cell intensity decreases continuously
from the centre to the edge. We refer to the model as Ellipsoidal Cell Spatial-
Temporal (ECST) Model. Figure 3.2(a) is the intensity of a single cell of the
C-I-N model and the intensity of a single cell of the ECST model is shown
in Figure 3.2(b).

3.5.1 The ECST Model Description

The Ellipsoidal Cell Spatial-Temporal (ECST) rainfall model is a spatial-
temporal stochastic model for rainfall. The ECST model is homogeneous
in space and stationary in time and is suitable to model the ‘interior’ of a
rainfall event.

The ECST model is constructed using a cluster point process. The cluster
process is constructed by taking a primary process, called the storm arrival
process, and then attaching to each storm centre a finite secondary point
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process, called a cell process. To each cell centre we then attach a rain cell,
with an associated area, duration, and intensity. The storm and cell centres
all share a common velocity.

We use a Poisson process for the storm centre arrival process in R2 ×
[0,∞) with a homogeneous rate λ. The cell arrival processes are independent
Poisson processes at rate β in time truncated after an exponential (γ) amount
of time, which we call the storm duration. Let v = (vx, vy) be the velocity
of the rainfall event, so if a storm centre arrives at (u, s) then at time s + t
it will be at (u + tv, s + t). While a storm is active it produces cells at a
rate β in time, starting with a cell at the moment the storm center begins.
If the storm arrives at (u, s) and produces a cell at time s+ t, the cell will be
centered at u + tv + w, where w comes from a Gaussian distribution with
mean 0 and covariance

Σ =

(
σ2
x ρ σxσy

ρ σxσy σ2
y

)

= σ2

(
σ2
x

σ2 ρ σxσy
σ2

ρ σxσy
σ2

σ2
y

σ2

)
where σ2 is variance of cells displacement along the major semi-axis of storm.
We suppose that storms have a random size parameterized by σ2. which
has an inverse-gamma distribution, where 1

σ2 has mean ξµ and coefficient of
variation ξCV .

Individual cells have a random duration (L), distributed as exp(η), and a
random size. Rain cells are elliptical as storms, with the same orientation Θ,
but a random eccentricity e. The eccentricity of an ellipse can be obtained

by
√

1− b2

a2
, where a and b are semi-major axis and semi-minor axes. If

a is close to b, then e close to zero, which means cells are circular. If a
is very larger than b, then e close to 1, so cells have banded disc. The
randomness gives close match with real data. In observed data, we can see
different eccentricity of the cells. Some cells are circular and some are banded
shape, and some have between them as different scales, so there is a need
to represent this randomness. We therefore assume that cells are elliptical
with some random eccentricity. They follow a Truncated Normal distribution
from zero to one with mean (µe) and variance (σ2

e), where µe is the same as
the storm eccentricity.

Individual cells also have a random intensity X at the cell center, which
are exponentially distributed with mean µx. The rainfall intensity decreases
continuously from the centre to the edge of each cell, rather than acting as
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a step function. The rainfall intensity at (x, y) is given by

Ic(x, y) = X

√
1− (x− c1)2

a2
− (y − c2)2

b2
, (3.23)

where X is intensity at the ellipse center (c1, c2).

The cell size is given by the semi-major axis (Mc), which is distributed
as a Γ(α1, α2). The displacements, durations, sizes, and intensities of a cell
are all independent, and independent of other cells.

⊗

?

?

?

?

Figure 3.3: ECST cell process in space at time t. The red point is a storm
centre at time t in space. Blue start points are cell centres. Lines indicate the cell
centres, located relative to the storm centre. Dotted elliptical area is the storm
area. Dashed curves are ellipsoidal cell intensities.

We assume that Ic is constant over the cell duration. The intensity of a
cell moves with some constant velocity v while preserving its shape as the
top half part of ellipsoid see Figure 3.3.

The expected cell area, which has semi-major axis (Mc), semi-minor axis
(Mminc) and average eccentricity (µe), is given by

E[A] = E[πMc Mminc ]

= πE[Mc Mminc ]

= π
√

1− µ2
e E[M2

c ].
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3.5.2 Mean

The total intensity at (u, t) is the sum of intensities of all active cells.
Suppose N counts the cell centre origins. Suppose µc is the mean number

of cell per storm. The intensity of cell occurrences, is therefore λµc. Let the
survivor probability of cells be FL(·). The mean of the process is given by

E[Y (u, t)] =

∫ t

τ=−∞

∫
w∈R2

EIc,L,A[1(w, τ ; u, t)Ic(u, t)dN(w, τ)]

where 1 is an indicator, which is one if the cell is active at (u, t), otherwise zero

and Ic is the cell intensity at (u, t),

=

∫ t

τ=−∞

∫
w∈R2

EIc,L,A[1(w, τ ; u, t)Ic(u, t)] [dN(w, τ)].

=

∫ t

τ=−∞

∫
w∈R2

EIc,L,A[1(w, τ ; u, t)Ic(u, t) ]λµc dw dτ ;

since N, Ic, L and A are independent

=λµc

∫ t

τ=−∞

∫
w∈R2

EIc,L,A[1(w, τ ; u, t)Ic(u, t) ] dw dτ.

=λµc

∫ t

τ=−∞
E[V ] FL(t− τ) dτ ; where V is expected cell volume.

since E(V ) =
2

3
E[A×X], where A is cross-section area of a cell,

and X is the cell intensity at the centre.

=
2

3
λµc E[A×X]

∫ t

τ=−∞
FL(t− τ) dτ ;

=
2

3
λµc E(A)E[X]E[L].

Assume cell duration is exponentially distributed with parameter η. E[X] =
µx and the major-semi axis Mc ∼ Γ(α1, α2) then the mean cells area given
µe:

E[A] =
π
√

1− µ2
e α1(1 + α1)

α2
2

.
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Then,

E[Y (u, t)] =
2

3
πλ γ−1 β η−1µx

√
1− µ2

e α1(1 + α1)α−2
2 .

3.6 Log-Normal Cell Spatial-Temporal Rain-

fall Model

In the ECST model, to get very high intensity in an arbitrary region we
need to have many cells overlapped on the region. An alternative is to allow
individual cells to have a cell intensity that follows a heavy tailed distribution.
In this section, we consider the second option. So the cell intensity and area,
particularly semi-major axis of cells, follow the Log-Normal distribution.

We can also see in an observed process that some small size cells have
high intensity. We have an impression that there may be some correlation
between cell intensity and size. So the bivariate log-normal distribution for
cell intensity and cell semi-major axis can provide an opportunity to study
their relationship.

We intend to study through the Log-Normal Cell Spatial-Temporal Model
whether there is any correlation between cell intensity and size, and also to
investigate whether the LNCST Model can capture localized heavy rainfall.

3.6.1 Model

The Log-Normal Cell Spatial-Temporal (LNCST) model is an extension of
the ECST model. The LNCST mode has the same temporal and spatial
structure as the ECST model. However, we assume the cell intensity and
cell area have a bivariate log-normal distribution.

Briefly, the storm origins have a Poisson process at λ rate in space and
time. The cell arrival processes are independent Poisson processes of rate β in
time, truncated after storm duration, which is exponentially distributed with
γ. The cell has a random duration, a random intensity, a random area, and
a random eccentricity. The cell duration follows an exponential distribution
(η). We assume that the cell intensity (X) at cell centre and the semi-major
axis (Mc) follow a bivariate Log-Normal distribution i.e.
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(
X
Mc

)
∼ logN

 µx

µMc

 ,

(
σ2
X ρxmcσXσMc

ρxmcσXσMc σ2
Mc

)
Storm and cells share the same orientations. The cell intensity reduces con-
tinuous from the centre to the edge as the ECST model. The intensity
remains constant over the cell duration, and moves with some velocity v.
Similarly, the storm and all cells within the storm move with the same ve-
locity v = (vx, vy).

3.7 Empirical Statistics

Radar rainfall data is available at a discrete set of points with pixel (i, j)
of l km by l km in space and h length of time, where i = 1, 2, 3, ..., Nx and
j = 1, 2, 3, ..., Ny. The data array has N(= Nx ×Ny) pixels at time t. Time
is also discrete at points 1, 2, 3, ..., T . The total number of pixels on the data
array is N × T . Figure 3.4 shows the data-frame of observed rainfall data.

x

t

y

Figure 3.4: Data-frame of observed data set.

Y
(l)
i,j (k) denotes the rainfall in (i, j)-th l × l km2 pixel at discrete time

point k. The empirical statistical properties are given by the first two
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moments:

ȳ =
1

NxNyT

Nx∑
i=1

Ny∑
j=1

T∑
k=1

Y
(l)
i,j (k), (3.24)

s2
y =

1

NxNyT − 1

Nx∑
i=1

Ny∑
j=1

T∑
k=1

[Y
(l)
i,j (k)− ȳ]2. (3.25)

The empirical spatial-temporal covariance function is

ĉ(lx, ly, lt) =
1

(Nx − lx)(Ny − ly)(T − lt)− 1

Nx−lx∑
i=1

Ny−ly∑
j=1

T−lt∑
k=1

[Y
(l)
i,j (k)− ȳ1][Y

(l)
i+lx,j+ly

(k + lt)− ȳ2];

(3.26)

where

ȳ1 =
1

(Nx − lx)(Ny − ly)(T − lt)

Nx−lx∑
i=1

Ny−ly∑
j=1

T−lt∑
k=1

Y
(l)
i,j (k).

ȳ2 =
1

(Nx − lx)(Ny − ly)(T − lt)

Nx−lx∑
i=1

Ny−ly∑
j=1

T−lt∑
k=1

Y
(l)
i+lx,j+ly

(k + lt).

Hence, the empirical spatial-temporal correlation is

ρ̂(lx, ly, lt) =
ĉ(lx, ly, lt)]

σy1σy2
, (3.27)

where

σ2
y1

=
1

(Nx − lx)(Ny − ly)(T − lt)− 1

Nx−lx∑
i=1

Ny−ly∑
j=1

T−lt∑
k=1

[Y
(l)
i,j (k)− ȳ1]2,

σ2
y2

=
1

(Nx − lx)(Ny − ly)(T − lt)− 1

Nx−lx∑
i=1

Ny−ly∑
j=1

T−lt∑
k=1

[Y
(l)
i+lx,j+ly

(k + lt)− ȳ2]2.

If Y
(l)
i,j (k) = 0, then the (i, j)-th pixel at time point k is dry. The probability

that an arbitrary pixel at arbitrary time t is dry, is estimated by
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P̂ (Y (l) = 0) =
1

NxNyT

Nx∑
i=1

Ny∑
j=1

T∑
k=1

1(Y
(l)
i,j (k) = 0). (3.28)

If Y
(l)
i,j (k) > 0, then the (i, j)-th pixel at time point k is wet. The dry and

wet ratio can be estimated using

#(Y (l) = 0)

#(Y (l) > 0)
=

∑Nx
i=1

∑Ny
j=1

∑T
k=1 1(Y

(l)
i,j (k) = 0)∑Nx

i=1

∑Ny
j=1

∑T
k=1 1(Y

(l)
i,j (k) > 0)

.

(3.29)

Note that the area of pixel cancels from numerator and denominator.

The other two properties of mean and variance of wet area over time can
be easily estimated. Put

Akw =
Nx∑
i=1

Ny∑
j=1

1(Y
(l)
i,j (k) > 0)(l × l), k = 1, 2, 3, ..., T. (3.30)

The mean and variance of wet area over time are estimated by

āw =
1

T

T∑
k=1

Akw. (3.31)

σ2
aw =

1

T − 1

T∑
k=1

[Akw − āw]2. (3.32)

3.8 Radar Data

Following Wheat et al. 2000 [48], the event duration is defined as the time
during which the observed process coves the fitting window above some per-
centage. We focus on the rainfall event, which covers at least 20% of the

69



event area.
We obtained sample data from the Bureau of Meteorology, Australia.

For this study we used radar data collected at Laverton, Melbourne on 24th
September 2016 from 12:54 to 16:48 hours. The radar data was calibrated by
the Australian Bureau of Meteorology using rain-gauge. The radar coverage
is the circular region of 128 km radius. The space is gridded 1× 1 km2 and
time resolution is 6-minutes. We restricted ourself to a square study area
of size 180 × 180 km2 see Figure 3.5. The data matrix is therefore size of
180× 180× 40. Each element of the matrix is given some amount (possibly
zero) of rain in mm. We consider there is zero rain if a pixel, which has less
than 0.01 mm per 6-minutes to avoid radar noise.

r = 128km

x = 180km

Figure 3.5: Circle is radar coverage and square is study area

3.8.1 Data Exploration

Figure 3.6 shows the maximum value over all pixels for a fixed time. The
maximum value is 2.86 mm and minimum value is 1.01 mm. Spatial average
rainfall is between 0.04 mm and 0.09 mm (see Figure 3.7). Similarly Figure
3.8 gives percentage spatial coverage over time. The least coverage is 21%
and the maximum coverage reaches 56%.
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Figure 3.6: Maximum rainfall (mm) on a pixel in space at time t. The rainfall
event is rainfall on 24th September 2016 from 12:54 to 16:48 hours in Melbourne.

Figure 3.7: Mean rainfall (mm) per pixel in space at time t. The rainfall event is
rainfall on 24th September 2016 from 12:54 to 16:48 hours in Melbourne.
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Figure 3.8: Area coverage percentage by rainfall in space at time t. The rainfall
event is rainfall on 24th September 2016 from12:54 to 16:48 hours in Melbourne.
The horizontal line is 20 % indication line.

3.8.2 Contour Plots

Figures 3.9, 3.10, 3.11, 3.12, and 3.13 show contour plots of the observed
rainfall on 24th September from 12:54 to 16:24. Zero rainfall is also white
colour.

12 : 54 13 : 00 13 : 06

13 : 12 13 : 18 13 : 24

13 : 30 13 : 36 13 : 42

Figure 3.9: Contour plots from observed data. The rainfall is from 12:54 to 13:42
hours on 24th September 2016 in Melbourne. Zero rainfall is also white colour

.
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13 : 48 13 : 54 14 : 00

14 : 06 14 : 12 14 : 18

14 : 24 14 : 30 14 : 36

Figure 3.10: Contour plots from observed data. The rainfall is from 13:48 to
14:36 hours on 24th September 2016 in Melbourne. Zero rainfall is also white
colour.

14 : 42 14 : 48 14 : 54

15 : 00 15 : 06 15 : 12

15 : 18 15 : 24 15 : 30

Figure 3.11: Contour plots from observed data. The rainfall is from 14:42 to
15:30 hours on 24th September 2016 in Melbourne. Zero rainfall is also white
colour.
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15 : 36 15 : 42 15 : 48

15 : 54 16 : 00 16 : 06

16 : 12 16 : 18 16 : 24

Figure 3.12: Contour plots from observed data. The rainfall is from 15:36 to
16:24 hours on 24th September 2016 in Melbourne. Zero rainfall is white.

16 : 30 16 : 36

16 : 42 16 : 48

Figure 3.13: Contour plots from observed data. The rainfall is from 16:30 to
16:48 hours on 24th September 2016 in Melbourne. Zero rainfall is white.
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3.9 Fitting a Spatial-Temporal Model

The C-I-N and the ECST models have parameters λ, γ, β, e (or µe), Θ and
random variables cell intensity (X), cell duration (L), cell semi-major axis
(Mc), storm semi-major axis (Ms) and the two components of the velocity
v = (vx, vy). Distributions of these random variables are kept the same in
both the C-I-N and ECST models. We assume X and L follow exponential
distribution i.e. X ∼ exp(1/µx) and L ∼ exp(η). We consider Mc follows
gamma distributions i.e. Mc ∼ Γ(α1, α2) . The mean cell area µA is given by

µA =
π
√

1− e2 α1(1 + α1)

α2
2

. (3.33)

Instead of estimating α1 and α2, we estimate µA and α2. Then

α1 =
1

2

(
− 1 +

√
1 +

4µAα2
2

π
√

1− e2

)
.

Suppose σ2 denote the variance of cell displacements in a direction of
parallel to the storm semi-major axis. If 1

σ2 ∼ gamma(ξ1, ξ2), then ξm = ξ1ξ2

and ξcv = 1√
ξ1

. We estimate the coefficient of variance ξcv and mean ξm.
There therefore are 13 common parameters for the C-I-N model and the

ECST model. They are λ, γ, β, e (or µe), Θ, µA, µx, η, α2, ξm , ξcv, vx
and vy. We estimate two velocity components and e and Θ using an ad hoc
procedure due to Wheat et al. 2000 [48]. The detail is presented in §3.9.1
and 3.9.2. All other parameters are latent variables so we need something
more sophisticated to estimate them, namely ABC.

In the past, the C-I-N model fitting has been carried out using GMM.
GMM fitting requires moments with analytical expressions. The theoretical
expression for the statistics which we want to use for fitting are not available.
However ABC supports this case, all we need is that we can easily simulate
the process.

3.9.1 Velocity Estimation

We assume that the storm and the cells have the same velocity. Following
Wheater et al. 2000 [48], the spatial autocorrelation function ρ(lx, ly, t) is
applied to estimate the velocity. We estimate ρ using the empirical spatial-
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temporal autocorrelation function a discrete set of points in time and space
lt = 1, 2, 3, ..., T , lx = −n, ...,−3,−2,−1, 0, 1, 2, 3, , ..., n and
ly = −n, ...,−3,−2,−1, 0, 1, 2, 3, ..., n. Let (l̂x, l̂y, l̂t) be the index of the ob-

served maximum of ρ̂. We use 9 pixels centered at (l̂x, l̂y, l̂t) to estimate
velocity

v̂x =

∑
li

∑
lj
liρ̂(li, lj, l̂t)∑

li

∑
lj
ρ̂(li, lj, l̂t)

;

v̂y =

∑
li

∑
lj
lj ρ̂(li, lj, l̂t)∑

li

∑
lj
ρ̂(li, lj, l̂t)

,

where li = l̂x − 1, l̂x, l̂x + 1 and lj = l̂y − 1, l̂y, l̂y + 1.

3.9.2 Eccentricity and Orientation Estimation

Assume that the average eccentricity and orientation of cells and storms are
the same. We estimate e and Θ using ρ̂(lx, ly, 0). We select those pairs (lx, ly)
for which the spatial correlation is greater than some chosen threshold. We
then estimate the covariance-matrix from these pairs, which cover an ellip-
tical region in the (lx, ly) plane (see Wheater et al. 2000 [48]). We calculate
the first and second largest eigenvalues (λ1 and λ2) and corresponding eigen-

vectors from this covariance- matrix. Then ê =
√

1− λ2
λ1

and Θ̂ = arctan( y
x
),

where y and x are y-coordinate and x-coordinate of the eigenvector corre-
sponding to the largest eigenvalue (λ1), are the estimation of eccentricity e
and orientation Θ respectively.

3.9.3 Summary Statistics

We select the following summary statistics. The first 2 summaries are mean,
standard deviation. We use velocity-adjusted spatial-temporal correlation
ρ(lx+vxlt, ly+vylt, lt), where lx ∈ {−1, 0, 1} , ly ∈ {−1, 0, 1} and lt ∈ {0, 1}.
We need an integer value for velocity-adjusted correlation functions, so we
round off the velocity components to the closest integer. We therefore use 17
correlations of lags lx ∈ {−1, 0, 1} , ly ∈ {−1, 0, 1} and lt ∈ {0, 1}. ρ(0, 0, 0)
is not used because it is just the variance. We also use the probability of an
arbitrary pixel being dry at an arbitrary time, and the other 3 summaries,
ratio of dry/wet area and mean and standard deviation of wet area over time.
We thus include 23 summary statistics for fitting the model.
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Table 3.1 shows the values for summary statistics of the observed rainfall
process.

Summaries lags Values
(lx, ly, lt)

Mean (mm per pixel) 0.065
Standard deviation 0.137
Correlation (−1,−1, 0) 0.947
ρ
(
lx + lt × vx, ly + lt × vy, lt

)
(−1, 0, 0) 0.952
(−1, 1, 0) 0.898
(0,−1, 0) 0.963
(0, 1, 0) 0.963
(1,−1, 0) 0.898
(1, 0, 0) 0.952
(1, 1, 0) 0.947
(−1 + vx,−1 + vy, 1) 0.846
(−1 + vx, 0 + vy, 1) 0.842
(−1 + vx, 1 + vy, 1) 0.806
(0 + vx,−1 + vy, 1) 0.854
(0 + vx, 0 + vy, 1) 0.873
(0 + vx, 1 + vx, 1) 0.855
(1 + vx,−1 + vy, 1) 0.821
(1 + vx, 0 + vy, 1) 0.854
(1 + vx, 1 + vx, 1) 0.856

P(Y (l) = 0) 0.599
Dry wet ratio 0.671
Mean wet area (km2) 13007
Standard deviation of wet area 3864

Table 3.1: Values of summary statistics. The rainfall event is on 24th September
2016 from 12:54 to 16:48 hours in Melbourne.

3.9.4 ABC-MCMC Algorithm

We repeat the ABC-MCMC algorithm as discussed in §2.3.1 for convenience.
We suppose that we have an observation D from some model f(.|φ), and that
we are able to simulate from f . Let π be the prior distribution for φ and
S = S(D) a vector of summary statistics for D, then ABC-MCMC generates
samples from f(φ|d(S(D∗), S(D)) ≤ ε), where D∗ ∼ f(.|φ), φ ∼ π, and d is
some distance function. The algorithm is as follows:
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Algorithm 3 ABC MCMC

for i=1 to N do
Given current state φi, propose a new state φ∗ using proposal density
q(.|φi)
Put α = min

(
1, π(φ∗)q(φi|φ∗)

π(φi)q(φ
∗|φi)

)
if U(0, 1) < α, then

simulate data D∗ ∼ f(·|φ∗)
if d(S(D∗), S(D)) ≤ ε, then

set φi+1 = φ∗

else
set φi+1 = φi

end if
else

set φi+1 = φi
end if

end for

3.9.5 Starting ABC using SMM

There are lots tuning parameters in ABC fitting. Starting points are one most
important. McFadden, 1989 and Pakes & Pollard, 1989 [30, 36] presented a
Simulated Method of Moments (SMM) as simulation based version of GMM.
When applying ABC, we found it advantageous to ‘jump-start’ the algorithm
by choosing the initial parameter selection φ0 using an SMM fit,

For ABC-MCMC, if we can provide good starting points, the burn-in
time is short, even we may not need burn-in time for chain mixing. We use
SMM, which provides us useful starting points for ABC.

Let V = (V1, ..., Vk)
′ be a vector of summary statistics computed from

data. The corresponding expected values of V under the model is denoted
by a vector τ ∗(φ) = (τ1(φ), ..., τk(φ))′. Estimation of the unknown parameter
vector φ is obtained by

φ̂ = argminφ (V − τ ∗(φ))′ W (V − τ ∗(φ)),

where W is a positive finite weighting matrix, which is often taken to be a
diagonal matrix, in which case the objective function G(φ; V) can be written
as

G(φ; V) =
k∑
i=1

wi[Vi − τ ∗i (φ)]2. (3.34)
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The optimal weights wi are equal to Var (Vi)
−1.

The idea of SMM is that we estimate τ ∗(φ) using the average of a simu-
lated sample. Literally we are minimizing the distance between the observed
and simulated expectations. Thus like ABC, using SMM we have much more
freedom in the choice of moments used to fit the model to the data. We
use a random search to optimise the objective function Ĝ(·). Note that it
is a random function. An alternative approach would be stochastic gradient
descent.

The starting point for ABC-MCMC is the parameter value, which
minimizes Ĝ. If φ0 has very small posterior probability, then ABC-MCMC
requires a prohibitively large burn-in period or may just freeze. So this
provides a good starting points. The other advantage is that it gives us a
distribution S(D∗) that we can use to estimate the weights wi of the distance
function.

It is common to use a separate ABC step to estimate φ0, we found that
using SMM instead requires much less computation time.

3.9.6 Process Burn-in Period

Recall the intensity at (x, y, t) is the sum of intensities from all active cells at
(x, y, t). Assume the rainfall event to be homogeneous in space and stationary
in time. Following Wheat et al. 2000 [48], the event duration is defined as
the time during which the observed process coves the fitting window above
some percentage. We focus on the rainfall event, which covers at least 20%
of the event area. The simulated process therefore should follow the same
coverage attribute. So we need to simulate the rainfall process for longer
than time period considered. The question that arises is for how long we
need to simulate the rainfall process. We take a practical approach. First we
fitted spatial-temporal models to real data. The posteriors for the parameters
from initial fitting to the event are in Appendix 1 for the C-I-N model. We
simulate data from posteriors. We then look at how the simulated processes
behave. Figures 3.14 and 3.15 show the simulated data total intensities and
coverage during the specified rainfall event.

Figures 3.14 and 3.15 show that after 2 hours the process appears sta-
tionary and all simulations achieve 20% coverage threshold. So we simulate
the rainfall process 2 hours extra time.
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Figure 3.14: Total rainfall from 200 simulated data from the models are colour
lines. Starred black line is the total rainfall over the area in time for real data.
Black horizontal line is the minimum total rainfall during the rainfall event. X-
axis is the time (6-minutes as one time unit). The rainfall event is rainfall on 24th
September 201 from12:54 to 16:48 hours in Melbourne.
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Figure 3.15: Area coverages from 200 simulated data for the models are colour
lines. Starred black line is for real data coverage. Black horizontal line is the
minimum total rainfall during the rainfall event. X-axis is the time (6-minutes as
one time unit). The rainfall event is on 24th September 201 from12:54 to 16:48
hours in Melbourne.

3.10 Fitting the C-I-N Model

We take a two step approach. Using the method discussed § 3.9, first we
estimate velocity, eccentricity, and orientation using the empirical spatial
autocorrelation function. We then fix them and use the ABC-MCMC to
estimate the remaining parameters.

We obtain estimates e = 0.86 and Θ = 39o. We estimate the velocity v =
(0.10, 29.9)km per hour. The Figure 3.16 shows that the highest correlation
is at spatial lag(0, 3).
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Figure 3.16: Spatial correlation. Dashed vertical line is as estimated vx = 0.01
and dashed horizontal line is vy = 2.99 per 6-minutes. The rainfall event is rainfall
on 24th September 2016 from 12:54 to 16:48 hours in Melbourne.

3.10.1 Applying ABC-MCMC to the C-I-N Model

Prior Distribution and Reparameterization

Firstly we reparameterise the model, to reduce the dependence between the
parameters. In addition we use a log transformation to map parameter do-
mains from R+ to R for the first 9 parameters, which simplifies the choice of
the proposal chain too.

The similar way defined in §2.4.1 we combine storm level parameters:
storm rate λ and storm mean duration γ−1 as λ× γ−1 and λ× γ. Similarly
rain cells parameters: cell arrival rate β, cell mean duration η−1, cell intensity
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µx, and cell mean area µA are recombined as, β×η−1 and β×η, and µx×µA
and µx × µ−1

A .
In total we have 13 parameters:

φ(1) = log(λγ−1)

φ(2) = log(λγ)

φ(3) = log(βη−1)

φ(4) = log(βη)

φ(5) = log(µxµA)

φ(6) = log(µxµ
−1
A )

φ(7) = log(α2)

φ(8) = log(ξm)

φ(9) = log(ξcv)

φ(10) = e

φ(11) = Θ

φ(12) = vx

φ(13) = vy

The parameters are interdependent, even with this reparameterization.
For instance, a rainfall event which has a low storm arrival rate and a long
storm duration and another rainfall event, which has a high storm rate and a
short storm duration, can produce the same total intensity at (u, t). Similarly
a long storm duration and a low cells arrival rate, and a short storm duration
and a high cells arrival rate can generate the same number of cells for a storm.
Therefore Poisson cluster stochastic rainfall models are challenging to fit.
However our experience is that this reparameterisation improves estimation.

Initially normal priors were used for all the φ(i); i = 1, 2, ..., 9; that is
π(φ(i)) ∼ N(0, σ2I) for σ2 large. However, we found that this produced
some extreme posterior points, particularly when we transformed log param-
eters to original parameters see Figure 1 in Appendix. To avoid these ex-
treme values we choose the following truncations, for φ(7) truncated normal
(−∞, log(3)], for φ(8) truncated normal (−∞, log(6)], and for φ(9) truncated
normal (−∞, log(10)] with mean zero and variance as before.

83



Proposal Distribution and Distance Metric

Because of log transformation, we have now parameter domain R
9. This

simplifies the proposal chain, because there are no boundaries.
For the proposal chain we just use a random walk with steps distribution

as N(0, 0.22I) increments.
For distance measure d, we choose weighted Euclidean distance:

d(S(D∗), S(D)) =
[∑

i

wi (S∗(i)− S(i))2
] 1

2

where S∗(i) and S(i) are respectively the i-th component of S(D∗) and S(D).
The choice of weights is important. We choose wi inversely proportional to
variance of i-th summary statistics using a sample generated from f(.|φ̂),
where φ̂ is a preliminary estimate of φ (Prangle, 2017 [37]). This balances
the importance of S.

Posterior Distribution

Because the parameter region is high dimensional there is a possibility the
chain gets stuck on low probability region, so good starting values of the
parameter set are crucial. The choice of starting values also determines that
how quickly the chain converges to stationary distribution. We apply the
SMM to obtain a good starting points. Applying Algorithm 3 we obtain
posteriors for φ(i), i = 1, ..., 9.

Clearly we see in Figure 3.17, the chains have converge to stationary
distributions. The Markov chains have clearly moved around the parameter
space. The effective sample sizes are above 200 in each case. To increase the
effective sample sizes, we may run the algorithm for longer.

Figure 3.18 gives posterior densities for all 9 parameters, which look good
as we can see nice peak for each density curve. Acceptance rate is 4.1% with
a threshold ε = 10. Theoretically we want ε to be very small. Small ε
gives better approximation of posteriors, however very small ε may lead bad
mixing. In practice, we need to choose ε such that chains get well mixing
and provide a good posterior approximation.

The joint distribution of posteriors is another diagnostic test of whether
the estimated parameters are highly correlated. We expect some correlation
of them because the original parameters of the model are highly dependent.
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In Figure 3.19, the diagonal plots are histograms for parameters φ(i), i =
1, 2, 3, ..., 9. The lower panels are joint distribution for pairs of φ(i),i =
1, 2, . . . , 9 . We see that there is very little pairwise correlation between the
parameters in the posterior.

Figure 3.17: Chains for φ(i),i = 1, 2, . . . , 9 (from top left to right). The rainfall
event is on 24th September 2016 from 12:54 to 16:48 hours in Melbourne.
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Figure 3.18: Posteriors for φ(i),i = 1, 2, . . . , 9 (from top left to right). Blue curves
are priors. The rainfall event is on 24th September 2016 from 12:54 to 16:48 hours
in Melbourne.
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Figure 3.19: Posteriors (diagonals) for φ(i), i = 1, 2, . . . , 9 and joint posteriors in
the lower panel. The rainfall event is on 24th September 2016 from 12:54 to 16:48
hours in Melbourne.

Figure 3.20 shows that posteriors for original parameters, which are ob-
tained from exponentials as follows:
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λ = exp
(φ(1) + φ(2)

2

)
γ−1 = exp

(φ(1)− φ(2)

2

)
β = exp

(φ(3) + φ(4)

2

)
η−1 = exp

(φ(3)− φ(4)

2

)
µx = exp

(φ(5) + φ(6)

2

)
µA = exp

(φ(5)− φ(6)

2

)
α2 = exp(φ(7))

ξm = exp(φ(8))

ξcv = exp(φ(9))
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Figure 3.20: Posteriors for parameters λ , γ−1, β, η−1, µx, µA, α2, ξm, ξcv. The
rainfall event is on 24th September 2016 from 12:54 to 16:48 hours in Melbourne.
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Table 3.2 shows posterior means, medians, and 95 % credible intervals.
We can see some credible intervals are wide, particularly mean storm duration
γ−1, mean cell duration η−1, and mean cell area µA. This may be because
of the parameters dependency as discussed above. However, the estimates
look plausible. For example mean storm duration is greater than mean cell
duration.

Parameter Mean Median 95 % Credible Interval
λ 0.0008 0.0006 (0.0003, 0.0026)
γ−1 14.816 13.233 (2.9086, 38.585)
β 0.6968 0.6201 (0.2321, 1.7451)
η−1 5.3733 4.6462 (2.6768, 13.180)
µx 0.1946 0.1917 (0.0792, 0.3332)
µA 37.299 32.677 (11.839, 93.733)
α2 0.0595 0.0548 (0.0255, 0.1211)
ξm 0.5199 0.4006 (0.0738, 1.8749)
ξcv 1.9438 1.5953 (0.1467, 6.0694)

Table 3.2: Estimated posterior means, medians and credible intervals. Fitted the
C-I-N model to the rainfall event on 24th September 2016 from 12:54 to 16:48
hours in Melbourne..

3.10.2 Diagnostics

In this section, we present Monte-Carlo 95% predictive intervals to check
model fit. For this we generate data simulated under the model using sampled
posteriors, and show how the simulated data looks comparison with observed
data.

The outputs of ABC-MCMC Algorithm 3 are ergodic samples from the
posteriors for φ(i), i = 1, ..., 9. We have about 100 thousand posterior pa-
rameter sets. It is time consuming and unrealistic to simulate data from
all of them, so we take a sub-sample of size 500, and for each member of
the sub-sample we simulate data from the C-I-N model. The sub-sample
is selected using sampling weights assigned using the Epanechnikov kernel
as described in Section 2.3.2. Each member of the posterior sample has an
associated distance to the observed data, and its sampling weight is Kε(·),
where Kε is given by

Kε(x) =


(1− (x

ε
)2); |x| ≤ ε;

0 |x| > ε.
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where ε is the threshold distance.
To demonstrate model fit, we present Monte-Carlo predictive 95% in-

tervals in Figures 3.21, 3.22, 3.23, and 3.24. Almost all observed summary
statistics are within the intervals.

Figure 3.21 shows the 95% intervals for the mean rainfall, standard devia-
tion of rainfall and dry probability in the first row (a), (b), and (c) respectively
for spatial aggregation from 1×1 km2 to 6×6 km2 pixels. The mean rainfall,
standard deviation of rainfall, and dry probability are in the second row (d),
(e), and (f) respectively for temporal aggregation, 6-minute, 12 minute and
18-minute and 24-minute of 1 × 1km2 pixels. The mean, standard devia-
tion, and dry probability are in the last row (g), (h), and (i) respectively for
temporal aggregation, 6-minute, 12 minute and 18-minute and 24-minute of
2× 2km2 pixels.

Figure 3.22 shows the 95% Monte-Carlo predictive intervals for the spatial
autocorrelation lags (-1,-1,0), (0,-1,0), and (-1,0,0) in the first row (a), (b),
and (c) respectively for spatial aggregation, 1 × 1 km2 to 6 × 6 km2 pixels.
The spatial autocorrelation lags (-1,-1,0), (0,-1,0), and (-1,0,0) are in the
second row (d), (e), and (f) respectively for temporal aggregation, 6-minute,
12 minute and 18-minute and 24-minute of 1 × 1km2 pixels. The spatial
autocorrelation lags (-1,-1,0), (0,-1,0), and (-1,0,0) are the last row (g), (h),
and (i) respectively for temporal aggregation, 6-minute, 12 minute and 18-
minute and 24-minute of 2× 2km2 pixels .

Figures 3.23 shows the 95% Monte-Carlo predictive intervals for the spa-
tial autocorrelation lags (1 + vx, 1 + vy, 1), ((0 + vx, 1 + vy, 1), and (1 +
vx, 0 + vy, 1) in the first row (a), (b), and (c) respectively for spatial ag-
gregation, 1 × 1 km2 to 6 × 6 km2 pixels. The spatial autocorrelation lags
(1+vx, 1+vy, 1), ((0+vx, 1+vy, 1), and (1+vx, 0+vy, 1) are in the second row
(d), (e), and (f) respectively for temporal aggregation, 6-minute, 12 minute
and 18-minute and 24-minute of 1×1 km2 pixels. The spatial autocorrelation
lags (1 + vx, 1 + vy, 1), ((0 + vx, 1 + vy, 1), and (1 + vx, 0 + vy, 1) are in the
last row (g), (h), and (i) respectively for temporal aggregation, 6-minute, 12
minute and 18-minute and 24-minute of 2× 2 km2 pixels.

Figure 3.24 shows the 95% Monte-Carlo predictive intervals for the sum-
mary statistics: dry/wet area ratio, mean wet area over time, and standard
deviation of wet area over time for different spatial aggregation. Plots (a), (b),
and (c) are for spatial aggregation l × l km2 pixel, l = 1, 2, 3, 4, 6. Plots
(d), (e), and (f) are for spatial autocorrelations for temporal aggregation of
1 × 1 km2 pixel. Plots (g), (h), and (i) are for spatial autocorrelations for
temporal aggregation of 2× 2 km2 pixel.

90



1 2 3 4 5 6

0
2

4
6

8
10

1 2 3 4 5 6

0
5

10
15

1 2 3 4 5 6

0.
0

0.
4

0.
8

10 15 20

0.
0

0.
4

0.
8

1.
2

10 15 20

0.
0

0.
5

1.
0

1.
5

10 15 20

0.
0

0.
4

0.
8

10 15 20

0
1

2
3

4

10 15 20

0
1

2
3

4
5

6

10 15 20

0.
0

0.
4

0.
8

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.21: 95 % Monte-Carlo predictive intervals. Plots (a), (b), and (c) are of
means, standard deviations, and dry probabilities respectively. X-axis is spatial
aggregation of l × l km2, l = 1, 2, 3, 4, 6. Plots (d), (e), and (f) are of means,
standard deviations, and dry probabilities against time 6, 12, 18, and 24 minutes
for 1× 1 km2 pixels. Plots (g), (h), and (i) are of means, standard deviations, and
dry probabilities against time 6, 12, 18, and 24 minutes for 2× 2 km2 pixels. The
rainfall event is on 24th September 2016 from 12:54 to 16:48 hours in Melbourne.
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Figure 3.22: 95 % Monte-Carlo predictive intervals. Plots (a), (b), and (c) are
ρ(−1,−1, 0)), ρ(0,−1, 0)), and ρ(−1, 0, 0)). X-axis is spatial aggregation l× l km2

pixel, l = 1, 2, 3, 4, 6. Plots (d), (e), and (f) are ρ(−1,−1, 0), ρ(0,−1, 0)), and
ρ(−1, 0, 0). X-axis is temporal aggregation at 6, 12, 18, and 24 minutes for 1× 1
km2 pixels. Plots (g), (h), and (i) are ρ(−1,−1, 0), ρ(0,−1, 0)), and ρ(−1, 0, 0) for
2×2 km2 pixels. The rainfall event is on 24th September 2016 from 12:54 to 16:48
hours in Melbourne.
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Figure 3.23: 95 % Monte-Carlo predictive intervals. Plots (a), (b), and (c) are
ρ(1 + vx, 1 + vy, 1)), ρ(0 + vx, 1 + vy, 1)), and ρ(1 + vx, 0 + vy, 1)). X-axis is
spatial aggregation l × l km2 pixel, l = 1, 2, 3, 4, 6. Plots (d), (e), and (f) are
ρ(1 + vx, 1 + vy, 1)), ρ(0 + vx, 1 + vy, 1)), and ρ(1 + vx, 0 + vy, 1)) for 1 × 1 km2

pixels. X-axis is temporal aggregation at 6, 12, 18, and 24 minutes. Plots (g), (h),
and (i) are ρ(1 + vx, 1 + vy, 1)), ρ(0 + vx, 1 + vy, 1)), and ρ(1 + vx, 0 + vy, 1)). for
2×2 km2 pixels. The rainfall event is on 24th September 2016 from 12:54 to 16:48
hours in Melbourne.
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Figure 3.24: 95 % Monte-Carlo predictive intervals. Plots (a), (b), and (c) are
dry/wet area ratio, mean wet area, and stand deviation of wet area over time.
X-axis is spatial aggregation l× l km2 pixel, l = 1, 2, 3, 4, 6. Plots (d), (e), and (f)
are dry/wet area ratio, mean wet area, and stand deviation of wet area over time.
X-axis is temporal aggregation at 6, 12, 18, and 24 minutes for 1× 1 km2 pixels.
Plots (g), (h), and (i) are dry/wet area ratio, mean wet area, and stand deviation
of wet area over time for 2×2 km2 pixels. The rainfall event is on 24th September
2016 from 12:54 to 16:48 hours in Melbourne.

3.10.3 Simulation

Figures 3.25, 3.26, 3.27, and 3.28 are contour plots of a simulation. In ob-
served data contour plots Figures 3.9, 3.10, 3.11, and 3.12, we can see high
intensity in the centre of rainfall area and it gradually reduces to the edge.
This is not seen in the simulation, so this issue is addressed in our new model
(ECST model) by defining a intensity spread function in space.
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Figure 3.25: Contour plots of simulated data from the C-I-N model using fitted
posterior points to the rainfall event. Zero rainfall is white. The time step is
6-minutes.

Figure 3.26: Contour plots of simulated data from the C-I-N model using fitted
posterior points to the rainfall event. Zero rainfall is white. The time step is
6-minutes.
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Figure 3.27: Contour plots of simulated data from the C-I-N model using fitted
posterior points to the rainfall event. Zero rainfall is white.

Figure 3.28: Contour plots of simulated data from the C-I-N model using fitted
posterior points to the rainfall event. Zero rainfall is white.

96



3.11 Fitting the ECST Model

3.11.1 Random Eccentricity

We allow eccentricity of cell to be random in the ECST model. We assume
that eccentricity of storm and mean eccentricity of cells are the same. We
estimate the mean eccentricity of cells using the spatial autocorrelation func-
tion, and then use as it a fixed value in ABC fitting like the C-I-N model
fitting. The mean eccentricity is fixed, however each rain cell has distinct ec-
centricity. We assume cell eccentricity follows Truncated Normal distribution
from zero to one with mean µe and variance σ2

e .
The variance is estimated using time series of snap shot of radar data.

For instance, if we have 4 hours for every 6-minute time steps, then we have
spatial data for 40 time points. We then have 40 estimated values for 40 time
points using the spatial autocorrelation function. We finally take variance of
these estimations. We experience that there is very small variance than what
we see in the observed data. This could be we use same cells over time for
whole region. Apparently what we see in different part of the study region
that cells have distinct shape in terms of eccentricity. We divide the study
region into four equal parts, then estimate eccentricity for each part at one
time point. Finally we have 4 × 40 estimation of µe, the variance of these
estimation is taken as the variance of the eccentricity. One could divide the
study reason into 9 parts and repeat the same process, which depends up on
how big region is.

We evaluate Θ = 39o, µe = 0.86 , and σe = 0.2. Similarly, we estimate the
velocity v = (0.10, 29.9)km per hour as discussed in § 3.9.1. Once again we
keep these parameters as fixed as the same way like the C-I-N model fitting.

3.11.2 Applying ABC-MCMC to the ECST model

Prior Distributions and Reparameterisation

Similarly the C-I-N model, we reparameterise the parameters of the ECST
model and choose following new parameters: λ× γ−1, λ× γ, β × η−1, β × η,
µx × µA and µx × µ−1

A .
Instead of estimating both α1 and α2, we estimate α2 only, because α1 is
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obtained given µA, α2 , and µe by

α1 =
1

2

(
− 1 +

√
1 +

4µAα2
2

π
√

1− µ2
e

)
We assume that storms are elliptical in space. The cell centres are dis-

placed from storms centres using independently drawn distances from bivari-
ate normal distribution with mean zero and covariance matrix

Σ =

(
σ2
x ρ σxσy

ρ σxσy σ2
y

)
.

We consider that all storm have same ρ, but they have different scale
of the major-semi axis lengths. Let’s assume σ is standard deviation cells
displacement along with the major semi-axis of storm. So the covariance
matrix can be written as

Σ = σ2

(
σ2
x

σ2 ρ σxσy
σ2

ρ σxσy
σ2

σ2
y

σ2

)
.

Assume σ2 is random. Results distinct storm has distinct size, which can
be defined using some distribution on σ2. We therefore assume the precision
1
σ2 for semi-major axis of storm follows gamma distribution with shape and
scale parameters.

As the C-I-N model, we use mean (ξm) and coefficient of variance (ξcv)
instead of shape and scale parameters for gamma distribution. If 1

σ2 ∼
gamma(ξ1, ξ2), then ξm = ξ1ξ2 and ξcv = 1√

ξ1
. Then our eight-th and nine-

th parameters are ξm and ξcv. These 9 parameters are chosen after log-
transformation, because log-transformation maps parameter domain R+ to
whole line R. Beside these parameters, we have five additional parameters
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µe, σe, Θ, vx, and vy. Thus our new 14 parameters are

φ(1) = log(λγ−1)

φ(2) = log(λγ)

φ(3) = log(βη−1)

φ(4) = log(βη)

φ(5) = log(µxµA)

φ(6) = log(µxµ
−1
A )

φ(7) = log(α2)

φ(8) = log(ξm)

φ(9) = log(ξcv)

φ(10) = µe

φ(11) = Θ

φ(12) = σe

φ(13) = vx

φ(14) = vy

Initially normal priors were used for all the φ(i); i = 1, 2, ..., 9; that is
π(φ(i)) ∼ N(0, σ2I) for σ2 large. However, we experienced that this pro-
duced some extreme posterior points for original parameters see Figure 2
in Appendix . To avoid these extreme values we choose the following trun-
cations, for φ(7) truncated normal (−∞, log(3)], for φ(8) truncated normal
(−∞, log(6)], and for φ(9) truncated normal (−∞, log(10)] with mean zero
and variance as before.

Proposal Distribution and Summary Measure

We estimate 5 parameters e, Θ, vx, vy, and σe from given observed data set
using the empirical spatial autocorrelation function. We then supply these
to the ABC-MCMC step. We estimate nine posteriors for φ(i), i = 1, ..., 9.

As for any MCMC procedure, the proposal chain needs to be chosen so
that it mixes well and explores the whole parameter space. We use a random
walk with N(0, σ2I) increments.

For the distance measure d, we choose weighted Euclidean distance:
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d(S(D∗), S(D)) =
[∑

i

wi (S∗(i)− S(i))2
] 1

2

where S∗(i) and S(i) are respectively the i-th component of S(D∗) and S(D).
The weights wi are inversely proportional to variance of i-th summary statis-
tics using a sample generated from f(.|φ̂), where φ̂ is a preliminary estimate
of φ [37]. This gives equal importance to each components of S.

Posterior Distribution

Trace plots are used to verify that the chains are mixing nicely in Figure 3.29.
Acceptance rate for proposal is 5%. Figures 3.30 and 3.32 give the estimated
posterior densities for φ(i) and the original (untransformed) parameters. The
diagonals are marginal densities and the off-diagonals pairwise densities see
in Figure 3.31.
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Figure 3.29: Chains for φ(i),i = 1, 2, . . . , 9 (from top left to right). The rainfall
event is rainfall on 24th September 2016 from12:54 to 16:48 hours in Melbourne.
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Figure 3.30: Posteriors for φ(i),i = 1, 2, . . . , 9 (from top left to right). Red dotted
curves are priors. The rainfall event is rainfall on 24th September 2016 from 12:54
to 16:48 hours in Melbourne.
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Figure 3.32: Posteriors for parameters λ , γ−1, β, η−1, µx, µA, α2, ξm, ξcv. The
rainfall event is rainfall on 24th September 2016 from 12:54 to 16:48 hours in
Melbourne.

Table 3.3 shows posterior means, medians and 95 % credible intervals for
original parameters λ , γ−1, β, η−1, µx, µA, α2, ξm, ξcv.

Parameters Mean Median 95 % Credible Interval
λ 0.0008 0.0005 (0.0002, 0.0036)
γ−1 12.734 12.391 (1.0938, 38.497)
β 0.6166 0.5722 (0.1171, 1.8787)
η−1 10.788 7.6700 (4.0369, 35.960)
µx 0.2850 0.2731 (0.1508, 0.4848)
µA 33.002 31.541 (4.6533, 92.161)
α2 0.0840 0.0771 (0.0441, 0.1617)
ξm 0.8022 0.7224 (0.3761, 1.6064)
ξcv 1.2535 1.2105 (0.5601, 2.1132)

Table 3.3: Estimated average values for parameters of the ECST Model and their
credible intervals, fitted to the rainfall event on 24th September 2016 from 12:54
to 16:48 hours in Melbourne.

3.11.3 Diagnostics

To demonstrate model fit, we present Monte-Carlo 95% predictive interval
for temporal and spatial aggregation summary statistics in this section.

Figures 3.33, 3.34, 3.35, and 3.36 show 95% Monte-Carlo predictive inter-
vals for summaries with different spatial and temporal aggregations. These
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Figures show improvement than those in Figures 3.21, 3.22, 3.23, and 3.24
in §3.10.2.

Figures 3.33 shows 95% Monte-Carlo predictive intervals for mean, stan-
dard deviation, and dry probability in the plots (a), (b), and (c) respectively
for 1× 1 km2 to 6× 6 km2 pixels. Mean, standard deviation, and dry proba-
bility are in (d), (e), and (f) respectively for temporal aggregation, 6-minute,
12 minute and 18-minute and 24-minute of 1× 1km2 pixels. Similarly mean,
standard deviation, and dry probability are in the last row (g), (h), and (i)
respectively for temporal aggregation, 6-minute, 12 minute and 18-minute
and 24-minute of 2× 2km2 pixels.

Figure 3.34, shows 95% Monte-Carlo predictive intervals for spatial au-
tocorrelation at lags (-1,-1,0), (0,-1,0), and (-1,0,0) in (a), (b), and (c) re-
spectively for spatial aggregation 1 × 1 km2 to 6 × 6 km2 pixels. Spatial
autocorrelation at lags (-1,-1,0), (0,-1,0), and (-1,0,0) are in (d), (e), and (f)
respectively for temporal aggregation, 6-minute, 12 minute and 18-minute
and 24-minute of 1× 1 km2 pixels. Similarly spatial autocorrelation at lags
(-1,-1,0), (0,-1,0), and (-1,0,0) are in (g), (h), and (i) respectively for temporal
aggregation, 6-minute, 12 minute and 18-minute and 24-minute of 2× 2km2

pixels.
Figure 3.35 shows 95% Monte-Carlo predictive intervals for spatial auto-

correlation at lags (1 + vx, 1 + vy, 1), ((0 + vx, 1 + vy, 1), and (1 + vx, 0 + vy, 1)
in the (a), (b), and (c) respectively for spatial aggregations l × l pixels.
l = 1, 2, ..., 6. Spatial autocorrelation at lags (1 + vx, 1 + vy, 1), ((0 + vx, 1 +
vy, 1), and (1 + vx, 0 + vy, 1) are in (d), (e), and (f) respectively for tem-
poral aggregation, 6-minute, 12 minute and 18-minute and 24-minute of
1 × 1 km2 pixels. Similarly summary statistics- spatial autocorrelation at
lags (1 + vx, 1 + vy, 1), ((0 + vx, 1 + vy, 1), and (1 + vx, 0 + vy, 1) are in the
last row (g), (h), and (i) respectively for temporal aggregation, 6-minute, 12
minute and 18-minute and 24-minute of 2× 2 km2 pixels.

Figure 3.36 shows 95% Monte-Carlo predictive intervals for dry/wet area
ratio, mean wet area, and stand deviation of wet area over time in plots
(a), (b), and (c). X-axis is spatial aggregation l× l km2 pixel, l = 1, 2, 3, 4, 6.
Plots (d), (e), and (f) are dry/wet area ratio, mean wet area, and stand
deviation of wet area over time for 1 × 1 km2 pixels. Plots (g), (h), and (i)
are dry/wet area ratio, mean wet area, and stand deviation of wet area over
time for 2× 2 km2 pixels.

104



1 2 3 4 5 6

0
2

4
6

8
10

1 2 3 4 5 6

0
5

10
15

1 2 3 4 5 6

0.
0

0.
4

0.
8

10 15 20

0.
0

0.
4

0.
8

1.
2

10 15 20

0.
0

0.
5

1.
0

1.
5

10 15 20

0.
0

0.
4

0.
8

10 15 20

0
1

2
3

4

10 15 20

0
1

2
3

4
5

6

10 15 20

0.
0

0.
4

0.
8

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.33: 95 % Monte-Carlo predictive intervals. Plots (a), (b), and (c) are of
means, standard deviations, and dry probabilities respectively. X-axis is spatial
aggregation of l × l km2, l = 1, 2, 3, 4, 6. Plots (d), (e), and (f) are of means,
standard deviations, and dry probabilities against time 6, 12, 18, and 24 minutes
for 1× 1 km2 pixel. Plots (g), (h), and (i) are of means, standard deviations, and
dry probabilities against time 6, 12, 18, and 24 minutes for 2× 2 km2 pixel. The
rainfall event is on 24th September 2016 from 12:54 to 16:48 hours in Melbourne.
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Figure 3.34: 95 % Monte-Carlo predictive intervals. Plots (a), (b), and (c) are
ρ(−1,−1, 0)), ρ(0,−1, 0)), and ρ(−1, 0, 0)). X-axis is spatial aggregation l × l
km2 pixel, l = 1, 2, 3, 4, 6. Plots (d), (e), and (f) are ρ(−1,−1, 0), ρ(0,−1, 0)),
and ρ(−1, 0, 0). X-axis is temporal aggregation at 6, 12, 18, and 24 minutes
for 1 × 1 km2 pixel. Plots (g), (h), and (i) are ρ(−1,−1, 0), ρ(0,−1, 0)), and
ρ(−1, 0, 0). X-axis is temporal aggregation at 6, 12, 18, and 24 minutes for 2 ×
2 km2 pixels.. The rainfall event is on 24th September 2016 from 12:54 to 16:48
hours in Melbourne.
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Figure 3.35: 95 % Monte-Carlo predictive intervals. Plots (a), (b), and (c) are
ρ(1 + vx, 1 + vy, 1)), ρ(0 + vx, 1 + vy, 1)), and ρ(1 + vx, 0 + vy, 1)). X-axis is
spatial aggregation l × l km2 pixel, l = 1, 2, 3, 4, 6. Plots (d), (e), and (f) are
ρ(1 +vx, 1 +vy, 1)), ρ(0 +vx, 1 +vy, 1)), and ρ(1 +vx, 0 +vy, 1)) 1×1 km2 pixels. .
X-axis is temporal aggregation at 6, 12, 18, and 24 minutes. Plots (g), (h), and (i)
are ρ(1 + vx, 1 + vy, 1)), ρ(0 + vx, 1 + vy, 1)), and ρ(1 + vx, 0 + vy, 1)) for 2× 2 km2

pixels. The rainfall event is on 24th September 2016 from 12:54 to 16:48 hours in
Melbourne.
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Figure 3.36: 95 % Monte-Carlo predictive intervals. Plots (a), (b), and (c) are
dry/wet area ratio, mean wet area, and stand deviation of wet area over time.
X-axis is spatial aggregation l× l km2 pixel, l = 1, 2, 3, 4, 6. Plots (d), (e), and (f)
are dry/wet area ratio, mean wet area, and stand deviation of wet area over time
for 1×1 km2 pixels. X-axis is temporal aggregation at 6, 12, 18, and 24 minutes. .
Plots (g), (h), and (i) are dry/wet area ratio, mean wet area, and stand deviation
of wet area over time. X-axis is temporal aggregation at 6, 12, 18, and 24 minutes
for 2× 2 km2 pixels. The rainfall event is on 24th September 2016 from 12:54 to
16:48 hours in Melbourne.
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3.11.4 Simulation

We can see contour plots of a simulation from the ECST model in Figures
3.37 3.38, 3.39 & 3.40. These contour plots show better match than contour
plots of data generated by the C-I-N model in Figures 3.25, 3.26, 3.27, and
3.28, particularly, higher intensities at centre of the cells.

The ECST mode is generating the rainfall similar to the observed rainfall
as having high intensity at centre and rainfall decreases continuously with
distance from the centre to the edge.

Figure 3.37: Contour plots of simulated data from the ECST model using fitted
posterior points to the rainfall event. Zero rainfall is white. The time step is
6-minutes.
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Figure 3.38: Contour plots of simulated data from ECST model using fitted
posterior points to the rainfall event. Zero rainfall is white. The time step is
6-minutes.

Figure 3.39: Contour plots of simulated data from ECST model using fitted
posterior points to the rainfall event. Zero rainfall is white.
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Figure 3.40: Contour plots of simulated data from ECST model using fitted
posterior points to the rainfall event.Zero rainfall is white.

3.11.5 Comparison of the C-I-N Model and the ECST

Model

In Figure 3.41, plot (b) is a contour plot of simulated data from the C-I-
N model and plot (c) is a contour plot of simulated data from the ECST
model. Plot (c) seems a better match to observed data in plot (a). As we see
in observed data, typically the centre of rain cells has high intensity, which
gradually decreases with distance from the centre. The ECST model is doing
better job of capturing this behaviour.
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(a) (b)

(c)

Figure 3.41: Contour plots for a single time-point fitted using ABC. a) Calibrated
rainfall radar data, courtesy of the Australian Bureau of Meteorology b) simulated
from the C-I-N model fitted using ABC, and c) simulated from the ECST model.

3.11.6 Mean Squared Errors

Mean errors and mean squared errors for simulated data summary statistics
from both C-I-N and ECST models are shown in Table 3.4. We can see that
the ECST model has less mean error and mean squared error for most of
summary statistics. The smaller mean squared error means the ECST model
is doing better fitting than the C-I-N model.
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Mean Error Mean Squared Error
Summaries Observed C-I-N ECST C-I-N ECST
Mean (mm per pixel) 0.065 0.033 0.008 0.006 0.001
Standard deviation 0.137 0.042 0.034 0.009 0.004
Correlation lags:
(−1,−1, 0) 0.947 0.012 0.015 0.000 0.000
(−1, 0, 0) 0.952 0.013 0.011 0.000 0.000
(−1, 1, 0) 0.898 0.021 0.014 0.001 0.001
(0,−1, 0) 0.963 -0.003 -0.006 0.000 0.000
(0, 1, 0) 0.963 -0.003 -0.006 0.000 0.000
(1,−1, 0) 0.898 0.021 0.014 0.001 0.001
(1, 0, 0) 0.952 0.013 0.011 0.000 0.000
(1, 1, 0) 0.947 0.012 0.015 0.000 0.000
(−1 + vx,−1 + vy, 1) 0.846 -0.046 -0.013 0.005 0.002
(−1 + vx, 0 + vy, 1) 0.842 -0.043 -0.013 0.005 0.002
(−1 + vx, 1 + vy, 1) 0.806 -0.039 -0.017 0.004 0.002
(0 + vx,−1 + vy, 1) 0.854 -0.054 -0.025 0.006 0.003
(0 + vx, 0 + vy, 1) 0.873 -0.048 -0.015 0.005 0.002
(0 + vx, 1 + vx, 1) 0.855 -0.057 -0.028 0.006 0.002
(1 + vx,−1 + vy, 1) 0.821 -0.055 -0.031 0.006 0.003
(1 + vx, 0 + vy, 1) 0.854 -0.058 -0.028 0.006 0.003
(1 + vx, 1 + vx, 1) 0.856 -0.062 -0.029 0.007 0.002

P(Y (l) = 0) 0.599 -0.012 0.079 0.017 0.011
Dry wet ratio 0.671 0.168 -0.176 0.048 0.061
Mean wet area (km2) 13007 387 -2548 17371693 11925866
SD of wet area 3864 -618 -1396 2292835 2980240

Table 3.4: Observed summary statistics, mean error, and mean squared error
fitted to the rainfall event on 24th September 2016 from 12:54 to 16:48 hours in
Melbourne.

3.11.7 Posterior Predictive Probability

We fitted two models to the same rainfall event as discussed §3.10 and §3.11.
We then checked model fits in §3.10.2 and §3.11.3 using 95 % predictive in-
tervals. In this section, we want to compare performance of these models.
Particularly we are interested in simulation processes, generated under which
model, look similar to the observed process. Gelman et al., 2013 [19] sug-
gest posterior predictive p-values to evaluate the model fit by comparing the
observed data to the posterior predictive distribution using simulations. We
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follow this approach here.
The posterior predictive p-value is defined as the probability that the

generated data could be similar to the observed data, as measured from
some distance function d as follows:

p = P(d(S(D∗), S(D)) < c | D∗), for some given constant c > 0.

We sample from posteriors using weights with replacement. The weights are
calculated using the Epanechnikov kernel function as descussed in §3.10.2.
We simulate the data from sampled posterior points. We then calculate sum-
mary statistics. Finally, we obtain distance between simulated data summary
statistics and corresponding observed summary statistics.

Suppose S(D∗) and S(D) are the simulated data and observed data sum-
marry statistics respectively. The distance for individual summary is defined
by

dj(S(D∗), S(D) = ‖Sj(D∗)− Sj(D))‖,where Sj denote j-th summary.

We need to rescale the summary distance because some summary distance
is very small as correlations and some summary distances are very high like
mean wet area over time. The following weight is used as normalizing con-
stants :

wj =
1√

var(Sj(D∗)− Sj(D))

The total distance of all summaries is estimated by

d(S(D∗), S(D) =
∑

wj‖Sj(D∗)− Sj(D)‖,where j = 1, 2, 3, ..., k.

We estimate posterior predictive p-value using following steps. We first
sample φi from posteriors. We obtain the simulation data using φi from the
model. The distance between the observed and simulation is estimated using
distance measure function. We generate N simulations from different poste-
rior samples. Finally we estimate the predictive p-value, which is equivalent
to 1

N
#{i : d(S(D∗), S(D)) < c} for some given constant c > 0 .

Figures 3.42 and 3.43 show that posterior predictive probability for sum-
mary statistics. Predictive probabilities for statistics from the ECST model
are higher than that from the C-I-N model. Particularly predictive proba-
bilities for mean, standard deviation (see in Figure 3.42, (a) and (b)), and
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9 velocity adjusted spatial autocorrelations (ρ(lx + vxlt, ly + vylt, lt), where
lx = {−1, 0, 1} , ly = {−1, 0, 1} and lt = {1}) see in Figure 3.42 (k) & (l),
and Figure 3.43 (a) to (g), are higher for the ECST model than that of the
C-I-N model.

Predictive probabilities for dry probability for an arbitrary pixel, dry/wet
ratio, and mean wet area over time (in Figure 3.43 (h), (i), and (j)) have no
preferable between two models. This is reasonable because both model have
the same structure for these properties.

Predictive probabilities for spatial correlations at lag -1 and 1 among x-
axis and y-axis, especially ρ(−1,−1, 0), ρ(0,−1, 0), ρ(0, 1, 0), and ρ(1, 1, 0) are
better for the C-I-N model see in Figure 3.42 (c), (f), (g), and (j), particulrly,
velocity unadjusted spatial autocorrelations statistics. In the C-I-N model,
the intensity at centre of ellipse and other area are the same, but the ECST
model intensity at one grid to very next grid is different. So correlation
velocity unadjusted at lag 1 among x-axis and y-axis for the ECST model
may have less than that for the C-I-N model.

Predictive probability of the total distance for summary statistics from
the ECST mode is better than that from the C-I-N model in Figure 3.43
(l). Similarly, for most of individual summary, except velocity unadjusted
autocorrelations, the ECST model is doing better than the C-I-N model.
This concludes that the ECST model has higher probability to produce the
data closer to observe data in terms of summary statistics.

Note that Epanechnikov density is chosen to calculate weights using the
total distance. The weights provide that the posterior points which produce
simulated data closed to observe data, have higher probability than whose
simulation has large difference between simulated and observed data sum-
mary statistics. We simulate data using the samples 500 posterior points,
then estimate summary statistics. So we have 500 sample of each summary,
then estimate predictive probability given distance (c). We plot predictive
probability against c in Figures 3.42 and 3.43.
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Figure 3.42: Predictive probability for the C-I-N model (blue line) and
the ECST model (red line) fitting the rainfall event at 24th Septem-
ber 2016,12:54 to 16:48 in Melbourne. Plots (a) and (b) are for mean
and standard deviation summaries. Plots (c) to (j) are spatial correla-
tions ρ(−1,−1, 0), ρ(−1, 0, 0), ρ(1, 1, 0), ρ(0,−1, 0), ρ(0, 1, 0), ρ(1,−1, 0), ρ(1, 0, 0),
and ρ(1, 1, 0). And plots (k) and (l) are of ρ(−1 + vx,−1 + vy, 1), and ρ(−1 +
vx, 0 + vy, 1).
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Figure 3.43: Predictive probability for the C-I-N model (blue line) and the ECST
model (red line). Plots (a) to (g) are of spatial autocorrelations ρ(−1 + vx, 1 +
vy, 1), ρ(0 + vx,−1 + vy, 1), ρ(0 + vx, 0 + vy, 1), ρ(0 + vx, 1 + vy, 1), ρ(1,+vx,−1 +
vy, 1), ρ(1,+vx, 0 + vy, 1), and ρ(1,+vx, 1 + vy, 1). Plots (h) and (i) are of dry
probability of an arbitrary pixel and dry and wet area ratio. Plots (j) and (k) are
of mean wet area over time and standard deviation of wet area over time. And plot
(l) is of total distance form all summaries. The rainfall event is on 24th September
2016 from 12:54 to 16:48 hours in Melbourne.
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3.12 Fitting the LNCST Model

We take the same approach for fitting the LNCST model to observed data
as the ECST model. We first estimate orientation, eccentricity and velocity.
We then use these as fixed values in the ABC-MCMC process. In previous
section, we already estimated the velocity v = (0.10, 29.9)km per hour, µe =
0.86, Θ = 39o, and σe = 0.2.

3.12.1 Applying ABC-MCMC to the LNCST Model

3.12.2 Prior Distribution and Reparameterization

The LNCST model has the same structure of storm arrival process and cell
arrival and duration as the ECST model. However the cell intensity at cell
centre and semi-major axis follow bivariate log-normal distributions i.e.

(
X
Mc

)
∼ logN

 µx

µMc

 ,

(
σ2
X ρxmcσXσMc

ρxmcσXσMc σ2
Mc

)
We then have five new parameters: mean intensity at centre µx & variance

σ2
X , mean semi-major axis µmc & variance σ2

mc , and correlation between them
ρxmc .

The correlation ρxmc has domain (-1, 1). We take transformation log
(
ρxmc+1
1−ρxmc

)
,

which maps domain (-1, 1) to R.
The LNCST mode has the following 16 parameters:
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ψ(1) = log(λγ−1)

ψ(2) = log(λγ)

ψ(3) = log(βη−1)

ψ(4) = log(βη)

ψ(5) = log(µx)

ψ(6) = log(1/σ2
X)

ψ(7) = log(µmc)

ψ(8) = log(1/σ2
mc)

ψ(9) = log
(ρxmc + 1

1− ρxmc

)
ψ(10) = log(ξm)

ψ(11) = log(ξcv)

ψ(12) = µe

ψ(13) = Θ

ψ(14) = σe

ψ(15) = vx

ψ(16) = vy

Like before, normal priors are used for all the ψ(i); i = 1, 2, ..., 9. µe, Θ,
σe vx, and vy are estimated using the spatial autocorrelation function. In
the same way for C-I-N and ECST models, we chose the following priors for
ψ(10) truncated normal from (−∞, log(6)] and for ψ(11) truncated normal
from (−∞, log(10)].

3.12.3 Proposal Distribution and Distance Measure

We estimate 5 parameters µe, σe, Θ, vx, and vy from given observed data set
using the spatial autocorrelation function. We then estimate eleven posterior
distributions for first 11 parameters using ABC.

For the proposal chain we just use a random walk with N(0, 0.22I) incre-
ments.

For distance measure d, we choose weighted Euclidean distance:
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d(S(D∗), S(D)) =
[∑

i

wi (S∗(i)− S(i))2
] 1

2

where S∗(i) and S(i) are respectively the i-th component of S(D∗) and S(D).
The weights wi are inversely proportional to variance of i-th summary statis-
tics.

3.12.4 Posterior Distribution

We use the SMM to choose the initial parameter selection ψ0. We can clearly
see in the Figure 3.44 that there is a good mixing. Figure 3.45 displays
estimated posterior densities of all 11 parameters, which looks good as we
can see nice peak on density curves. However the density at Figure 3.45 and
histogram at Figure 3.46 show bi-modality for the parameter ψ(8). It is not
clear at this point, why this parameter become harder to estimate. Further
research is needed. Acceptance rate is around 11% with a threshold ε = 8.

Figure 3.44: Chains for ψ(i),i = 1, 2, . . . , 11 (from top left to right) of the
rainfall event on 24th September 2016 from 12:54 to 16:48 hours in Mel-
bourne.
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Figure 3.45: Posteriors for ψ(i),i = 1, 2, . . . , 11 (from top left to right) of
the rainfall event on 24th September 2016 from 12:54 to 16:48 hours in Mel-
bourne. Green curves are priors.

In Figure 3.46, the diagonal plots are histograms for parameters ψ(i), i =
1, 2, 3, ..., 11. The lower panels are pair distribution of horizontal and verti-
cal parameters respectively. The colour label from light green to dark blue
indicates the dense population of posterior points of pair distributions. As
we expect there is high density of the points in particular region.
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1, 2, . . . , 11 of the rainfall event on 24th September 2016 from 12:54 to 16:48
hours in Melbourne.
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Figure 3.47 show that posteriors of original parameters, which are ob-
tained back from exponentials:

λ = exp
(ψ(1) + ψ(2)

2

)
γ−1 = exp

(ψ(1)− ψ(2)

2

)
β = exp

(ψ(3) + ψ(4)

2

)
η−1 = exp

(ψ(3)− ψ(4)

2

)
µx = exp(ψ(5))

σ2
X = 1/exp(ψ(6))

µmc = exp(ψ(7))

σ2
mc = 1/exp(ψ(8))

ρxmc =
exp(ψ(9))− 1

exp(ψ(9)) + 1

ξm = exp(ψ(10))

ξcv = exp(ψ(11))

Table 3.5 gives posterior means, medians and 95 % credible intervals.
We can see some credible intervals are wider than the C-I-N model and the
ECST model, particularly mean storm duration γ−1, mean cell duration η−1.
Because of this variability, this model may capture extremes for the rainfall
events. This will be discussed in details in the §3.13.
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Figure 3.47: Posteriors for parameters λ , γ−1, β, η−1, µx, σ
2
X , µmc , σ

2
mc , ρxmc , ξm, ξcv

of the rainfall event on 24th September 2016 from 12:54 to 16:48 hours in Mel-
bourne.

Parameters Mean Median 95% Credible Interval
λ 0.0006 0.0006 (0.0002, 0.00150
γ−1 31.797 32.462 (4.4944, 64.524)
β 0.1887 0.1801 (0.0457, 0.4429)
η−1 13.883 11.407 (5.6338, 42.133)
µx 0.1882 0.1258 (0.0426, 0.7603)
σ2
X 0.5235 0.4519 (0.0671, 1.5503)

µmc 2.7478 2.7523 (0.7829 , 5.6306)
σ2
mc 0.8602 0.7859 (0.4335, 1.7103)

ρxmc -0.6906 -0.7564 (-0.9327, 0.0996)
ξm 1.3331 1.1647 (0.1671, 4.3280)
ξcv 1.2102 1.1901 (0.6291, 1.9917)

Table 3.5: Estimated posterior means, medians and credible intervals for param-
eters. Fitted the ECST model to the rainfall event on 24th September 2016 from
12:54 to 16:48 hours in Melbourne.
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3.12.5 Simulation

We can see contour plots of simulated rainfall from the LNCST model in
Figures 3.48 3.49, 3.50 & 3.51. The time step is every 6- minute.

Figure 3.48: Contour plots of simulated data from the LNDST model using fitted
posterior points to the rainfall event. Zero rainfall is white. The time step is
6-minutes.

Figure 3.49: Contour plots of simulated data from the LNCST model using fitted
posterior points to the rainfall event. Zero rainfall is white. The time step is
6-minutes.
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Figure 3.50: Contour plots of simulated data from the LNCST model using fitted
posterior points to the rainfall event. Zero rainfall is white. The time step is
6-minutes.

Figure 3.51: Contour plots of simulated data from the LNCST model using fitted
posterior points to the rainfall event. Zero rainfall is white.
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3.12.6 Diagnostics

To check model fit, we will presents 95% Monte-Carlo predictive intervals for
spatial and temporal aggregation summary statistics.

Figures 3.52, 3.53, 3.54 , and 3.55 show 95% Monte-Carlo predictive inter-
vals for summary statistics with different spatial and temporal aggregations.

Figure 3.52 shows the predictive intervals for mean, standard deviation,
and dry probability are in the first row (a), (b), and (c) for spatial aggregation,
1× 1 km2 to 6× 6 km2 pixels. Similarly mean, standard deviation, and dry
probability are in (d), (e), and (f) for temporal aggregation, 6-minute, 12
minute and 18-minute and 24-minute of 1 × 1km2 pixels. Mean, standard
deviation, and dry probability for temporal aggregation, 6-minute, 12 minute
and 18-minute and 24-minute of 2 × 2km2 pixels are in (g), (h), and (i)
respectively.

Figure 3.53 shows the intervals for spatial autocorrelation for different
spatial and temporal aggregations. Spatial autocorrelation at lags (-1,-1,0),
(0,-1,0), and (-1,0,0). Spatial autocorrelation lags (-1,-1,0), (0,-1,0), and (-
1,0,0) are in w (a), (b), and (c) respectively for spatial aggregation, 1×1 km2

to 6 × 6 km2 pixels. Spatial autocorrelation lags (-1,-1,0), (0,-1,0), and (-
1,0,0) are in (d), (e), and (f) respectively for temporal aggregation, 6-minute,
12 minute and 18-minute and 24-minute of 1×1km2 pixels. Similarly spatial
autocorrelation lags (-1,-1,0), (0,-1,0), and (-1,0,0) are respectively in the
last row (g), (h), and (i) respectively for temporal aggregation, 6-minute, 12
minute and 18-minute and 24-minute of 2× 2km2 pixels.

Figure 3.54 show the intervals for spatial autocorrelation time adjusted
lags (1 + vx, 1 + vy, 1), ((0 + vx, 1 + vy, 1), and (1 + vx, 0 + vy, 1) for dif-
ferent spatial and temporal aggregations. Spatial autocorrelation at lags
(1 + vx, 1 + vy, 1), ((0 + vx, 1 + vy, 1), and (1 + vx, 0 + vy, 1) are in (a), (b), and
(c) respectively for spatial aggregation, 1×1 km2 to 6×6 km2 pixels. Spatial
autocorrelation lags (1+vx, 1+vy, 1), ((0+vx, 1+vy, 1), and (1+vx, 0+vy, 1)
are in the second row (d), (e), and (f) respectively temporal aggregation,
6-minute, 12 minute and 18-minute and 24-minute of 1× 1 km2 pixels. Sim-
ilarly spatial autocorrelation lags (1 + vx, 1 + vy, 1), ((0 + vx, 1 + vy, 1), and
(1+vx, 0+vy, 1) are in the last row (g), (h), and (i) respectively for temporal
aggregation, 6-minute, 12 minute and 18-minute and 24-minute of 2× 2 km2

pixels.
Figure 3.55 shows the intervals for dry/wet area ratio, mean wet area over

time, and standard deviation of wet area over time for spatial aggregation.
Plots (a), (b), and (c) are dry/wet area ratio, mean wet area, and stand
deviation of wet area over time. Plots (d), (e), and (f) are dry/wet area
ratio, mean wet area, and stand deviation of wet area over time. Similarly
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plots (g), (h), and (i) are dry/wet area ratio, mean wet area, and stand
deviation of wet area over time at 6, 12, 18, and 24 minute for 2 × 2 km2

pixels.
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Figure 3.52: 95 % Monte-Carlo predictive intervals for summary statistics. Plots
(a), (b), and (c) are of means, standard deviations, and dry probabilities respec-
tively. X-axis is spatial aggregation of l × l km2, l = 1, 2, 3, 4, 6. Plots (d), (e),
and (f) are of means, standard deviations, and dry probabilities against time 6,
12, 18, and 24 minutes for 1× 1 km2 pixels. Plots (g), (h), and (i) are of means,
standard deviations, and dry probabilities against time 6, 12, 18, and 24 minutes
2× 2 km2 pixels. The rainfall event is rainfall on 24th September 2016 from 12:54
to 16:48 hours in Melbourne.
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Figure 3.53: 95 % Monte-Carlo predictive intervals for summary statistics. Plots
(a), (b), and (c) are ρ(−1,−1, 0)), ρ(0,−1, 0)), and ρ(−1, 0, 0)). X-axis is spatial
aggregation l× l km2 pixel, l = 1, 2, 3, 4, 6. Plots (d), (e), and (f) are ρ(−1,−1, 0),
ρ(0,−1, 0)), and ρ(−1, 0, 0). X-axis is temporal aggregation at 6, 12, 18, and 24
minutes for 1 × 1 km2 pixel. Plots (g), (h), and (i) are ρ(−1,−1, 0), ρ(0,−1, 0)),
and ρ(−1, 0, 0) 2×2 km2 pixel. X-axis is temporal aggregation at 6, 12, 18, and 24
minutes. The rainfall event is on 24th September 2016 from 12:54 to 16:48 hours
in Melbourne.
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Figure 3.54: 95 % Monte-Carlo predictive intervals. Plots (a), (b), and (c) are
ρ(1 + vx, 1 + vy, 1)), ρ(0 + vx, 1 + vy, 1)), and ρ(1 + vx, 0 + vy, 1)). X-axis is
spatial aggregation l × l km2 pixel, l = 1, 2, 3, 4, 6. . Plots (d), (e), and (f) are
ρ(1 + vx, 1 + vy, 1)), ρ(0 + vx, 1 + vy, 1)), and ρ(1 + vx, 0 + vy, 1)) 1× 1 km2 pixels.
X-axis is temporal aggregation at 6, 12, 18, and 24 minutes. Plots (g), (h), and
(i) are ρ(1 + vx, 1 + vy, 1)), ρ(0 + vx, 1 + vy, 1)), and ρ(1 + vx, 0 + vy, 1)) 2× 2 km2

pixels. The rainfall event is on 24th September 2016 from 12:54 to 16:48 hours in
Melbourne.
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Figure 3.55: 95 % Monte-Carlo predictive intervals. Plots (a), (b), and (c) are
dry/wet area ratio, mean wet area, and stand deviation of wet area over time.
X-axis is spatial aggregation l× l km2 pixel, l = 1, 2, 3, 4, 6. Plots (d), (e), and (f)
are dry/wet area ratio, mean wet area, and stand deviation of wet area over time
for 1× 1 km2 pixels. X-axis is temporal aggregation at 6, 12, 18, and 24 minutes.
Plots (g), (h), and (i) are dry/wet area ratio, mean wet area, and stand deviation
of wet area over time for 2×2 km2 pixels. The rainfall event is on 24th September
2016 from 12:54 to 16:48 hours in Melbourne.

The 95% Monte-Carlo predictive intervals for mean, standard deviation
and a pixel dry probability of different spatial and temporal aggregations
contains corresponding observed statistics in Figure 3.52 look better than
that of generated from the C-I-N and ECST models as the intervals are
narrow and observed statistics lie central of the intervals. These statistics
are well reproduced by the NLCST model than that of other two models.
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Figures 3.53 and 3.54 showed that the observed correlations ρ
(
lx + lt ×

vx, ly+lt×vy, lt
)

at t = 0, 1 are within the respective intervals. However they
are close to the upper boundary, which indicates that model underestimates
these statistics, where as the C-I-N model overestimates these as the observed
statistics are close to lower boundary in Figures 3.22 and 3.23. The ECST
model estimates most of these statistics overall better than that of other
models having most of observed statistics are almost central of the intervals
see Figures 3.34 and 3.35.

Other three statistics- wet/dry area ratio, mean of wet area and standard
deviation of wet area are also well estimated by the ECST and LNCST models
than the C-I-N model, because the 95% Monte-Carlo predictive intervals are
wide in the Figure 3.24 and that of in Figures 3.36 and 3.55.

In conclusion, this model is not doing better than the ECST model for
overall rainfall distribution, however it is doing a better job at fitting extreme
rainfall distribution for the rainfall event, which will discuss in next section.

3.13 Extreme rainfall event

We are interested in which model is best fitting the tail distribution of the
rainfall event. We follow Coles, 2001 [7] for extreme events analysis for
the rainfall process. Let X1, X2, · · · , Xn be a sequence of independent and
identically distributed random variables, having the marginal distribution F .

The threshold excesses Y1, Y2, · · · , Yk are defined as Yj = Xj − u for
j = 1, 2, · · · , k, where u is threshold. If Yj follows a generalized Pareto dis-
tribution with parameter ν and ς, then the mean of excesses of a threshold
is given by

E(Y − u0|Y > u0) = ν
1−ς , provided ς < 1.

We suppose that the generalized Pareto distribution is valid for excesses of
the threshold u0 , then for all u > u0,

E(Y − u|Y > u) =
νu0 + ςu

1− ς
.

The plot of mean of excesses of threshold u against u gives a way of estimating
u0 by choosing u0 so that E(Y − u|Y > u) is linear for u > u0. Mean of
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excesses is estimated by 1
k

∑k
j=1(yj−u) , where u < max(Y ) and y1, y2, · · · , yk

are observations those excessed u.
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Figure 3.56: Mean residual life plot for the rainfall event on 24th September 2016
from 12:54 to 16:48 hours in Melbourne.

The mean residual life plot Figure 3.56 shows that after u = 1.4, there is
approximate linearity. This indicates the choice u0 = 1.4 is reasonable.

We are looking at whether the distribution of threshold exceeded values
of observed data is the same as that of simulated data. Figures 3.57, 3.58,
and 3.59 show quantile-quantile plots for distribution of observed data and
simulated data exceeded threshold. The top Figure 3.57 (a) is q-q plot ob-
served excesses per pixel (1×1km2) against that of simulation from the C-I-N
model. Similarly plots (b), and (c), but simulations from the ECST model
and the LNCST model respectively. All three plots (a), (b), and (c) have
fair fitting the tail distribution, however the plot (c) matches the best. The
threshold is u0 = 1.4.

Similarly Figures 3.58, and 3.59 are the same, but spatial aggregation of
pixel 2 × 2km2 and 3 × 3km2. Thresholds are 6.5 mm per 2 ×2 km2 pixel
and 11 mm per 3 ×3 km2 pixel respectively. These plots also refer the heavy
tail rainfall distribution of an event and simulation from the LNCST model
is the best of the three.

In conclusion, The LNST model fits the tail distribution better than the
other models.
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(a)

(b)

(c)

Figure 3.57: Quantile plot for log values exceeded the threshold 1.4 mm per 1
×1 km2 pixel . Top plot for simulation data from the C-I-N model against observed
data, middle plot for simulated data from the ECST model against observed data
and bottom plot for simulated data from the LNCST mode against observed data.
The red straight line refers that two sets of the data have the same distribution.
Observed data is from the rainfall event on 24th September 2016 from 12:54 to
16:48 hours in Melbourne.
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Figure 3.58: Quantile plot for log values exceeded the threshold 6.5 mm per 2
×2 km2 pixel . Top plot for simulation data from the C-I-N model against observed
data, middle plot for simulated data from the ECST model against observed data
and bottom plot for simulated data from the LNC ST mode against observed data.
The red straight line refers that two sets of the data have the same distribution.
Observed data is from the rainfall event on 24th September 2016 from 12:54 to
16:48 hours in Melbourne.
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Figure 3.59: Quantile plot for lag values exceeded the threshold 11 mm per 3
×3 km2 pixel . Top plot for simulation data from the C-I-N model against observed
data, middle plot for simulated data from the ECST model against observed data
and bottom plot for simulated data from the LNCST mode against observed data.
The red straight line refers that two sets of the data have the same distribution.
Observed data is from the rainfall event on 24th September 2016 from 12:54 to
16:48 hours in Melbourne.
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3.14 Discussion

We demonstrated that ABC can be used to fit a Bayesian version the C-I-N
model.

We developed a new ECST model, which has a random eccentricity of the
elliptical cell and the cell intensity at a point in space is obtained according to
a spread function. We allowed the storm orientation and eccentricity both to
be random, but the simulated rain-band appeared to be distorted. We want
the rainband to be preserved as real data shows. From simulation experience,
we keep storm eccentricity and orientation the same for all storms in an event.
Similarly orientation is the same for all cells. As we see the observed data
typically the centre of rain cells has high intensity, which gradually decreases
with distance from the centre. The ECST model is doing better job at
capturing this behavior.

Using the posterior distribution of S(D∗) we showed that the modified
model gives a better fit. A simulation from the fitted model is given in Figure
3.41, for a single time-point; qualitatively it also shows a better match with
the observed process.

From another new NLCST model we obtained the information that there
is a negative relationship between cell intensity and area. Posterior mean
and posterior median of ρxm are -0.69 and -0.76 see Table 3.5, which shows
that the correlation is moderately large. The 95 % credible interval is
(−0.93, 0.10).

We also studied that whether the NLCST model can capture heavy tail
distribution of rainfall. For which we used different spatial aggregation to
look at whether the observed exceeded rainfall distribution matches to simu-
lated one. Figures 3.57, 3.58, and 3.59 refer that the LNCST model is doing
better than the rest.

In this chapter, the eccentricity and orientation are estimated using the
empirical spatial autocorrelation function. However the next chapter we will
include these parameters in the ABC-MCMC step.
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Chapter 4

Applications to Different Radar

Data

In this chapter, we select two new rainfall events. One is from Melbourne
radar. The other one is from the radar located at Wardon Hill, UK. We are
interested in whether the ABC fitting is consistent.

We also extend the number of parameters to be estimated in the ABC-
MCMC step, only parameters velocity v = (vx, vy) and σe are fixed. All other
parameters will be estimated in ABC-MCMC step. Remember that previ-
ously eccentricity and orientation of cells were estimated using the spatial
autocorrelation function.

4.1 Melbourne Radar Data

We select a different rainfall event than the rainfall event used in Chapter
3. The radar data was collected at Laverton, Melbourne on 24th September
2016. The rainfall data was also calibrated by the Australian Bureau of
Meteorology using rain-gauge. The actual rainfall process was the rainfall
event on 24th September 2016 for a period of 3 hours from 07:48 to 10:42
hours. As described in the previous Chapter, the radar coverages the circular
region of 128 km radius. The space is gridded 1× 1 km2 and time increment
is 6-minute. We restricted ourself as a square study area of length 180 km
see Figure 3.5. We have 180 × 180 number of pixels for each time point.
There therefore is a matrix of 180× 180× 30. Each element of the matrix is
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given some amount (possibly zero) of rain in mm.
Figure 4.1 shows that coverage percentage, total intensity, mean intensity,

and maximum rainfall at a pixel over time. The plot (a) gives the percentage
coverage over time. The least coverage is 33% and the maximum coverage
reaches 45%. Total intensity over the whole grid is in the plot (b). Minimum
average rainfall per pixel is 0.03 mm and 0.05 mm is maximum average
rainfall per pixel, which can be seen in the plot (c). The maximum rainfall
1.2 mm and minimum rainfall 0.37 mm are shown in the plot (d). Table 4.1
shows summary statistics.

(a) (b)

(c) (d)

Figure 4.1: Plot (a) shows the study region coverage % over time. Plot (b) gives
sum of intensities of all pixels at time t. Mean per pixel at time t is shown in plot
(c). maximum intensity in a pixel at time t is displayed in plot (d). The rainfall
event is on 24th September 2016 from 07:48 to 10:42 hours in Melbourne.

The velocity v = (19.9, 20.0) km per hour was estimated using the spatial
autocorrelation function. Table 4.1 gives summary statistics of the observed
process.
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Summaries lags Values
(lx, ly, lt)

Mean (mm per pixel) 0.038
Standard deviation 0.070
Correlation (−1,−1, 0) 0.954
ρ
(
Y (lx + lt × vx, ly + lt × vy, lt)

)
(−1, 0, 0) 0.978
(−1, 1, 0) 0.961
(0,−1, 0) 0.975
(0, 1, 0) 0.975
(1,−1, 0) 0.961
(1, 0, 0) 0.978
(1, 1, 0) 0.954
(−1 + vx,−1 + vy, 1) 0.854
(−1 + vx, 0 + vy, 1) 0.868
(−1 + vx, 1 + vy, 1) 0.864
(0 + vx,−1 + vy, 1) 0.857
(0 + vx, 0 + vy, 1) 0.869
(0 + vx, 1 + vx, 1) 0.862
(1 + vx,−1 + vy, 1) 0.851
(1 + vx, 0 + vy, 1) 0.859
(1 + vx, 1 + vx, 1) 0.849

P(Y (l) = 0) 0.585
Dry wet ratio 0.709
Mean wet area (km2) 13444
Standard deviation of wet area 1286

Table 4.1: Observed summary statistics. The rainfall event is on 24th September
2016 from 07:48 to 10:42 hours in Melbourne.
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4.1.1 Fitting the C-I-N Rainfall Model using ABC

The parameters were transformed to reduce dependence and skewness. The
new parameters are:

φ(1) = log(λγ−1)

φ(2) = log(λγ)

φ(3) = log(βη−1)

φ(4) = log(βη)

φ(5) = log(µxµA)

φ(6) = log(µxµ
−1
A )

φ(7) = log(α2)

φ(8) = log(ξm)

φ(9) = log(ξcv)

φ(10) = log
( e

1− e
)

φ(11) = log
( Θ

π −Θ

)
φ(12) = vx

φ(13) = vy

Normal priors are used for all the φ(i); i = 1, 2, ..., 6, 10, 11; Recall that
there were previously some extreme posterior points, particularly when we
transformed log parameters to original parameters (see Figure 1 in Ap-
pendix). To avoid these extreme values, we used a truncated normal prior
for parameters φ(7), φ(8), and φ(9). The following priors for φ(7) truncated
normal from (−∞, log(3)], for φ(8)) truncated normal from (−∞, log(6)],
and for φ(9) truncated normal from (−∞, log(10)] works well.

For the proposal chain we just use a random walk with N(0, 0.22I) incre-
ments.

We have kept the same set of summary statistics S as before and the
same distance measure d.

Posterior Distribution

Plots of estimated posteriors for parameter φ(i); i = 1, 2, ..., 11 are given in
Figure 4.3. The trace plots for the posteriors are displayed in Figure 4.2.
Similarly joint posteriors are shown in Figure 4.4. These diagnostic plots
demonstrate the the ABC-MCMC is good for fitting the C-I-N model to the
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rainfall event. Plots of posteriors for original parameters (untransformed)
are showed in Figure 4.5.

Figure 4.2: Chains for φ(i),i = 1, 2, . . . , 11 (from top left to right). The rainfall
event is on 24th September 2016 from 07:48 to 10:42 hours in Melbourne.
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Figure 4.3: Posteriors for φ(i),i = 1, 2, . . . , 11 (from top left to right). Blue curves
are priors. The rainfall event is rainfall on 24th September 2016 from 07:48 to
10:42 hours in Melbourne.
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Figure 4.4: Posteriors (diagonals) for φ(i), i = 1, 2, . . . , 9 and joint posteriors in
the lower panel. The rainfall event is rainfall on 24th September 2016 from 07:48
to 10:42 hours in Melbourne.
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Figure 4.5 shows that posteriors for original parameters, which are ob-
tained from exponentials as follows:

λ = exp
(φ(1) + φ(2)

2

)
γ−1 = exp

(φ(1)− φ(2)

2

)
β = exp

(φ(3) + φ(4)

2

)
η−1 = exp

(φ(3)− φ(4)

2

)
µx = exp

(φ(5) + φ(6)

2

)
µA = exp

(φ(5)− φ(6)

2

)
α2 = exp(φ(7))

ξm = exp(φ(8))

ξcv = exp(φ(9))

e =
exp(φ(10))

exp(φ(10)) + 1

Θ =
π exp(φ(11))

exp(φ(11)) + 1

vx = φ(12)

vy = φ(13)

Table 4.2 shows posterior means, medians and 95 % credible intervals.
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Figure 4.5: Posteriors for parameters λ , γ−1, β, η−1, µx, µA, α2, ξm, ξcv, e, and
Θ. The rainfall event is rainfall on 24th September 2016 from 07:48 to 10:42 hours
in Melbourne.

Parameters Mean Median 95% Credible Interval
λ 0.0007 0.0005 (0.0003, 0.0025)
γ−1 15.094 13.975 (5.3099, 33.328)
β 0.6547 0.6105 (0.2431, 1.4569)
η−1 7.1096 5.3596 (3.4542, 19.733)
µx 0.1924 0.1990 (0.0547, 0.3074)
µA 33.466 32.388 (8.8582, 75.159)
α2 0.0442 0.0436 (0.0155, 0.0847)
ξm 0.5371 0.4136 (0.0916, 2.0332)
ξcv 1.8795 1.6144 (0.2537, 5.5658)
e 0.7895 0.8194 (0.4628, 0.9287)
Θ 2.2915 2.4134 (1.0920, 2.8660)

Table 4.2: Estimated posterior means, medians and credible intervals for param-
eters. Fitted the C-I-N model to the rainfall event on 24th September 2016 from
07:48 to 10:42 hours in Melbourne..
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4.1.2 Fitting Ellipsoidal Cell Spatial-Temporal

Rainfall Model

As before, the velocity v = (19.9, 20.0) km per hour was estimated using
spatial autocorrelation function. For priors we used the N(0, 3.02) distri-
bution for φ(i), for i = 1, ..., 6, 10, 11, and for φ(7) truncated normal from
(−∞, log(3)], for φ(8)) truncated normal from (−∞, log(6)], and for φ(9)
truncated normal from (−∞, log(10)]. As for any MCMC procedure, the pro-
posal chain needs to be chosen so that it mixes well and explores the whole
parameter space. We used a random walk with N(0, 0.22I) increments.

The trace plots for the posteriors are shown in Figure4.6. The Markov
chains have moved around the parameter space, though more mixing would
be desirable. The results presented required several weeks of simulations,
and unfortunately there was not the time to generate more samples.

We have kept the same set of summary statistics S as before and the
same distance measure d.

Figure 4.6: Chains for φ(i),i = 1, 2, . . . , 11 (from top left to right). The rainfall
event is on 24th September 2016 from 07:48 to 10:42 hours in Melbourne.
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Figure 4.7: Posteriors for φ(i),i = 1, 2, . . . , 11 (from top left to right). Red dotted
curves are priors. The rainfall event is on 24th September 2016 from 07:48 to 10:42
hours in Melbourne.
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Figure 4.9 shows that posteriors for original parameters.
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Figure 4.9: Posteriors for parameters λ , γ−1, β, η−1, µx, µA, α2, ξm, ξcv, µe, and
Θ. The rainfall event is on 24th September 2016 from 07:48 to 10:42 hours in
Melbourne.
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Parameters Mean Median 95% Credible Interval
λ 0.0009 0.0005 (0.0003, 0.0045)
γ−1 11.799 11.391 (1.6150, 26.092)
β 0.6551 0.5515 (0.1136, 2.4732)
η−1 10.395 6.6499 (3.3520, 39.636)
µx 0.2177 0.2208 (0.0469, 0.4058)
µA 33.872 30.614 (3.297, 100.772)
α2 0.0560 0.0513 (0.0169, 0.1252)
ξm 0.5756 0.4451 (0.0299, 2.2536)
ξcv 1.8280 1.5295 (0.1619, 5.7586)
µe 0.7374 0.8047 (0.1607, 0.9764)
Θ 2.2609 2.4074 (0.7238, 2.9672)

Table 4.3: Estimated posterior means, medians and 95% credible intervals for
parameters. Fitted the ECST Model to the rainfall even on 24th September 2016
from 07:48 to 10:42 hours in Melbourne.

4.1.3 Fitting Log-Normal Cell Spatial-Temporal

Rainfall Model

Similar to previous fittings, we obtained the velocity v = (19.9, 20.0) km
per hour and then fixed. For the remaining parameters, we estimate pos-
terior distribution for parameters. For priors we used the N(0, 3.02) distri-
bution for φ(i), for i = 1, ..., 9, 12, 13, and for φ(10)) truncated normal from
(−∞, log(6)], and for φ(11) truncated normal from (−∞, log(10)].

For the proposal chain we just use a random walk with N(0, 0.22I) incre-
ments.

The same set of summary statistics S are used as before and the same
distance measure d.

Figure 4.10 shows the Morkov chains from parameters φ(i), i = 1, 2, 3, ..., 13
and the posterior and prior densities are shown in Figure 4.11. The Markov
chains have moved around the parameter space, though more mixing would
be desirable. The results presented required several weeks of simulations,
and unfortunately there was not the time to generate more samples.
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Figure 4.10: Chains for ψ(i),i = 1, 2, . . . , 13 (from top left to right) of the rainfall
event on 24th September 2016 from 07:48 to 10:42 hours in Melbourne.
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Figure 4.11: Posteriors for ψ(i),i = 1, 2, . . . , 13 (from top left to right) of the
rainfall event on 24th September 2016 from 07:48 to 10:42 hours in Melbourne.
Green curves are priors.

In Figure 4.12, the diagonal plots are histograms for parameters ψ(i), i =
1, 2, 3, ..., 13. The lower panels are pair distribution of horizontal and vertical
parameters respectively. The colour label from light green to dark blue gives
dense population of posterior points of pair distributions. As we expect there
is high density of the points in particular region.
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Figure 4.12: Posteriors (diagonals) and joint posteriors for ψ(i), i = 1, 2, . . . , 13 of
the rainfall event on 24th September 2016 from 07:48 to 10:42 hours in Melbourne.
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Figure 4.13 shows that posteriors of original parameters, which are ob-
tains back from exponentials:

λ = exp
(ψ(1) + ψ(2)

2

)
γ−1 = exp

(ψ(1)− ψ(2)

2

)
β = exp

(ψ(3) + ψ(4)

2

)
η−1 = exp

(ψ(3)− ψ(4)

2

)
µx = exp(ψ(5))

σ2
X = 1/exp(ψ(6))

µmc = exp(ψ(7))

σ2
mc = 1/exp(ψ(8))

ρxmc =
exp(ψ(9))− 1

exp(ψ(9)) + 1

ξm = exp(ψ(10))

ξcv = exp(ψ(11))

µe =
exp(ψ(12))

exp(ψ(12)) + 1

Θ =
π exp(ψ(13))

exp(ψ(13)) + 1

vx = φ(14)

vy = φ(15)

Table 4.4 show posterior means, medians and 95 % credible intervals for
parameters.
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Figure 4.13: Posteriors for parameters λ , γ−1, β, η−1, µx, σ
2
X , µmc , σ

2
mc , ρxmc ,

ξm, ξcv, µe, and Θ, fitted to the rainfall event on 24th September 2016 from 07:48
to 10:42 hours in Melbourne.
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Parameters Mean Median 95% Credible Interval
λ 0.0009 0.0006 (0.0002, 0.0040)
γ−1 31.573 31.613 (1.8565, 87.505)
β 0.1843 0.1664 (0.0309, 0.5627)
η−1 16.399 11.803 (4.8640, 64.736)
µx 0.0961 0.0844 (0.0053, 0.3242)
σ2
X 0.7611 0.5041 (0.0432, 4.1003)

µmc 3.1159 2.7745 (0.5412, 8.8749)
σ2
mc 0.9755 0.9570 (0.4447, 1.7389)

ρxmc -0.8905 -0.9600 (-0.9931 0.0365)
ξm 1.4122 1.0970 (0.1255, 4.7924)
ξcv 1.9754 1.3653 (0.0966, 8.0061)
µe 0.7872 0.8323 (0.2581, 0.9718)
Θ 2.3177 2.4343 (0.7071, 3.0203)

Table 4.4: Estimated posterior means, medians and their credible Intervals for
parameters. Fitted the LNCST mode to the rainfall event on 24th September 2016
from 07:48 to 10:42 hours in Melbourne.

4.2 Wardon Hill Radar Data

In this section, we applied ABC-MCMC to fit the ECST model to a different
radar data, recorded at Wardon Hill, UK. The rainfall event is on 7th July
2004 of a period of 4 hours from 19:00 to 22:55 hours.

We obtained the rainfall data from the Met Office, UK. The Wardon Hill
radar coverages a circular region of 100 km radius. The space is gridded
2 × 2 km2 and time increment is 5-minutes. We restricted ourselves as a
square study area of length 140 km each side see Figure 4.14. We therefore
have 70 × 70 array of 2 × 2 km2 pixels. The data is an 70 × 70 × n array,
where n is the number of time partitions. We use a 4-hours rainfall event
in this chapter, therefore n is 48. Each element of the matrix is given some
amount (possibly zero) of rain in mm. We consider there is zero rain if a
pixel, which has less than 0.02 mm in per 5-minute to avoid radar noise.
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r = 100km

x = 140km

Figure 4.14: Circle is radar coverage and square is study area

(a) (b)

(c) (d)

Figure 4.15: Plot (a) shows the study region coverage proportion over time. Plot
(b) gives sum of intensities of all pixels at time t. Mean per pixel at time t is
shown in plot (c). maximum intensity in a pixel at time t is displayed in plot (d).
The rainfall event is on 7th July 2004 from 19:00 to 22:55 hours in Wardon Hill,
UK.

The velocity v = (−24.48,−0.49)km per hour was estimated using spatial
autocorrelation function. Table 4.5 gives summary statistics of the observed
process.
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Summaries lags Values
(lx, ly, lt)

Mean (mm per pixel) 0.106
Standard deviation 0.111
Correlation (−1,−1, 0) 0.795
ρ
(
Y (lx + lt × vx, ly + lt × vy, lt)

)
(−1, 0, 0) 0.895
(−1, 1, 0) 0.835
(0,−1, 0) 0.864
(0, 1, 0) 0.864
(1,−1, 0) 0.835
(1, 0, 0) 0.895
(1, 1, 0) 0.795
(−1 + vx,−1 + vy, 1) 0.612
(−1 + vx, 0 + vy, 1) 0.650
(−1 + vx, 1 + vy, 1) 0.625
(0 + vx,−1 + vy, 1) 0.695
(0 + vx, 0 + vy, 1) 0.733
(0 + vx, 1 + vx, 1) 0.677
(1 + vx,−1 + vy, 1) 0.785
(1 + vx, 0 + vy, 1) 0.812
(1 + vx, 1 + vx, 1) 0.714

P(Y (l) = 0) 0.230
Dry wet ratio 3.349
Mean wet area (km2) 15093
Standard deviation of wet area 1307

Table 4.5: Observed Summary statistics. The rainfall event is on 7th July 2004
from 19:00 to 22:55 hours in Wardon Hill, UK.

4.2.1 Fitting the ECST Model

As before we estimate the velocity using spatial autocorrelation function.
For remaining parameters, we use the ABC to estimate their posteriors. For
priors we used the N(0, 3.02) distribution for φ(i), for i = 1, ..., 6, 10, 11, and
for φ(7) truncated normal from (−∞, log(3)], for φ(8)) truncated normal
from (−∞, log(6)], and for φ(9) truncated normal from (−∞, log(10)]

For the proposal chain, we used a random walk with N(0, 0.22I) incre-
ments.

We have kept the same set of summary statistics S as before, and the
distance measure d.
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Trace plots are displayed in Figure 4.16. The Markov chains have moved
around the parameter space, though more mixing would be desirable. The
results presented required several weeks of simulations, and unfortunately
there was not the time to generate more samples. In Figure 4.17 we plot
marginal densities and pairwise densities.

Figure 4.16: Chains for φ(i),i = 1, 2, . . . , 11 (from top left to right). The rainfall
event is on 7th July 2004 from 19:00 to 22:55 hours in Wardon Hill, UK.
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Figure 4.17: Posteriors (diagonals) for φ(i), i = 1, 2, . . . , 11 and lower panel plots
are joint posteriors . The rainfall event is on 7th July 2004 from 19:00 to 22:55
hours in Wardon Hill, UK.

Figure 4.18 shows that posteriors for original parameters λ , γ−1, β, η−1,
µx, µA, α2, ξm, ξcv, µe, and Θ.
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Figure 4.18: Posteriors for parameters λ , γ−1, β, η−1, µx, µA, α2, ξm, ξcv, µe,
and Θ. The rainfall event is on 7th July 2004 from 19:00 to 22:55 hours in Wardon
Hill, UK.

Parameters Mean Median 95% Credible Interval
λ 0.0049 0.0045 (0.0022, 0.0098)
γ−1 10.698 9.9569 (3.9474, 21.956)
β 0.9116 0.8373 (0.4015, 1.9076)
η−1 7.3179 6.8431 (3.0657, 14.271)
µx 0.0285 0.0280 (0.0195, 0.0411)
µA 33.774 31.364 (14.789, 77.411)
α2 0.0893 0.0733 (0.0423, 0.2415)
ξm 0.4895 0.4039 (0.1444, 1.4112)
ξcv 2.5485 2.3898 (0.7550, 5.4446)
µe 0.4982 0.4954 (0.2418, 0.7895)
Θ 2.2984 2.3428 (1.4445, 2.7913)

Table 4.6: Estimated posterior means, medians and credible intervals. for pa-
rameters. Fitted the ECST Model to the rainfall event is on 7th July 2004 from
19:00 to 22:55 hours in Wardon Hill, UK.
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4.3 Parameter estimation comparison

In this section, we compare parameter estimation for three distinct rainfall
events. We selected three rainfall events to fit spatial temporal rainfall
models. Event 1 was the rainfall at Melbourne on 24th September 2016 from
12:54 to 16:48 hours. The fitting spatial-temporal models to this event was
discussed in the Chapter 3. Event 2 was the rainfall on the same day from
7:48 to 10:42 at Melbourne. The details were discussed in §4.1. The rainfall
on 7th July 2004 from 19:00 to 22:55 hours at Wardon Hill, UK was selected
as event 3, which was discussed in §4.2.

Tables 4.7 and 4.9 present posterior medians and 95% credible intervals
for parameters. The estimated values from the C-I-N and the LNST models
fitted to event 1 and event 2 looks similar, which shows that the ABC fitting
is consistent. We fitted the ECST model to these events as well.

We also fitted the ECST model to one additional rainfall event at Wardon
Hill, UK. Table 4.8 presents posterior medians and 95% credible intervals for
parameters. Estimates are similar, however λ and µx are quite different in
event 3 than the rest. If we take their product (λ×µx) we will get the similar
values. Using posterior medians, we have the product 0.00014 for event 1,
0.00011 for event 2, and 0.00013 for event 3.

Parameters Event 1 Event 2 Event 1 Event 2
(Post. median) (Post. median) ( CI ) ( CI)

λ 0.0006 0.0005 (0.0003, 0.0026) (0.0003, 0.0025)
γ−1 13.233 13.975 (2.9086, 38.585) (5.3099, 33.328)
β 0.6201 0.6105 (0.2321, 1.7451) (0.2431, 1.4569)
η−1 4.6462 5.3596 (2.6768, 13.180) (3.4542, 19.733)
µx 0.1917 0.1990 (0.0792, 0.3332) (0.0547, 0.3074)
µA 32.677 32.388 (11.839, 93.733) (8.8582, 75.159)
α2 0.0548 0.0436 (0.0255, 0.1211) (0.0155, 0.0847)
ξm 0.4006 0.4136 (0.0738, 1.8749) (0.0916, 2.0332)
ξcv 1.5953 1.6144 (0.1467, 6.0694) (0.2537, 5.5658)
e 0.8194 (0.4628, 0.9287)
Θ 2.4134 (1.0920, 2.8660)

Table 4.7: Posterior medians and credible intervals estimated from fitting
the C-I-N model to two rainfall events in Melbourne using ABC.
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Event 1 Event 2 Event 3 Event 1 Event 2 Event 3
(Post. (Post. (Post. ( CI ) ( CI) ( CI )

median) median) median)
λ 0.0005 0.0005 0.0045 (0.0002, 0.0036) (0.0003, 0.0045) (0.0022, 0.0098)
γ−1 12.391 11.391 9.9569 (1.0938, 38.497) (1.6150, 26.092) (3.9474, 21.956)
β 0.5722 0.5515 0.8373 (0.1171, 1.8787) (0.1136, 2.4732) (0.4015, 1.9076)
η−1 7.6700 6.6499 6.8431 (4.0369, 35.960) (3.3520, 39.636) (3.0657, 14.271)
µx 0.2731 0.2208 0.0280 (0.1508, 0.4848) (0.0469, 0.4058) (0.0195, 0.0411)
µA 31.541 30.614 31.364 (4.6533, 92.161) (3.297, 100.772) (14.789, 77.411)
α2 0.0771 0.0513 0.0733 (0.0441, 0.1617) (0.0169, 0.1252) (0.0423, 0.2415)
ξm 0.7224 0.4451 0.4039 (0.3761, 1.6064) (0.0299, 2.2536) (0.1444, 1.4112)
ξcv 1.2105 1.5295 2.3898 (0.5601, 2.1132) (0.1619, 5.7586) (0.7550, 5.4446)
µe 0.8047 0.4954 (0.1607, 0.9764 (0.2418, 0.7895)
Θ 2.4074 2.3428 (0.7238, 2.9672 (1.4445, 2.7913)

Table 4.8: Posterior medians and credible intervals estimated from fitting
the ECST model to three rainfall events using ABC. Event 1 and event 2
were in Melbourne and the event 3 was in Wardon Hill, UK.

Parameters Event 1 Event 2 Event 1 Event 2
(Post. median) (Post. median) ( CI ) ( CI)

λ 0.0006 0.0006 (0.0002, 0.0015) (0.0002, 0.0040)
γ−1 32.462 31.613 (4.4944, 64.524) (1.8565, 87.505)
β 0.1801 0.1664 (0.0457, 0.4429) (0.0309, 0.5627)
η−1 11.407 11.803 (5.6338, 42.133) (4.8640, 64.736)
µx 0.1258 0.0844 (0.0426, 0.7603) (0.0053, 0.3242)
σ2
X 0.4519 0.5041 (0.0671, 1.5503) (0.0432, 4.1003)

µmc 2.7523 2.7745 (0.7829, 5.6306) (0.5412, 8.8749)
σ2
mc 0.7859 0.9570 (0.4335, 1.7103) (0.4447, 1.7389)

ρxmc -0.7564 -0.9600 (-0.9327, 0.0996) (-0.9931 0.0365)
ξm 1.1647 1.0970 (0.1671, 4.3280) (0.1255, 4.7924)
ξcv 1.1901 1.3653 (0.6291, 1.9917) (0.0966, 8.0061)
µe 0.8323 (0.2581, 0.9718)
Θ 2.4343 (0.7071, 3.0203)

Table 4.9: Posterior medians and credible intervals estimated from fitting
the LNST model to two rainfall events in Melbourne using ABC.
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4.4 Discussion

We considered two new rainfall events in this chapter to demonstrate that the
ABC-MCMC procedure gives consistent results for different events. We also
used the ABC-MCMC algorithm to estimate all model parameters except cell
eccentricity variance and the velocity. Recall that eccentricity and orientation
were estimated using an ad-hoc method in Chapter 3.

The different events selected are obtained from two different radars. All
three rainfall events move in different directions: event 1 moves with velocity
v = (0.10, 29.9) km per hour, event 2 travels with velocity v = (19.9,20.0) km
per hour and for event 3, the velocity v = (-24.48, -0.49) km per hour. The
mean rainfall per pixel are also quite different, with values of 0.065, 0.038
and 0.026 for events 1, 2 and 3 respectively.

Using the ad-hoc method of Chapter 3, the eccentricity and orientation
for event 2 were estimated to be 0.84 and 2.24, which are within the 95 %
credible intervals given in Table 4.2. Similarly the eccentricity and orientation
for event 3 were 0.75 and 2.45, and both are within the 95 % credible intervals
seen in Table 4.6. This shows that we do not need to estimate eccentricity
and orientation separately, but can estimate these parameters from the ABC-
MCMC procedure.

We presented all parameter estimates in Tables 4.7, 4.8 and 4.9 from three
models fitted to three different events. The results show that ABC-MCMC
readily adapts to more general, and thus more realistic, variants of the model.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

Using both a simulation study and real data, we have seen that the ABC-
MCMC gives better fits than GMM, for fitting a Bartlett-Lewis rainfall
model. From the modelling perspective, an important advantage of ABC
fitting over GMM fitting is that we can use summaries of the data that
capture useful information, whether or not we have an expression for their
expectation. Moreover, this means that ABC can be used for models for
which GMM fitting is not available. For example, if we used a gamma distri-
bution for the duration of a rain cell, rather than an exponential distribution,
then we would not be able to calculate the second order statistics of the B-L
rainfal model, making GMM fitting impossible. However ABC fitting would
proceed as before, with the addition of a single parameter.

We included a wide range of statistics to fit rainfall models to spatial-
temporal data. This allowed us to develop more realistic stochastic rainfall
models. We proposed two new spatial-temporal rainfall models, which clearly
showed a better fit than the C-I-N model to the observed rainfall process.

With the advantage of flexibility in choice of summary statistics there
is the disadvantage of an increase in computational time. To reduce the
computational time we proposed a novel method to initiate the ABC proce-
dure. The Simulated Method of Moments is utilised to initialize the ABC.
This method reduces the computational time by finding a feasible starting
point, reducing the need for a burn in, and providing a set of weights for the
distance measure.
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The models we studied are easy to simulate, but very difficult to ob-
tain analyse theoretically. We established that ABC is readily applicable
to the estimation of temporal and spatial-temporal rainfall models based on
cluster processes. We were able to fit the models using scientifically rele-
vant summary statistics, because ABC does not require their corresponding
likelihoods. This approach also opens the opportunity of fitting much more
realistic stochastic rainfall models. This is significant because simulations of
realistic rainfall model are important to study climatic variables in hydrolog-
ical processes.

5.2 Future work

Bivariate log-normal distribution for cell intensity and cell major semi-axis
was an opportunity to study relationships between them using the Log-
Normal Cell Spatial-Temporal model. However this model produced more
spoty rain cells than expected. In future, we could consider whether cell ma-
jor semi-axis follows the gamma distribution. We also expect some cells with
extreme intensity. Cell intensity therefore may follow heavy tail distributions
which may give better representation of extreme rainfall.

Spatial-temporal rainfall models discussed in this thesis are stationary in
time and homogeneous in space. Rainfall processes, however, are unlikely
to be always stationary in time and homogeneous in space. We have found
that there are rare rainfall events which spread out evenly over the whole
study region. We experienced that most rainfall events are concentrated
in some parts of the region. If we consider that the rainfall process is an
inhomogeneous process, this may give better representation of the rainfall
process. However, the process becomes more complex. We could consider
storm arrival processes as inhomogeneous in space, which can lead to more
storms arriving in some parts of the region, and rain cells are clustered with
the storms. Theoretical expectations for the moments can be difficult to
derive, but the ABC-MCMC provides an alternative method to fit these
models without deriving their expectations.

In recent years, there has been increasing interest in stochastic modelling
of flood risk and water resource management. Stochastic models for precip-
itation have been applied to provide an assessment of the impact of future
change in hydrological processes. The spatial distribution of rainfall and its
development over time are essential to hydrological applications. Our models
may be used in conjunction with urban flood models to determine and assess
the flood risks, as we require simulated process input to flood models, partic-
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ularly where the observed data is not available. A research on integrating our
spatial-temporal rainfall models into urban flood models is recommended.
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Figure 1: Posteriors for parameters λ , γ−1, β, η−1, µx, µA, α2, ξm, ξcv. The
posteriors are for C-I-N model parameters. The rainfall event is rainfall on 24th
September 2016 from 07:48 to 10:42 hours in Melbourne.
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Figure 2: Posteriors for parameters λ , γ−1, β, η−1, µx, µA, α2, ξm, ξcv.The
posteriors are for ECST model parameters. The rainfall event is rainfall on 24th
September 2016 from 07:48 to 10:42 hours in Melbourne.
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